JPH0652815B2 - Laser equipment - Google Patents

Laser equipment

Info

Publication number
JPH0652815B2
JPH0652815B2 JP9981688A JP9981688A JPH0652815B2 JP H0652815 B2 JPH0652815 B2 JP H0652815B2 JP 9981688 A JP9981688 A JP 9981688A JP 9981688 A JP9981688 A JP 9981688A JP H0652815 B2 JPH0652815 B2 JP H0652815B2
Authority
JP
Japan
Prior art keywords
laser
mirror
laser beam
solid
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9981688A
Other languages
Japanese (ja)
Other versions
JPH01270377A (en
Inventor
公治 安井
正明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9981688A priority Critical patent/JPH0652815B2/en
Publication of JPH01270377A publication Critical patent/JPH01270377A/en
Publication of JPH0652815B2 publication Critical patent/JPH0652815B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0615Shape of end-face
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08059Constructional details of the reflector, e.g. shape
    • H01S3/08063Graded reflectivity, e.g. variable reflectivity mirror
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08081Unstable resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/092Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザ装置から発生されるレーザビームの高品
質化に関するものである。
The present invention relates to improving the quality of a laser beam generated from a laser device.

〔従来の技術〕[Conventional technology]

第17図は,たとえばレーザハンドブツク(オーム社,
昭和57年)に示された従来の固体レーザ装置を示す断
面構成図であり,図において,(1)は固体素子で,たと
えばYAGレーザをとればY3-XNdXAl5O12よりなるロツ
ド状の結晶,(3)はアークランプ,(4)はアークランプ
(3)を点灯させるための電源,(5)は集光反射ミラー,
(6)はたとえばガラスでできた出口ミラー,(7)は出口ミ
ラー(6)の内面にもうけられた,たとえばTiO2よりなる
部分反射膜,(8)は出口ミラー外面および固体素子両側
面にもうけられた,たとえばSiO2よりなる無反射膜,
(9)はレーザ共振器内のレーザビーム,(10)は外部に取
出されたレーザビーム,(12)は外ワク,(20)は全反射ミ
ラーである。
FIG. 17 shows, for example, a laser handbook (Ohm,
FIG. 1 is a cross-sectional configuration diagram showing a conventional solid-state laser device shown in (1982). In the figure, (1) is a solid-state element, for example, if a YAG laser is taken, a rod-shaped crystal made of Y 3-X NdXAl5O 12 , (3) arc lamp, (4) arc lamp
Power source for lighting (3), (5) Condensing reflection mirror,
(6) is, for example, an exit mirror made of glass, (7) is a partially reflecting film made of, for example, TiO 2 on the inner surface of the exit mirror (6), (8) is on the outer surface of the exit mirror and both side surfaces of the solid-state device. A non-reflective film made of SiO 2 , for example,
(9) is the laser beam inside the laser resonator, (10) is the laser beam extracted outside, (12) is the outer frame, and (20) is the total reflection mirror.

次に動作について説明する。固体素子(1)は電源(4)によ
り点灯されたアークランプ(3)からの直接光および集光
反射ミラー(5)よりの反射光により励起され,レーザ媒
質をなす。一方,内面にもうけられた部分反射膜(7)に
より部分反射率をもつた出口ミラー(6)と全反射ミラー
(20)とからなるいわゆる安定型共振器内に閉じこめられ
たレーザビーム(9)は,両ミラー間を往復するごとにこ
のレーザ媒質により増幅され,ある一定以上の大きさに
なるとその一部が出口ミラー(6)を通して外部にレーザ
ビーム(10)として放出される。
Next, the operation will be described. The solid-state element (1) is excited by direct light from the arc lamp (3) turned on by the power supply (4) and reflected light from the condensing reflection mirror (5) to form a laser medium. On the other hand, an exit mirror (6) and a total reflection mirror with partial reflectance due to the partial reflection film (7) on the inner surface.
The laser beam (9) that is confined in the so-called stable resonator consisting of (20) is amplified by this laser medium every time it reciprocates between both mirrors, and when it reaches a certain size or more, part of it is The laser beam (10) is emitted to the outside through the exit mirror (6).

