JPS61247267A - Superconducting rotary electric machine - Google Patents

Superconducting rotary electric machine

Info

Publication number
JPS61247267A
JPS61247267A JP60086294A JP8629485A JPS61247267A JP S61247267 A JPS61247267 A JP S61247267A JP 60086294 A JP60086294 A JP 60086294A JP 8629485 A JP8629485 A JP 8629485A JP S61247267 A JPS61247267 A JP S61247267A
Authority
JP
Japan
Prior art keywords
coil
cooling pipe
wires
coils
electric machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60086294A
Other languages
Japanese (ja)
Inventor
Yoshitsugu Gocho
義次 牛膓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60086294A priority Critical patent/JPS61247267A/en
Publication of JPS61247267A publication Critical patent/JPS61247267A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • H02K55/04Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Abstract

PURPOSE:To eliminate leakage liquid of a cooling pipe and improve reliability, by transferring the insulating fine wires of coil wires and the coil wires, and by insulating the cooling pipe from the insulating fine wires. CONSTITUTION:A rotor 2 with superconductive field windings contained in the stator frame 1 of a superconducting rotary electric machine is supported by a bearing 3, and the periphery via space 4 is provided with armature coils 5 supported by a stator core 6. The coils 5 are formed by connecting the both ends of the half turn upper coil 5a and lower coil 5b together with clips 7 as specified, and on the periphery of the cooling pipe extended outside the coil ends, the first transfers of seven units are fitted ad formed by using the fine wires for formal insulation, and coils wires are produced to be wound up with insulating tapes. By using a plurality of the wires, desired coils 5 for the second mutual transfers are produced. Then, the respective wire ends of coil end sections are integrally formed, and the clips 7 are silver-soldered. Besides, a sleeve is fitted on the end section of the cooling pipe 9, which is liquid- tight seal welded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は電機子巻線のハーフターンコイルを改良した超
電導回転電機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a superconducting rotating electric machine in which a half-turn coil of an armature winding is improved.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

回転型機の単機容量の増大、並びに効率向上の手段とし
て、従来固定子鉄心のスロット内に収納されていた電機
子巻線を、スロットの無いシールド用固定子鉄心と、超
電導界磁巻線を内蔵した回転子との間の空隙中に配設し
、固定子鉄心に固定された空隙電機子巻線とを備えた超
電導回転電機が用いられるようになってきた。
As a means of increasing the capacity of a single rotary machine and improving efficiency, the armature winding, which was conventionally housed in the slots of the stator core, has been replaced with a shielding stator core without slots and a superconducting field winding. Superconducting rotating electric machines have come to be used which include a gap armature winding arranged in a gap between the built-in rotor and a gap armature winding fixed to a stator core.

空隙中に配設した電機子巻線は、固定子鉄心にスロット
が無いことから当然ティースもないので。
The armature winding placed in the air gap naturally has no teeth since there are no slots in the stator core.

回転子からの強磁界中に直接曝されると、電機子巻線を
構成するコイル導体には大きなうず電流損が発生する問
題があり、従来の固定子鉄心スロット内に納められてい
るコイルと異り、1■径程度の細いホルマール絶縁の細
素線を撚って束ねた束線を用いていた。この束線の冷却
手段としては、特開昭58−218845号公報に記載
されているように。
When directly exposed to the strong magnetic field from the rotor, the coil conductors that make up the armature windings suffer from large eddy current losses, which makes them difficult to match with conventional coils housed in the stator core slots. Differently, bundled wire was used, which was made by twisting and bundling thin formal-insulated wires with a diameter of about 1 inch. This cooling means for the wire bundle is as described in Japanese Patent Application Laid-Open No. 58-218845.

束線間に冷却パイプを配置して冷却するものがある。し
かしこれは、束線と冷却パイプとを並べて、互に転位し
ているので、絶縁側素線の冷却には。
Some devices provide cooling by placing cooling pipes between the wire bundles. However, in this case, the wire bundle and the cooling pipe are arranged side by side and transposed to each other, so it is not possible to cool the strands on the insulated side.

