JPS58218845A - Armature coil for rotary electric machine - Google Patents

Armature coil for rotary electric machine

Info

Publication number
JPS58218845A
JPS58218845A JP9931482A JP9931482A JPS58218845A JP S58218845 A JPS58218845 A JP S58218845A JP 9931482 A JP9931482 A JP 9931482A JP 9931482 A JP9931482 A JP 9931482A JP S58218845 A JPS58218845 A JP S58218845A
Authority
JP
Japan
Prior art keywords
coil
cooling pipe
armature
coil conductor
output current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9931482A
Other languages
Japanese (ja)
Inventor
Miyoshi Takahashi
身佳 高橋
Masatoshi Watabe
渡部 正敏
Noriyoshi Takahashi
高橋 典義
Kenjiro Kaminaga
神永 健二郎
Takashi Haruta
春田 孝
Yukio Sonobe
薗部 幸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9931482A priority Critical patent/JPS58218845A/en
Publication of JPS58218845A publication Critical patent/JPS58218845A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

PURPOSE:To remove output current flowing through a cooling pipe, and to reduce output current loss by electrically connecting a coil conductor, an electric connecting part connecting said coil conductor and the cooling pipe at one end of the armature coil. CONSTITUTION:A plurality of the coil conductors 3 and the cooling pipes 5, electric specific resistance thereof is larger than that of the coil conductors 3 and to which refrigerant flow paths are formed, are each dislocated mutually and the armature coils 1c, 1d are formed, and the coil conductors 3 and the cooling pipes 5 are electrically connected collectively by the electric connecting tools 8 at one ends of the armature coils 1c, 1d. The cooling pipes 5 are insulated electrically from the electric connecting parts 8 and the coil conductors 3 by insulators 11 fitted near the electric connecting parts 8 at the other ends of the armature coils 1c, 1d. Accordingly, output currents do not flow through the electric circuits of the cooling pipes 5, and output current loss is reduced.

Description

【発明の詳細な説明】 本発明は回転電機の電機子コイルに係り、特にコイル導
体と冷却パイプとを転位して構成し友回転電機の電機子
コイルに関するものである・回転電機の単機容量増大の
一手段として、従来固定子鉄心スロット内に収納されて
いた電機子巻線をスロットレス固定子鉄心と回転子との
間の空隙中に配置し穴空隙電機子巻線構造とし、一方回
転子側は超電導界磁巻線を内蔵した超電導回転子で構成
される構造の所謂超電導発電機が採用されるようになっ
てきた。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an armature coil for a rotating electric machine, and particularly relates to an armature coil for a companion rotating electric machine that is constructed by transposing a coil conductor and a cooling pipe.Increasing the single machine capacity of a rotating electric machine As one method, the armature winding, which was conventionally housed in the stator core slot, is placed in the gap between the slotless stator core and the rotor to create a hole-gap armature winding structure, while the rotor A so-called superconducting generator, which has a structure consisting of a superconducting rotor with a built-in superconducting field winding, has come to be used.

固定子鉄心と回転子との間の空隙中圧配置した空隙電機
子巻線は回転子からの強磁界中和直接曝されるので、空
隙電機子巻線を構成する電機子コイルのコイル導体には
大きなうず電流損が発生する問題があり、従来の鉄心ス
ロット内に挿入された電機子コイルとその断面構成を異
にしている。゛この空隙電機子巻線を構成する電機子コ
イルの′従来例が第1図に示されている。電機子コイル
1は、外径が1m前後の絶縁側素線2の複数本を撚って
整形し、外周を絶縁処理したコイル導体3、冷媒流路4
を形成している金属性の冷却パイプ5および外絶縁層6
等で構成されている。そして各コイル導体3間に誘起す
る電圧がバランスするように、かつ冷却効率が向上し電
機子コイル1の電磁力に対する剛性が増大するようにコ
イル導体3と冷却パイプ5とは互にコイル胴部でフイラ
ー7等を介在させたレーベル転位が施されている。
The air-gap armature winding placed at medium pressure in the air-gap between the stator core and rotor is directly exposed to strong magnetic field neutralization from the rotor, so the coil conductor of the armature coil constituting the air-gap armature winding is This has the problem of large eddy current loss, and its cross-sectional configuration is different from that of conventional armature coils inserted into core slots. A conventional example of an armature coil constituting this air-gap armature winding is shown in FIG. The armature coil 1 is made by twisting and shaping a plurality of insulated wires 2 with an outer diameter of about 1 m, and includes a coil conductor 3 and a refrigerant flow path 4 whose outer periphery is insulated.
A metallic cooling pipe 5 and an outer insulating layer 6 forming a
It is made up of etc. The coil conductors 3 and the cooling pipes 5 are connected to each other so that the voltage induced between each coil conductor 3 is balanced, the cooling efficiency is improved, and the rigidity of the armature coil 1 against electromagnetic force is increased. Label transposition using filler 7, etc. was performed.