第18図にその発振出力特性の一例を示す。ここで固体
素子(1)はY2.4Nd0.6Al5O12よりなり,断面の直径6mm,
長さ100mm,出口ミラー(6),全反射ミラー(20)の内
面の曲率はともに0.4mm,両ミラー間の距離は0.45m,
出口ミラーの反射率は80%である。また投入電力とは
フラツシユランプの点灯に消費された電力であり,3.5
KWの投入電力で約70Wのレーザ出力が得られてい
る。
FIG. 18 shows an example of the oscillation output characteristic. Here, the solid-state element (1) was made of Y 2.4 Nd 0.6 Al5O 12 , and had a cross-sectional diameter of 6 mm,
Length 100mm, exit mirror (6), total internal reflection mirror (20) curvature of both 0.4mm, the distance between both mirrors 0.45m,
The reflectance of the exit mirror is 80%. The input power is the power consumed to light the flash lamp and is 3.5
A laser output of about 70 W is obtained with an input power of KW.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

従来のレーザ装置は以上のように安定型共振器をもちい
ているため発生するレーザビームは発散角の大きいいわ
ゆる高次モードである。この高次モードの度合いの指標
としては,共振器内に発生しうる位相のそろつた最低次
モードの断面直径とレーザ媒質の断面直径との比があ
る。この例では最低次モードは正規分布をもつ,いわゆ
るガウスビームとなるためその強度が中心の1/e2となる
点で定義した断面直径φ0は両ミラー間の距離L,レー
ザビームの波長λとして と計算される。一方,レーザ媒質の断面直径は6mmであ
るから両者の比は約11と大変大きく,この値から経験
的に100次程度の高次モードが発生していると予測さ
れる。高次モードの次数は実験的には発生されたレーザ
ビームの発散角を測定することによりおこなわれ,たと
えば第19図にその実測例を示す。この図から,発散角
は10mrad程度と把握され,対応する高次モードの次数
として100次程度であると計算される。この発散角の
大小はレーザビームの集光性能そのものといえる。これ
は焦点距離fの集光レンズによる集光スポツト径φsは
概略的に発散角θに対して φsf・θ で表わされ,したがつて発散角の大小に比例して集光ス
ポット径の大小が決定されるためである。ここでの10
mradという値を市販のCOレーザと比較すると約10
倍であり,したがつて従来の固体レーザ装置の集光特性
はCOレーザ装置の1/10であるといえる。さらにその
発散角の大きさが第19図に示すように投入電力,した
がつてレーザ出力により大きく変化してしまうという問
題をもつ。これは固体素子(1)内に発生する温度勾配に
より固体素子(1)がレンズ化し,共振状態を崩すためで
ある。このため,たとえば投入電力をさらに増大させる
と3〜4KW以上で発振が非常に不安定になつてしまう
という現象も観測されている。
Since the conventional laser device uses the stable resonator as described above, the laser beam generated is a so-called higher-order mode with a large divergence angle. The index of the degree of this higher-order mode is the ratio of the cross-sectional diameter of the lowest-order mode with even phases that can occur in the resonator to the cross-sectional diameter of the laser medium. In this example, the lowest mode is a so-called Gaussian beam with a normal distribution, so the cross-sectional diameter φ0 defined at the point where its intensity is 1 / e2 of the center is the distance L between both mirrors and the wavelength λ of the laser beam. Is calculated. On the other hand, since the cross-sectional diameter of the laser medium is 6 mm, the ratio of the two is very large, about 11, and from this value it is empirically predicted that higher-order modes of the order of 100 are generated. The order of the higher-order mode is experimentally measured by measuring the divergence angle of the generated laser beam. An example of actual measurement is shown in FIG. 19, for example. From this figure, the divergence angle is understood to be about 10 mrad, and it is calculated that the order of the corresponding higher-order mode is about the 100th order. It can be said that the size of this divergence angle is the focusing performance of the laser beam itself. This is because the focusing spot diameter φs of the focusing lens with the focal length f is roughly represented by φsf · θ with respect to the divergence angle θ, and therefore the size of the focusing spot diameter is proportional to the divergence angle. Is determined. 10 here
Comparing the value of mrad with a commercially available CO 2 laser, it is about 10
Therefore, it can be said that the condensing characteristic of the conventional solid-state laser device is 1/10 of that of the CO 2 laser device. Further, there is a problem that the magnitude of the divergence angle largely changes depending on the applied power and hence the laser output as shown in FIG. This is because the solid state element (1) becomes a lens due to the temperature gradient generated in the solid state element (1), and the resonance state is destroyed. For this reason, it has been observed that, for example, if the input power is further increased, the oscillation becomes extremely unstable at 3 to 4 KW or more.