更に強力なものが望まれていた。また冷却パイプは、そ
れ自体のうず電流が問題とならないように。
Something even more powerful was desired. Also, make sure that the cooling pipes themselves do not suffer from eddy currents.

電気固有抵抗が電機子コイルの材料の銅より大きな金属
1例えばステンレス鋼が用いられる。このため従来のよ
うに冷却パスを電気パスと同時に接続しようとしても、
ステンレス鋼のパイプという異種材が入ったり、絶縁細
素線数が極めて大であるという理由で信頼性の高い銀ろ
う付は困難であった・ 一方、電機子巻線としての電気回路の電気定数は、抵抗
とりアクタンスとのうち、リアクタンス値が支配的とな
るので、両電気回路を分流して流れる電機子電流はリア
クタンスによって制約される。このことは、もし両端で
ステンレスの冷却パイプと絶縁側素線から成るハーフタ
ーンコイルが電気的に結続されると、コイル導体よりも
電気固有抵抗の大きい冷却パイプにもリアクタンスに応
じた電流が流れ、固有抵抗の大きい分だけ、冷却パイプ
に大きな抵抗損を発生させることになり。
A metal 1, such as stainless steel, is used, which has a higher electric resistivity than copper, which is the material of the armature coil. For this reason, even if you try to connect the cooling path at the same time as the electrical path as in the past,
Reliable silver brazing was difficult due to the inclusion of different materials such as stainless steel pipes and the extremely large number of thin insulated wires.On the other hand, the electrical constants of the electric circuit as an armature winding Among the resistance and actance, the reactance value is dominant, so the armature current that flows in both electric circuits is restricted by the reactance. This means that if a half-turn coil consisting of a stainless steel cooling pipe and an insulated wire is electrically connected at both ends, a current corresponding to the reactance will also flow in the cooling pipe, which has a higher electrical resistivity than the coil conductor. The greater the flow and specific resistance, the greater the resistance loss in the cooling pipe.

回転電機の効率低下および冷却作用の大幅な低減を来た
すという欠点があった。
This has the drawback of reducing the efficiency of the rotating electric machine and significantly reducing the cooling effect.

〔発明の目的〕[Purpose of the invention]

本発明はハーフターンコイルを用いた電機子巻線の冷却
液体の流路からの漏液を無くして高信頼性を持たせ、か
つ、冷却パイプの循環電流による抵抗損を低減した電機
子巻線を有する超電導回転電機を提供することを目的と
する。
The present invention provides an armature winding using a half-turn coil that eliminates liquid leakage from the cooling liquid flow path of the armature winding, provides high reliability, and reduces resistance loss due to circulating current in the cooling pipe. The purpose of the present invention is to provide a superconducting rotating electric machine having the following features.

〔発明の概要〕[Summary of the invention]

本発明においては、超電導界磁巻線を有する回転子と、
その周囲に空隙を介して配設され、スロットの無いシー
ルド用固定子鉄心と、前記空隙内に配設され、固定子鉄
心に固定された複数のハーフターンコイルを所定の接続
により電機子巻線とした超電導回転電機において、ハー
フターンコイルはコイル端より外方に延長した冷却パイ
プの周囲に複数の絶縁側素線を第1の転位をしながら巻
付けてコイル束線を形成し、このコイル束線を複数本用
いて相互に第2の転位をして所望のハーフターンコイル
とし、このハーフターンコイルの端部は上下のハーフタ
ーンコイル間又はコイルと外部配線とを接続する日出導
体とにクリップを嵌着して銀ろう付けにより電気接続を
すると共に冷却パイプに対してはろう付対向面に電気絶
縁層を設けておき、冷却パイプはコイル毎に束ねてスリ
ーブを嵌着し、それらの端部の隙間をアーク溶接にて液
密にし、冷却液流通部材に接続するもので、コイル束線
の絶縁側素線を転位しただけでなく。
In the present invention, a rotor having a superconducting field winding,
A shielding stator core without slots is placed around the stator core with a gap in between, and a plurality of half-turn coils placed in the gap and fixed to the stator core are connected in a predetermined manner to form an armature winding. In a superconducting rotating electric machine, a half-turn coil is formed by winding a plurality of insulated wires with a first transposition around a cooling pipe extending outward from the end of the coil to form a coil bundle. A desired half-turn coil is obtained by using a plurality of bundled wires and performing a second transposition with each other, and the end of this half-turn coil is connected to a Hiji conductor that connects between the upper and lower half-turn coils or between the coil and external wiring. At the same time, an electrical insulating layer is provided on the surface facing the cooling pipes, and the cooling pipes are bundled into coils and sleeves are fitted on them. The gap at the end of the coil is made liquid-tight by arc welding and connected to the coolant distribution member, and the insulated wire of the coil bundle is not only transposed.