このようにコイル導体3を絶縁線素線2で構成するのは
、高vILU中におけるコイル導体3のうず電流積を抑
制する几めである。またこのような絶縁線素線2ではこ
れを中空にして冷媒を流す所謂直接冷却法が不可能で、
冷却専用の冷却パイプ5で間接的にコイル導体3に発生
した熱損失を除去する構造としなければならないので、
冷却パイプ5Vi冷却のために必要な熱伝導率が大きく
、かつ冷却パイプ5自体のうず電流積があまり問題とな
らない電気固有抵抗が絶縁線素線2(銅)より大きな金
属、例えばステンレス系や銅〜ニッケル合金系の金属が
里いられる。
The reason why the coil conductor 3 is constructed of the insulated wire strand 2 in this way is to suppress the eddy current product of the coil conductor 3 during high vILU. In addition, with such an insulated wire element 2, it is impossible to perform the so-called direct cooling method of making it hollow and letting a refrigerant flow through it.
Since the structure must be such that the heat loss generated in the coil conductor 3 is indirectly removed by the cooling pipe 5 dedicated to cooling,
The cooling pipe 5Vi is made of a metal that has a high thermal conductivity required for cooling, and has a higher electrical resistivity than the insulated wire strand 2 (copper), such that the eddy current product of the cooling pipe 5 itself is not much of a problem, such as stainless steel or copper. ~Nickel alloy metals are available.

このような電機子コイル1t−第2図に示されているよ
うに発電機容量に適合した数だけ直並列接続して空隙電
機子巻線を形成するが、図中実測表示の上層の電機子コ
イル1 、、a b点線表示の下層の電機子コイル1b
で構成さ糺た2層空隙電機子巻線のこれら電機子コイル
1a、1bのコイル導体および冷却パイプは、その端部
でろう付けやはんだ付けなどで電気接続部品8によって
電気的に一括接続されている。この接続の際は外絶縁層
が施されているコイル導体および絶縁線素線は、電気接
続部品8と対応した位置のそれら絶縁被覆が取り除かれ
る。なお9は冷却パイプを流れる冷媒を電機子コイル1
a、1bに給排する給排ボックスであり、これに外部か
ら絶縁ホース(図示せず)などによって冷媒が給排され
る。
As shown in Figure 2, such an armature coil 1t is connected in series and parallel in a number suitable for the generator capacity to form an air-gap armature winding. Coil 1,, a b lower armature coil 1b indicated by dotted line
The coil conductors and cooling pipes of these armature coils 1a and 1b of the two-layer air-gap armature winding are electrically connected together at their ends by electrical connection parts 8 by brazing, soldering, etc. ing. During this connection, the insulation coating of the coil conductor and the insulated wire strands coated with the outer insulation layer is removed at positions corresponding to the electrical connection parts 8. Note that 9 connects the refrigerant flowing through the cooling pipe to the armature coil 1.
This is a supply/discharge box that supplies and discharges refrigerant from the outside to the refrigerant via an insulated hose (not shown) or the like.