本発明は上記のような問題点を解消するためになされた
もので,レーザビームをレーザ出力の大小にかかわらず
安定に発生させることのできるレーザ装置を得ることを
目的とする。
The present invention has been made to solve the above problems, and an object thereof is to obtain a laser device capable of stably generating a laser beam regardless of the magnitude of the laser output.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明に係るレーザ装置は,レーザ共振器を構成する複
数の光学素子、これら光学素子間に配設されたレーザ媒
質、及び上記光学素子のいずれか,もしくは上記レーザ
媒質を,上記レーザ媒質への投入エネルギー量に対応し
て光軸方向に移動させる駆動系を備えたものである。
A laser device according to the present invention includes a plurality of optical elements forming a laser resonator, a laser medium disposed between these optical elements, and any one of the above optical elements or the above laser medium, It is provided with a drive system that moves in the optical axis direction in accordance with the amount of input energy.

また、上記レーザ共振器は不安定型共振器で構成すると
よい。
The laser resonator may be an unstable resonator.

また,上記不安定型共振器を構成するミラーとしては,
中央に部分反射部,その周囲に無反射部をもつ出口ミラ
ーと全反射ミラーとで構成してもよい。
In addition, as a mirror that constitutes the above unstable resonator,
It may be composed of an exit mirror and a total reflection mirror having a partial reflection part in the center and a non-reflection part around it.

さらに上記部分反射部と上記無反射部とを通過するレー
ザビーム間の位相差を打消す手段を設けることもでき
る。
Further, means for canceling the phase difference between the laser beams passing through the partial reflection portion and the non-reflection portion can be provided.

〔作用〕[Action]

本発明におけるレーザ装置は,レーザ媒質への投入エネ
ルギーが増大し,レーザ媒質がレンズ化しても,これに
よる出射ビームの発散角変化を打消し,つねに平行ビー
ムを安定にとり出す。
In the laser device according to the present invention, even if the energy input to the laser medium increases and the laser medium becomes a lens, the divergence angle change of the emitted beam due to this is canceled out, and the parallel beam is always taken out stably.

〔実施例〕〔Example〕

以下,本発明の一実施例を第1図について説明する。第
1図において,(1)は固体素子で,たとえばYAGレー
ザを例にとればY3-XNdxAl5O12よりなるロツド状の結
晶,(2)はこのロツド端面にもうけられた全反射ミラ
ー,(3)は光源であり,例えばアークランプ,(4)はアー
クランプ(3)を点灯させるための電源,(5)は集光反射ミ
ラー,(6)はたとえばガラスでできた出口ミラー,(7)は
出口ミラー(6)の内面中央にもうけられた例えばTiO2
りなる部分反射膜,(8)は出口ミラー内面の部分反射膜
(7)の外周上,出口ミラー(6)の外面,さらに固体素子
(1)の端面にもうけられた例えばSiO2よりなる無反射
膜,(9),(11)は出口ミラー(6)と全反射ミラー(2)とか
らなるレーザ共振器内に発生したレーザビーム,(10)は
レーザ共振器外部にとり出されたレーザビーム,(12)は
外ワク,(30)は出口ミラー(6)をレーザビーム出射方
向,即ち光軸方向にそつて移動させるリニアステージで
ある。
An embodiment of the present invention will be described below with reference to FIG. In FIG. 1, (1) is a solid-state element, for example, in the case of a YAG laser, for example, a rod-shaped crystal made of Y 3-X NdxAl5O 12 , (2) is a total reflection mirror provided on the end face of this rod, 3) is a light source, for example, an arc lamp, (4) is a power source for lighting the arc lamp (3), (5) is a condensing reflection mirror, (6) is an exit mirror made of glass, (7) ) Is a partially reflective film made of, for example, TiO 2 provided in the center of the inner surface of the exit mirror (6), and (8) is a partially reflective film on the inner surface of the exit mirror.
On the outer periphery of (7), the outer surface of the exit mirror (6), and further the solid state element
A non-reflective film made of, for example, SiO 2 on the end face of (1), and (9) and (11) are laser beams generated in a laser resonator consisting of an exit mirror (6) and a total reflection mirror (2). , (10) is a laser beam taken out of the laser resonator, (12) is an outer beam, and (30) is a linear stage that moves the exit mirror (6) along the laser beam emitting direction, that is, the optical axis direction. is there.