更にコイル束線をも転位して1強力な磁界中での電機子
巻線の特性を上下とも均一にし、しかも冷却パイプは絶
縁側素線に対して絶縁したことにより、循環電流による
抵抗損を0に近く低減している。さらに冷却パイプの端
面も液密にしたので。
Furthermore, the coil bundle wires are also transposed to make the characteristics of the armature windings uniform both above and below in a strong magnetic field, and by insulating the cooling pipe from the insulated wires, resistance loss due to circulating current is reduced. It has decreased to close to 0. Furthermore, the end surface of the cooling pipe was also made liquid-tight.

漏液が無くなり信頼性を向上するものである。This eliminates leakage and improves reliability.

〔発明の実施例〕[Embodiments of the invention]

実施例 1 以下、本発明の第1の実施例について、第1図ないし第
6図を参照して説明する。
Embodiment 1 Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 to 6.

第1図において■は超電導回転電機の固定子枠で、この
固定子枠■内には超電導界磁巻線(図示せず)が納めら
れた回転子■が軸受■に支持されている。その廻りに空
隙に)を介し、電機子コイル■がその外側の固定子鉄心
0に支持されている。
In FIG. 1, ``■'' is a stator frame of a superconducting rotating electric machine, and within this stator frame ``■'' a rotor ``■'' in which a superconducting field winding (not shown) is housed'' is supported by a bearing ``■''. The armature coil (2) is supported by the stator core (0) on the outside of the armature coil (2) via an air gap around it.

この固定子鉄心0はスロットが無く (従ってティース
も無い)磁気シールド用のものである。電機子コイル■
はハーフターンの上コイル(5a)と下コイル(5,)
の両端をクリップ■で所定の接続を行ない電機子巻線を
形成する。
This stator core 0 has no slots (therefore no teeth) and is used for magnetic shielding. Armature coil ■
are the half-turn upper coil (5a) and lower coil (5,)
Make the specified connections at both ends with clips (■) to form the armature winding.

ハーフターンのコイル■は第2図ないし第5図に示すよ
うにコイル端(5゜)より外方に延長した通液(一般に
水を用いる)用冷却パイプ■の廻りに直径約1mのホル
マール絶縁の側素線(ハ)を7本用いて第1の転位(ト
ランスポジションとも言う)を7組添着し、これを断面
矩形状に圧縮成形してコイル束線(10)を作り、これ
に絶縁テープ(11)を巻付ける。このコイル束線(1
0)を複数本用いて相互に第2の転位を行なって所望の
ハーフターンコイル■を作る。この際、コイル端部の絶
縁テープ(11)を剥がし、銀ろう付けをすると側素線
■のホルマール絶縁層が消失し、各素線(へ)端が一体
になる。これにクリップ■を銀ろう付けするのであるが
、冷却パイプ■のクリップ■対向面(余裕を見て少し長
めにする)にセラミック溶射による電気絶縁層(9a)
を設けておき、コイル■を冷却パイプに対して絶縁する
。クリップ■はコイル束線(10)の第1の転位ピッチ
の6倍以上の長さにし、上下コイル(5a)= (5b
)間の隙間には導電体の填め物(78)を介在させる。
As shown in Figures 2 to 5, the half-turn coil ■ has formal insulation with a diameter of approximately 1 m around the cooling pipe ■ for passing liquid (generally using water) that extends outward from the coil end (5 degrees). Seven pairs of first transpositions (also referred to as transpositions) are attached using seven side wires (C), and this is compression-molded into a rectangular cross section to make a coil bundle (10), which is insulated. Wrap the tape (11). This coil bundle wire (1
A desired half-turn coil (2) is made by mutually performing a second transposition using a plurality of coils (2). At this time, when the insulating tape (11) at the end of the coil is peeled off and silver soldering is applied, the formal insulating layer of the side strand (2) disappears, and the ends of each strand (2) become integrated. The clip ■ is silver-soldered to this, and the electrical insulation layer (9a) made of ceramic spraying is placed on the opposite surface of the cooling pipe ■ (make it a little longer to allow for extra space).
, and insulate the coil (■) from the cooling pipe. The length of the clip ■ should be at least 6 times the first transposition pitch of the coil bundle wire (10), and the upper and lower coils (5a) = (5b
) A conductive filler (78) is interposed in the gap between the two.