このようなコイル導体と冷却パイプとを電気接続部品8
で電気的に一括接続するコイル端部接続構造では、第3
図に示されているように両端の電気接続部品8によって
コイル導体3と冷却パイプ5との並列電気回路が各電機
子コイル1a、1b2毎に形成されることになる。この
ためコイル導体3および冷却パイプ5に誘起される電圧
は前述のようにコイル導体3、冷却パイプ5が互にレー
ベル転位されているのでバランスし、並列な両電気回路
を循環して流れる循環電流はないが出力電流は両電気回
路を分流して流れる。この分流する出力電流は一般に5
0か60Hzの交流電流であること、冷却パイプ5とコ
イル導体3とは互に転位、すなわち撚られていることお
よび電機子コイル1a、1bの外径位置に磁性材の固定
子鉄心が存在すること等によって、と記両電気回路の電
気定数は抵抗とりアクタンスとのうちリアクタンス値が
支配的となるので、両電気回路を分流して流れる出力電
流はりアクタンスによって制約されることになる。なお
同図はコイル端接続部の一方端が示され几ものであるが
、他方端の構造もこれと同じである。なおtfcl 0
は電気接続部品8とト。
An electrical connection part 8 connects such a coil conductor and a cooling pipe.
In the coil end connection structure that electrically connects all at once, the third
As shown in the figure, a parallel electric circuit between the coil conductor 3 and the cooling pipe 5 is formed for each armature coil 1a, 1b2 by means of the electrical connection parts 8 at both ends. Therefore, the voltage induced in the coil conductor 3 and the cooling pipe 5 is balanced because the coil conductor 3 and the cooling pipe 5 are Lebel transposed with each other as described above, and the circulating current flows through both parallel electric circuits. However, the output current flows through both electrical circuits. This shunted output current is generally 5
The alternating current is between 0 and 60 Hz, the cooling pipe 5 and the coil conductor 3 are transposed or twisted with each other, and a stator core made of magnetic material is present at the outer diameter position of the armature coils 1a and 1b. Because of this, the reactance value of the resistance and actance becomes dominant in the electrical constants of the two electric circuits, so the output current that flows through the two electric circuits is constrained by the actance. Although the figure shows only one end of the coil end connection part, the structure of the other end is also the same. Note that tfcl 0
is electrical connection part 8.

下層の電機子コイルla、lbとの電気的接触が良好と
なるように挿入されたコツター導体である。
This is a cotter conductor inserted to make good electrical contact with the lower armature coils la and lb.

その結果、・コイル導体3よりも電気固有抵抗の大きな
冷却パイプ5にもコイル導体3とほぼ同程度の出力電流
が分流して流れることになるが、電気固有抵抗の大きい
分だけ冷却パイプ5にはコイル導体3よりも大きな出力
電流損が発生する。例えばコイル導体3と冷却パイプ5
との導体部断面積が等しいとして冷却パイプ5にステン
レス系の材料を用い次場合の冷却パイプ5の電気固有抵
抗ρ1は約7 X 10−’Ωmであり、鋼材の絶縁線
素線で構成されたコイル導体3の電気固有抵抗ρCは約
2 X 10−’Ωmなので、冷却パイプ5にはコイル
導体3に比べこれら両者の比、すなわち7X10−1Ω
m 72 X I Q””Ωm−35倍もの大きな出力
電流損が発生する。このためこの程断面構成の電機子コ
イルla、1bでは発電機の効率低下および電機子コイ
ル1a、1bの温度上昇が著しくなり、電機子巻線の焼
損事故を銹発し易い欠点があった・ 本発明は以上の点に鑑みなされたものであり、その目的
とするところは、出力電流損を低減した回転電機の電機
子コイルを提供するにある。
As a result, an output current of approximately the same level as that of the coil conductor 3 will be shunted to the cooling pipe 5, which has a higher electric resistivity than the coil conductor 3, but the output current will flow in the cooling pipe 5 by an amount corresponding to the higher electric resistivity. In this case, a larger output current loss occurs than in the coil conductor 3. For example, the coil conductor 3 and the cooling pipe 5
The electrical resistivity ρ1 of the cooling pipe 5 in the following case is approximately 7 x 10-'Ωm, and the cooling pipe 5 is made of a steel insulated wire strand. Since the electrical resistivity ρC of the coil conductor 3 is about 2×10-'Ωm, the cooling pipe 5 has a ratio of these two, i.e., 7×10-1Ω, compared to the coil conductor 3.
An output current loss as large as Ωm-35 occurs. For this reason, the armature coils la and 1b with this cross-sectional configuration have the disadvantage that the efficiency of the generator decreases and the temperature of the armature coils 1a and 1b increases significantly, making it easy to burn out the armature windings. The invention has been made in view of the above points, and its purpose is to provide an armature coil for a rotating electrical machine that reduces output current loss.

すなわち本発明は、電機子コイルの一方端ではコイル導
体と冷却パイプとを電気接続部品で電気的に一括接続し
、他方端ではコイル導体およびこのコイル導体と接続し
た電気接続部品と冷却パイプとを夫々電気的に絶縁した
ことを特徴とするものである。
That is, the present invention electrically connects the coil conductor and the cooling pipe together at one end of the armature coil using an electrical connection part, and connects the coil conductor, the electrical connection part connected to the coil conductor, and the cooling pipe at the other end. They are characterized by being electrically insulated from each other.