次に動作について説明する。固体素子(1)は電源(4)によ
り点灯されたアークランプ(3)からの直接光,および集
光反射ミラー(5)よりの反射光により励起されレーザ媒
質をなす。一方,出口ミラー(6)と全反射ミラー(2)とか
らなるレーザ共振器内に発生したレーザビーム(9),(1
1)はこのレーザ媒質により増幅され,ある一定以上の大
きさになると,その一部がレーザビーム(10)として外部
にとり出される。
Next, the operation will be described. The solid-state element (1) is excited by direct light from the arc lamp (3) turned on by the power supply (4) and reflected light from the condensing reflection mirror (5) to form a laser medium. On the other hand, the laser beams (9), (1) generated in the laser resonator consisting of the exit mirror (6) and the total reflection mirror (2)
1) is amplified by this laser medium, and when it reaches a certain size or more, part of it is extracted as a laser beam (10) to the outside.

レーザ共振器についてさらに詳しく説明する。出口ミラ
ー(6)と全反射ミラー(2)とはいわゆるネガテイブブラン
チの不安定型共振器を構成している。レーザビーム(11)
は固体媒質で増幅されたのち,全反射ミラーにより集光
されるとともに,固体媒質により増幅され,レーザビー
ム(9)となり,このレーザビーム(9)の周囲部は出口ミラ
ー(6)内面周囲部の無反射膜の作用により,そのほとん
どが外部に放出され,また中央部はその一部が出口ミラ
ー(6)内面中央部の部分反射膜の作用により外部にとり
出され,のこりの部分はレーザビーム(11)として再びレ
ーザ共振器内を往復する。したがつて,外部のレーザビ
ーム(10)は中づまり状となつている。またこのような不
安定型共振器では位相の揃つた最低次モードと高次モー
ドとの損失の差が安定型共振器にくらべて非常に大きい
ため,数回往復後発生するレーザビームは最低次モード
のもののみとなる。また,出口ミラーの外面の曲率半径
は内面の曲率半径より小さく,メニスカス状にし,出射
ビームをほぼ平行にしている。これらのことから結局,
等位相の中づまり状平行ビームという最も理想的なレー
ザビームが得られる。
The laser resonator will be described in more detail. The exit mirror (6) and the total reflection mirror (2) constitute a so-called negative branch unstable resonator. Laser beam (11)
Is amplified by a solid medium, then condensed by a total reflection mirror and amplified by a solid medium to become a laser beam (9). The peripheral part of this laser beam (9) is the peripheral part of the inner surface of the exit mirror (6). Most of it is emitted to the outside by the action of the non-reflective film, and part of it is taken out to the outside by the action of the partially reflective film in the center of the inner surface of the exit mirror (6), and the remaining part is the laser beam. As (11), it reciprocates in the laser resonator again. Therefore, the external laser beam (10) has a hollow shape. Moreover, in such an unstable resonator, the difference in loss between the lowest-order mode with uniform phase and the higher-order mode is much larger than that of the stable resonator, so the laser beam generated after several round trips is the lowest-order mode. Only the ones. Also, the radius of curvature of the outer surface of the exit mirror is smaller than the radius of curvature of the inner surface, and it has a meniscus shape, and the outgoing beam is substantially parallel. After all, from these things,
The most ideal laser beam, which is a collimated parallel beam having a uniform phase, can be obtained.