コイル(sa)、 (5b)の外部配線との接続をする
口出導体部(図示せず)はそれに見合った大きさのクリ
ップ(図示せず)を上記と同様の手段によりろう付して
所定の接続をする。
The lead conductor part (not shown) that connects the external wiring of the coils (sa) and (5b) is fixed to the specified position by brazing a correspondingly sized clip (not shown) using the same method as above. Make the connection.

コイル束線(10)から延出された冷却パイプ■は各コ
イル毎にまとめて束ね、端部にスリーブ(12)を嵌着
し、第6図に示すように、冷却パイプ0相互間および冷
却パイプ(9)とスリーブ(12)との間の隙間の端面
を液密にシールウェルドする。スリーブ(12)の外側
にはエルボ(13)を溶接し、上下冷却パイプに取付け
たエルボ(13)同志をセラミック製の接続管(14)
によって結合して銀ろう付する。そして、給排液部のス
リーブ(12)には給液ヘッダー(16) 、排液ヘッ
ダー(17)を接続パイプ(18)により接続(第1図
参照)する。尚、上記のエルボ(13) 。
The cooling pipes (10) extending from the coil bundle wire (10) are bundled together for each coil, and a sleeve (12) is fitted to the end to connect the cooling pipes (10) to each other and the cooling pipes (10). The end face of the gap between the pipe (9) and the sleeve (12) is liquid-tightly sealed and welded. An elbow (13) is welded to the outside of the sleeve (12), and the elbow (13) attached to the upper and lower cooling pipes is connected to a ceramic connecting pipe (14).
and silver solder. A liquid supply header (16) and a liquid drainage header (17) are connected to the sleeve (12) of the liquid supply/drainage section by a connecting pipe (18) (see Fig. 1). In addition, the above elbow (13).

接続管(14) を給液ヘッダー(16) 、排液ヘッ
ダー(17) 、接続パイプ(18)等は冷却液流通部
材(15)と称することにする。
The connecting pipe (14) will be referred to as a liquid supply header (16), a liquid discharge header (17), a connecting pipe (18), etc. will be referred to as a cooling liquid distribution member (15).

次に作用について説明する。Next, the effect will be explained.

コイル束線(10)は断面積が大であるけれども絶縁網
素線■を7不完まとめて、それぞれ第1の転位を行なっ
たものを、7組集めて冷却パイプの周囲に添着し、断面
矩形状に圧縮成形し、絶縁テープ(11)を巻き付けた
コイル束線(io)を複数本用いてそれぞれ第2の転位
を行なっているから1強磁界内にても各絶縁網素線の電
流密度が平均化する。
Although the coil bundle wire (10) has a large cross-sectional area, seven incomplete insulated mesh wires (■) each having undergone the first transposition are collected and attached around the cooling pipe, and the cross-sectional area is Since the second transposition is carried out using a plurality of coil bundle wires (io) which are compression-molded into a rectangular shape and wrapped with insulating tape (11), the current in each insulating mesh wire is small even in one strong magnetic field. Density averages out.