以下、図示した実施例に基づいて本発明の説明する。第
4図には本発明の一実施例が示されている。なお従来と
同じ部品には同じ符号を付し九ので説明は省略する。本
実施例では電機子コイル1c、1dの一方端ではコイル
導体3と冷却パイプ5とを電気接続部品8で電気的に一
括接続し、他方端ではコイル導体3およびこのコイル導
体3と接続し良電気接続部品8と冷却パイプ5とを夫々
電気的に絶縁した。このようにすることにより冷却パイ
プ5には出力電流が流れなくなって、出力電流損を低減
し九電機子コイル1c、1dを得ることができる。
Hereinafter, the present invention will be explained based on the illustrated embodiments. FIG. 4 shows an embodiment of the present invention. Note that parts that are the same as those in the prior art are designated by the same reference numerals, and their explanations will be omitted. In this embodiment, the coil conductor 3 and the cooling pipe 5 are electrically connected together at one end of the armature coils 1c and 1d by an electrical connection part 8, and the coil conductor 3 and the coil conductor 3 are connected to each other at the other end. The electrical connection part 8 and the cooling pipe 5 were electrically insulated from each other. By doing this, no output current flows through the cooling pipe 5, reducing output current loss and providing nine armature coils 1c and 1d.

すなわち電機子コイル1c、1aの端部接続部の一方端
は同図に示されているように、冷却パイプ5f:その電
気接続部品8の近傍に施した絶縁物11によって電気接
続部品8およびコイル導体3と電気的に絶縁し几。そし
て他方端(図示せず)は従来と同様にコイル導体3と冷
却パイプ5とを電気接続部品8によって電気的に一括接
続した。
That is, one end of the end connecting portion of the armature coils 1c, 1a is connected to the electrical connecting component 8 and the coil by an insulator 11 provided near the cooling pipe 5f: the electrical connecting component 8, as shown in the figure. Electrically insulated from conductor 3. At the other end (not shown), the coil conductor 3 and the cooling pipe 5 are electrically connected together by an electrical connection part 8 as in the conventional case.

このようにすることにより、−万端ではコイル導体3と
冷却パイプ5とが電気接続部品8によって電気的に一括
接続されていても他方端ではコイル導体3およびコイル
導体3と接続した電気接続部品8と冷却パイプ5とは電
気的に絶縁されているので、出力電流は電機子コイルI
Cのコイル導体3から電気接続部品8、電機子コイル1
dのコイル導体3へと流れるようになって、冷却パイプ
5の電気回路は独立し、冷却パイプ5の電気回路には出
力電流が流れなくなる。そしてまた冷却パイプ5はコイ
ル胴部において互によく転位されているので、冷却パイ
プ5間に誘起する電圧のアンバランスによる冷媒の給排
ボックスを介しての循環電流等の発生もないので、従来
問題であった冷却パイプ5部での損失の増大が防止でき
る・このように出力電流損が低減できるので、発電機の
効率向上、電機子コイルlc、1dの温度上昇の低減を
図ることができる。
By doing so, - even if the coil conductor 3 and the cooling pipe 5 are electrically connected together by the electrical connection part 8, the coil conductor 3 and the electrical connection part 8 connected to the coil conductor 3 at the other end. and the cooling pipe 5 are electrically insulated, so the output current is from the armature coil I.
C coil conductor 3 to electrical connection parts 8, armature coil 1
d, the electrical circuit of the cooling pipe 5 becomes independent, and no output current flows through the electrical circuit of the cooling pipe 5. Furthermore, since the cooling pipes 5 are well disposed with respect to each other in the coil body, there is no occurrence of circulating current through the refrigerant supply/discharge box due to voltage imbalance induced between the cooling pipes 5. The increase in loss in the cooling pipe section 5, which was a problem, can be prevented. Since the output current loss can be reduced in this way, it is possible to improve the efficiency of the generator and reduce the temperature rise of armature coils lc and 1d. .

なおコイル端部接続位置における冷却パイプ5の絶縁物
11としては、耐熱性に優れたセラミツ       
“ゝり材や有機フィルム絶縁材等がよい。
The insulator 11 of the cooling pipe 5 at the coil end connection position is made of ceramic with excellent heat resistance.
“Solid materials and organic film insulation materials are good.