第2図にはその発振出力特性の一例を示す。ここで固体
素子(1)はY2.5Nd0.6Al5O12よりなり,断面の直径6mm,
長さ150mm,出口ミラー(6),全反射ミラー(2)の内面
の曲率はそれぞれ0.48m,0.6m,両ミラー間の距離は
0.44m,出口ミラー(6)内面中央の部分反射膜(7)の反射
率80%である。また投入電力とはフラツシユランプの
点灯に消費された電力であり,3KWの投入電力で約5
0Wのレーザ出力が得られている。
FIG. 2 shows an example of the oscillation output characteristic. Here, the solid-state element (1) was made of Y 2.5 Nd 0.6 Al5O 12 , and had a cross-sectional diameter of 6 mm,
The length of 150mm, the curvature of the inner surface of the exit mirror (6) and the total reflection mirror (2) are 0.48m and 0.6m respectively, and the distance between both mirrors is
The reflectance of the partial reflection film (7) at the center of the inner surface of the exit mirror (6) is 0.44 m and 80%. The input power is the power consumed to light the flash lamp, and about 3 KW of input power is about 5
A laser output of 0 W is obtained.

第3図にレンズでレーザビームを集光したパターンを,
レーザ出力100Wにおいて,本発明の一実施例の固体
レーザ装置によるもの(第3図(a))と,従来の固体レ
ーザ装置によるもの(第3図(b))とを比較して示す。
本発明によるものでは従来の約1/40程度に幅が縮小され
ているばかりでなく,中央軸上強度は1000倍以上に
なつていることがわかる。
Figure 3 shows the pattern of the laser beam focused by the lens.
At a laser output of 100 W, a solid-state laser device according to an embodiment of the present invention (FIG. 3 (a)) and a conventional solid-state laser device (FIG. 3 (b)) are shown for comparison.
According to the present invention, not only is the width reduced to about 1/40 of that of the conventional one, but the central axial strength is 1000 times or more.