従ってハーフターンコイルの断面積も無駄に大きくする
必要が無い。そして各コイル束線(10)の中心に冷却
パイプ■を配置しであるから冷却効率が良い。そして各
冷却パイプ■はセラミック溶射による電気絶縁層(9a
)を設けて、ハーフターンコイル■の接続部の裸導体と
は電気絶縁が形成されており、かつ上下コイル(sa)
、 (sb)の冷却パイプはセラミックの接続管(14
)で接続されているので、冷却パイプ■を介しての循環
電流を0に近づけることができる。そして冷却パイプは
コイル■から外方に延出した部分をまとめて液密に冷却
液流通部材に接続したから漏液が殆んど無くなり、信頼
性を高める。また絶縁網素線はホルマール線としたので
銀ろう付けの高温により、その部分のホルマール被覆が
自動的に剥がされて、ろう付けが容易となり工数が低減
する。しかも、通液接続をクリップ■の軸方向外側で行
なうため1作業性が良く、万一の漏液に対しても電気接
続部を分解する必要がなく、容易に保修できる利点を有
する。
Therefore, there is no need to increase the cross-sectional area of the half-turn coil unnecessarily. Since the cooling pipe (1) is arranged at the center of each coil bundle (10), the cooling efficiency is good. Each cooling pipe ■ has an electrically insulating layer (9a
), electrical insulation is formed from the bare conductor at the connection part of the half-turn coil ■, and the upper and lower coils (sa)
, (sb) cooling pipe is a ceramic connecting pipe (14
), the circulating current through the cooling pipe (2) can be brought close to zero. Since the cooling pipe extends outward from the coil (2) and is connected to the cooling fluid distribution member in a liquid-tight manner, there is almost no leakage and reliability is improved. Further, since the insulating mesh wire is a formal wire, the formal coating of that part is automatically peeled off by the high temperature of silver brazing, making brazing easier and reducing the number of man-hours. Moreover, since the fluid connection is made on the outside of the clip (1) in the axial direction, it is easy to work with, and even in the unlikely event of fluid leakage, there is no need to disassemble the electrical connection part, which has the advantage of being easy to maintain.

実施例 2 第7図および第8図は第2の実施例の要部を示す、この
実施例では、冷却管■をエルボ状に曲げて向い合せ接続
管(14)で接続したものであって他は実施例1と同様
である。
Embodiment 2 FIGS. 7 and 8 show the main parts of the second embodiment. In this embodiment, the cooling pipe (■) is bent into an elbow shape and connected with a facing connection pipe (14). The rest is the same as in Example 1.

このようにすればエルボを省略できる他、実施例1と同
様の作用効果が得られる。
In this way, the elbow can be omitted and the same effects as in the first embodiment can be obtained.

実施例 3 第9図(a)、 (b)に第3の実施例の要部を示す。Example 3 FIGS. 9(a) and 9(b) show the main parts of the third embodiment.

これはコイル束線(10)を作るとき、冷却パイプ■は
断面円形のものを矩形に成形したことに特徴を有し、他
は実施例1と同様である。
This is characterized in that when the coil bundle wire (10) is made, the cooling pipe (2) is formed from a circular cross section into a rectangular shape, and the other features are the same as in Example 1.