なおま几コイル接続部の一方端に限らず、両端でコイル
導体3およびコイル導体3と接続し几電気接続部品8と
冷却パイプ5とを夫々絶縁しても本実施例の場合と同様
な効果が得られるが、冷却パイプ50局部絶縁作業は単
純ではないので作業性が悪くなり、かつ絶縁耐力上最も
問題の多いコイル端部寸法が両端共大きくなって、コイ
ル間隔を必要以とに広げてしまうので望ましくない。
The same effect as in this embodiment can be obtained not only at one end of the coil connection part but also by connecting the coil conductor 3 and the coil conductor 3 at both ends and insulating the electrical connection part 8 and the cooling pipe 5 respectively. However, since the local insulation work for the cooling pipe 50 is not simple, the workability is poor, and the dimensions of the coil ends, which are the most problematic in terms of dielectric strength, are large at both ends, making the coil spacing unnecessarily widened. It is undesirable because it gets stored away.

第5図には本発明の他の実施例が示されている。Another embodiment of the invention is shown in FIG.

コイル接続部の一方端において、2列のコイル導体3を
コイル幅を広げる方向に曲げて伸ばし、一方冷却パイブ
5はコイル中央部に集め、コイル端部で夫々コイク導体
3と冷却パイプ5とを分離し、これら電気接続部品8に
接続したコイル導体3と冷却パイプ5とを絶縁板12で
絶縁し几。勿論他方端のコイル導体3と冷却パイプ5と
は電気接続部品8を介して電気的に一括接続した。この
場合にも前述の場合と同様な作用効果を奏することがで
きる。
At one end of the coil connection section, the two rows of coil conductors 3 are bent and stretched in a direction to widen the coil width, while the cooling pipes 5 are gathered at the center of the coil, and the coil conductors 3 and cooling pipes 5 are connected at the ends of the coils, respectively. The coil conductor 3 and cooling pipe 5 which are separated and connected to these electrical connection parts 8 are insulated by an insulating plate 12. Of course, the coil conductor 3 at the other end and the cooling pipe 5 were electrically connected together via the electrical connection part 8. In this case as well, the same effects as in the above case can be achieved.

上述のように本発明は、電機子コイルの一方端ではコイ
ル導体と′冷却パイプとを電気接続部品で電気的に一括
接続し、他方端ではコイル導体およびコイル4体と接続
した電気接続部品と冷却パイプとを電気的に絶縁したの
で、冷却パイプは電気的に絶縁されるようになって、冷
却パイプには出力電流が流れなくなり、出力電流損を低
減した回転電機の電機子コイルを得ることができる。
As described above, the present invention provides electrical connection between the coil conductor and the cooling pipe at one end of the armature coil, and an electrical connection component connected to the coil conductor and the four coils at the other end. Since the cooling pipe is electrically insulated, the cooling pipe is electrically insulated, and no output current flows through the cooling pipe, thereby obtaining an armature coil for a rotating electric machine with reduced output current loss. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の回転機の電機子コイルの胴部断面図、第
2図は従来の回転機の電機子コイルを部用し几空隙電機
子巻線の結線図、第3図は第2図のA−AおよびB−B
位置から見たコイル端部の接続部を示す接続部門りの電
機子コイルの斜視図、第4図は本発明の回転機の電機子
コイルの一実施例の一方端の接続部を示す接続部門りの
斜視図、第5図は本発明の回転機の電機子コイルの他の
実施例の一方端の接続部を示す接続部門りの斜視図であ
る。 Ic、1d・・・電機子コイル、3・・・コイル導体、
5・・・冷却パイプ、8・・・電気接続部品、11・・
・絶縁物、12・・・絶縁板。 第 1 図 第2 図 竿3 図 ¥ 4 図 ¥ 5′図 乙
Figure 1 is a sectional view of the body of the armature coil of a conventional rotating machine, Figure 2 is a connection diagram of a gap armature winding using the armature coil of a conventional rotating machine, and Figure 3 is a diagram of the connection of the armature winding of the conventional rotating machine. A-A and B-B in the diagram
FIG. 4 is a perspective view of the armature coil at the connection section showing the connection section at the end of the coil viewed from the position; FIG. 4 is a connection section showing the connection section at one end of an embodiment of the armature coil of the rotating machine of the present invention; FIG. 5 is a perspective view of a connecting section showing a connecting section at one end of another embodiment of the armature coil of a rotating machine according to the present invention. Ic, 1d... Armature coil, 3... Coil conductor,
5...Cooling pipe, 8...Electrical connection parts, 11...
- Insulator, 12... Insulating plate. Figure 1 Figure 2 Figure rod 3 Figure ¥ 4 Figure ¥ 5' Figure O