このようにしても実施例1と同様の作用効果が得られる
Even in this case, the same effects as in the first embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、各コイルの絶縁
網素線の電流密度が均等化し、電機子巻線の冷却液体の
流路からの漏液を無くして高信頼性を持たせ、かつ、冷
却パイプの循環電流による抵抗損を低減した電機子巻線
を有する超電導回転電機を提供することがてきる。
As explained above, according to the present invention, the current density of the insulated mesh wire of each coil is equalized, leakage from the cooling liquid flow path of the armature winding is eliminated, and high reliability is achieved. Moreover, it is possible to provide a superconducting rotating electrical machine having an armature winding that reduces resistance loss due to circulating current in the cooling pipe.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の超電導回転電機の第1の実施例を示す
上半部縦断面図、第2図は第1図の要部を示す一部断両
立面図、第3図は第1図のコイル束線の要部を示す断面
斜視図、第4図(a)および(b)は第1図のコイル束
線を圧縮成形する前後の形状を示す一部断面配置図およ
び端面図、第5図は第1図の冷却パイプの電気絶縁層を
示す要部斜視図、第6図は冷却パイプ結合部を示す端面
図。 第7図は第2の実施例の要部を示す一部断両立面図、第
8は第7図の■−■線に沿う矢視断面側面図、第9図(
a)および(b)は第3の実施例のコイル束線を圧縮成
形する前後の形状を示す一部断面配置図および端面図で
ある。 2・・・超電導回転子  4・・・空隙5・・・コイル
     5a・・・上コイル5b・・・下コイル  
  6・・・固定子鉄心7・・・クリップ     8
・・・絶縁網素線9・・・冷却パイプ   9a・・・
電気絶縁層10・・・コイル束線   11・・・絶縁
テープ12・・・スリーブ    15・・・冷却液流
通部材13.14,16,17,1g・・・冷却液流通
部材の部品代理人  弁理士   井 上 −男 第2図 第  6  図 第 8 図 第  7  図
FIG. 1 is a vertical cross-sectional view of the upper half of a first embodiment of the superconducting rotating electric machine of the present invention, FIG. FIGS. 4(a) and 4(b) are a partial cross-sectional layout view and an end view showing the shape of the coil bundle shown in FIG. 1 before and after compression molding; FIG. 5 is a perspective view of a main part showing an electrical insulating layer of the cooling pipe of FIG. 1, and FIG. 6 is an end view showing a joint portion of the cooling pipe. FIG. 7 is a partially cutaway elevational view showing the main parts of the second embodiment, FIG. 8 is a cross-sectional side view taken along the line ■-■ in FIG. 7, and FIG.
a) and (b) are a partial cross-sectional layout view and an end view showing the shape of the coil bundle wire of the third embodiment before and after compression molding. 2...Superconducting rotor 4...Gap 5...Coil 5a...Upper coil 5b...Lower coil
6... Stator core 7... Clip 8
...Insulated mesh wire 9...Cooling pipe 9a...
Electrical insulating layer 10...Coil bundle wire 11...Insulating tape 12...Sleeve 15...Cooling fluid distribution member 13.14, 16, 17, 1g...Parts agent for cooling fluid distribution member Patent attorney Mr. Inoue - Male Figure 2 Figure 6 Figure 8 Figure 7

Claims (3)

【特許請求の範囲】[Claims] (1)超電導界磁巻線を有する回転子と、その周囲に空
隙を介して配設され、スロットの無いシールド用固定子
鉄心と、前記空隙内に配設され、固定子鉄心に固定され
た複数のハーフターンコイルを所定の接続により電機子
巻線とした超電導回転電機において、ハーフターンコイ
ルはコイル端より外方に延長した冷却パイプの周囲に複
数の絶縁細素線を第1の転位をしながら巻付けてコイル
束線を形成し、このコイル束線を複数本用いて相互に第
2の転位をして所望のハーフターンコイルとし、このハ
ーフターンコイルの端部は上下のハーフターンコイル間
又はコイルと外部配線とを接続する口出導体とにクリッ
プを嵌着して銀ろう付けにより電気接続をすると共に冷
却パイプに対しては、ろう付対向面に電気絶縁層を設け
ておき、冷却パイプはコイル毎に束ねてスリーブを嵌着
し、それらの端面の隙間をアーク溶接にて液密にし、冷
却液流通部材に接続したことを特徴とする超電導回転電
機。
(1) A rotor having a superconducting field winding, a shielding stator core without slots arranged around the rotor through an air gap, and a shielding stator core arranged in the air gap and fixed to the stator core. In a superconducting rotating electrical machine in which a plurality of half-turn coils are connected to each other as an armature winding, the half-turn coil has a plurality of thin insulated wires arranged around a cooling pipe extending outward from the end of the coil. A plurality of these coil bundles are used to perform a second transposition with each other to form a desired half-turn coil, and the ends of this half-turn coil are connected to the upper and lower half-turn coils. An electrical connection is made by silver brazing by fitting a clip between the coil and the output conductor that connects the coil and the external wiring, and an electrical insulating layer is provided on the surface facing the cooling pipe to be brazed. A superconducting rotating electric machine characterized in that the cooling pipes are bundled into coils and fitted with sleeves, the gaps between their end faces are made liquid-tight by arc welding, and connected to a cooling fluid distribution member.
(2)コイル束線の絶縁素線はホルマール絶縁銅線の7
本撚線を用い、第1の転位ピッチの6倍以上の軸方向長
さを有するクリップでコイル端を接続したことを特徴と
する特許請求の範囲第1項記載の超電導回転電機。
(2) The insulated wire of the coil bundle is formal insulated copper wire.
2. A superconducting rotating electric machine according to claim 1, wherein the coil ends are connected using clips having an axial length of six times or more the first dislocation pitch using real stranded wires.
(3)冷却パイプの電気絶縁層はセラミック溶射で形成
されたものであることを特徴とする特許請求の範囲第1
項又は第2項記載の超電導回転電機。
(3) Claim 1, characterized in that the electrical insulation layer of the cooling pipe is formed by ceramic spraying.
The superconducting rotating electric machine according to item 1 or 2.
JP60086294A 1985-04-24 1985-04-24 Superconducting rotary electric machine Pending JPS61247267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60086294A JPS61247267A (en) 1985-04-24 1985-04-24 Superconducting rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60086294A JPS61247267A (en) 1985-04-24 1985-04-24 Superconducting rotary electric machine

Publications (1)

Publication Number Publication Date
JPS61247267A true JPS61247267A (en) 1986-11-04

Family

ID=13882812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60086294A Pending JPS61247267A (en) 1985-04-24 1985-04-24 Superconducting rotary electric machine

Country Status (1)

Country Link
JP (1) JPS61247267A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012143050A (en) * 2010-12-28 2012-07-26 Toyota Motor Corp Superconducting motor
CN102832726A (en) * 2012-08-17 2012-12-19 中国科学院电工研究所 Evaporative cooling system of hybrid motor stator
CN114123591A (en) * 2020-08-31 2022-03-01 通用电气公司 Electric machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012143050A (en) * 2010-12-28 2012-07-26 Toyota Motor Corp Superconducting motor
CN102832726A (en) * 2012-08-17 2012-12-19 中国科学院电工研究所 Evaporative cooling system of hybrid motor stator
CN114123591A (en) * 2020-08-31 2022-03-01 通用电气公司 Electric machine
EP3961868A1 (en) * 2020-08-31 2022-03-02 General Electric Company Electric machine
US11804746B2 (en) 2020-08-31 2023-10-31 General Electric Company Stator cooling channels with internal features

Similar Documents

Publication Publication Date Title
EP1489691B1 (en) Superconducting cable joint structure
US5508571A (en) Neutral connection for wire wound stator
US4336420A (en) Superconducting cable
JP5038596B2 (en) AC winding with integrated cooling system and method of manufacturing the same
KR101030649B1 (en) Intermediate joint of superconducting cable
JP3431948B2 (en) Method for Preparing Half-Coil of Solid Phase Connector and Stator Phase Winding
US6798105B1 (en) Electrical machine with a winding
CA1042053A (en) Dynamoelectric machine phase lead connectors
JP3796850B2 (en) Terminal structure of superconducting cable conductor and connection method thereof
US4695675A (en) Electric lead device for superconducting electric apparatus
JPS61247267A (en) Superconducting rotary electric machine
US4229671A (en) Multiturn coil for field poles of dynamoelectric machine
JP4927794B2 (en) Superconducting cable former connection method and superconducting cable former connection structure
JPH0328900B2 (en)
JPS58218845A (en) Armature coil for rotary electric machine
JPS62100144A (en) Armature winding
JPS62163535A (en) Armature winding for rotary electric machine
JP4087469B2 (en) Superconducting device
JPS5947963A (en) Superconductive rotor
JP2000067663A (en) Superconductive conductor
JPH06104026A (en) Connection structure of superconductor
JP3568745B2 (en) Oxide superconducting cable
JPH0213449B2 (en)
JPH04325848A (en) Stator winding of electric rotating machine
JPH04359408A (en) Current lead