Claims (1)

【特許請求の範囲】[Claims] 1、 コイル導体と、このコイル導体よりも電気固有抵
抗が大きく、かつ冷媒流路を形成している冷却パイプと
を夫々複数個互に転位して構成した回転電機の電機子コ
イルにおいて、前記電機子コイルの一方端では前記コイ
ル導体と前記冷却パイプとを電気接続部品で電気的に一
括接続し、他方端では前記コイル導体およびこのコイル
導体と接続した前記電気接続部品と前記冷却パイプとを
夫々電気的に絶縁したことを特徴とする回転電機の電機
子コイル。
1. In the armature coil of a rotating electric machine, the armature coil of a rotating electric machine is constructed by mutually displacing a coil conductor and a plurality of cooling pipes each having a higher electric resistivity than the coil conductor and forming a coolant flow path. At one end of the child coil, the coil conductor and the cooling pipe are electrically connected together by an electrical connection part, and at the other end, the coil conductor, the electrical connection part connected to the coil conductor, and the cooling pipe are respectively connected. An armature coil for a rotating electric machine that is electrically insulated.
JP9931482A 1982-06-11 1982-06-11 Armature coil for rotary electric machine Pending JPS58218845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9931482A JPS58218845A (en) 1982-06-11 1982-06-11 Armature coil for rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9931482A JPS58218845A (en) 1982-06-11 1982-06-11 Armature coil for rotary electric machine

Publications (1)

Publication Number Publication Date
JPS58218845A true JPS58218845A (en) 1983-12-20

Family

ID=14244173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9931482A Pending JPS58218845A (en) 1982-06-11 1982-06-11 Armature coil for rotary electric machine

Country Status (1)

Country Link
JP (1) JPS58218845A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906883A (en) * 1988-05-19 1990-03-06 General Electric Canada Inc. Arrangement for edgewise wound pole winding
FR2690281A1 (en) * 1992-04-15 1993-10-22 Westinghouse Electric Corp Solid connector for stator phase winding and mounting method.
WO2020064345A1 (en) * 2018-09-28 2020-04-02 Siemens Aktiengesellschaft Electric motor and hybrid electric aircraft

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546842A (en) * 1978-09-27 1980-04-02 Westinghouse Electric Corp Conductive bar for rotary electric machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546842A (en) * 1978-09-27 1980-04-02 Westinghouse Electric Corp Conductive bar for rotary electric machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906883A (en) * 1988-05-19 1990-03-06 General Electric Canada Inc. Arrangement for edgewise wound pole winding
FR2690281A1 (en) * 1992-04-15 1993-10-22 Westinghouse Electric Corp Solid connector for stator phase winding and mounting method.
WO2020064345A1 (en) * 2018-09-28 2020-04-02 Siemens Aktiengesellschaft Electric motor and hybrid electric aircraft

Similar Documents

Publication Publication Date Title
JP5038596B2 (en) AC winding with integrated cooling system and method of manufacturing the same
US4429244A (en) Stator of generator
JP3431948B2 (en) Method for Preparing Half-Coil of Solid Phase Connector and Stator Phase Winding
JP2009171839A (en) Stator winding for slotless motor
US11942845B2 (en) Stator coil for high power density and efficiency electric machines
US6798105B1 (en) Electrical machine with a winding
JPS58218845A (en) Armature coil for rotary electric machine
US20060044100A1 (en) Windings for electrical machines
JPH0352205A (en) Electromagnetic induction coil of electro- magnetic hydromecnanic apparatus
JP4188597B2 (en) Electric motor water-cooled stator winding
JP2001143945A (en) Transformer for arc welder
JP2628425B2 (en) Litz wire
JPH0628928A (en) Water-cooled cable
JPS62163535A (en) Armature winding for rotary electric machine
JPS62100144A (en) Armature winding
JPS61247267A (en) Superconducting rotary electric machine
JPS59103317A (en) Large current 3-phase electric circuit
US20220255384A1 (en) Low losses damper bar for electric machines
JP2698753B2 (en) Electromagnetic induction heating roller device
JP2000067663A (en) Superconductive conductor
JP3614227B2 (en) Air core reactor for power converter
JP3705309B2 (en) Superconducting device
JP2673760B2 (en) Litz wire and its manufacturing method
CN115440478A (en) Combined wire for power transformer winding and power transformer
JPS594932B2 (en) Conductor of rotating electric machine