次に本発明の主要部であるリニアステージ(30)による出
口ミラー(6)の移動について詳しく説明する。従来例で
も説明したように,ランプ(3)により励起されると固体
素子内にはその温度分布がもたらす屈折率分布が発生
し,固体素子はそれを通過するレーザビームにとり等価
的に凸レンズとして作用する。この等価的凸レンズが共
振器内に発生した場合に,共振器内に発生する定常状態
でのレーザビーム光路を第4図に示す。図中(90),(91)
はレーザビーム,(100)は出口ミラー(6)の作用を表わす
凸レンズ(f=0.25m),(101)は全反射ミラー(2)の作
用を表わす凸レンズ(f=0.3m),(102)は固体素子
(1)の等価的凸レンズである。レンズ(100)の内部で光路
がおれまがつているのは,出口ミラー(6)の内面の無反
射膜(8)により外部にレーザビームがとり出されたこと
をあらわす。また第4図(a)は投入電力が1.9KW,第4
図(b)(c)は3KWの場合を示す。出口ミラー(6)の内面
の部分反射膜(7)により部分反射されたレーザビーム(9
0)は固体素子の等価レンズを2回通り,かつその間に全
反射ミラーに相当するレンズ(101)にも集光され,レー
ザビーム(91)となり,その外周部は外部にとり出され,
内周部の一部は,出口ミラー(6)に相当するレンズ(100)
の作用により,平行レーザビーム(90)として再び共振器
内を往復する。第4図(a)においては投入電力は小さ
く,したがつて固体素子の等価レンズの焦点距離も約1
mと大きいため,出射されるレーザビーム(90)は平行に
保たれている。しかしながら第4図(b)に示す投入電力
の大きい場合には,固体素子の等価レンズの焦点距離は
約0.5mと全反射ミラーに相当するレンズ(101)の等価焦
点距離0.3mに近づくため,その影響で出射ビーム(90)
が収束状になつていることがわかる。ところがこの状態
で出口ミラー(6)をリニアステージ上で駆動させ,全反
射ミラーに約0.05m動かせば第4図(c)に示すように再
び出射ビームは平行に保たれるようになる。この平行に
保つための条件を概略考えると,レンズ(100),(101),(1
02)の焦点距離をそれぞれf1,f2,f3とし、レンズ(100),
(102)間の距離は小さいため,これらを一体化して1つ
のレンズと考えると,両ミラー間の距離Lとして がいわゆるコンフオーカル条件であり,出射ビームが平
行となる条件である。したがつて投入電力が変化し,固
体素子の焦点距離がΔf3だけ短くなつたとすると, となり,今回のケースではΔLは0.048mと計算される
が,この値は第4図に示すものとほぼ一致している。
Next, the movement of the exit mirror (6) by the linear stage (30), which is the main part of the present invention, will be described in detail. As explained in the conventional example, when excited by the lamp (3), a refractive index distribution caused by the temperature distribution is generated in the solid state element, and the solid state element acts equivalently as a convex lens for the laser beam passing through it. To do. FIG. 4 shows the laser beam optical path in the steady state generated in the resonator when the equivalent convex lens is generated in the resonator. (90), (91) in the figure
Is a laser beam, (100) is a convex lens (f = 0.25 m) representing the action of the exit mirror (6), (101) is a convex lens (f = 0.3 m) representing the action of the total reflection mirror (2), (102) Is a solid element
It is an equivalent convex lens of (1). The optical path inside the lens (100) is obscured, which means that the laser beam is extracted to the outside by the non-reflection film (8) on the inner surface of the exit mirror (6). In Fig. 4 (a), the input power is 1.9 kW,
Figures (b) and (c) show the case of 3 kW. The laser beam (9) partially reflected by the partially reflecting film (7) on the inner surface of the exit mirror (6)
0) passes through the equivalent lens of the solid-state element twice, and is also focused on the lens (101) corresponding to the total reflection mirror in the meantime to become the laser beam (91), and the outer peripheral portion is taken out to the outside.
Part of the inner circumference is the lens (100) corresponding to the exit mirror (6)
By the action of, the laser beam reciprocates in the resonator as a parallel laser beam (90). In Fig. 4 (a), the applied power is small, and therefore the focal length of the equivalent lens of the solid-state element is about 1.
Since it is as large as m, the emitted laser beam (90) is kept parallel. However, when the input power shown in FIG. 4 (b) is large, the focal length of the equivalent lens of the solid-state element is about 0.5 m, which is close to the equivalent focal length of 0.3 m of the lens (101) corresponding to the total reflection mirror. Outgoing beam due to that effect (90)
It can be seen that is convergent. However, when the exit mirror (6) is driven on the linear stage in this state and the total reflection mirror is moved about 0.05 m, the outgoing beams can be kept parallel again as shown in FIG. 4 (c). Considering the conditions for keeping these parallel, the lenses (100), (101), (1
The focal lengths of 02) are f1, f2 and f3 respectively, and the lens (100),
Since the distance between (102) is small, if these are integrated and considered as one lens, the distance L between both mirrors is Is the so-called conformal condition, which is the condition that the outgoing beams are parallel. Therefore, if the applied power changes and the focal length of the solid state element is shortened by Δf3, In this case, ΔL is calculated to be 0.048 m, which is almost the same as that shown in Fig. 4.

なお,上記実施例では出口ミラー内面中央部が部分反射
率をもつものを示したが,これは第5図に示すように全
反射率をもつものでもよい。この場合はリング状のレー
ザビームが発生され,そのリング形状に寄因する回折効
果により,集光性能は悪化するが,従来例にくらべれば
十分に高品質なレーザビームを発生することができる。
In the above embodiment, the central portion of the inner surface of the exit mirror has a partial reflectance, but it may have a total reflectance as shown in FIG. In this case, a ring-shaped laser beam is generated, and the focusing effect deteriorates due to the diffraction effect caused by the ring shape, but a sufficiently high-quality laser beam can be generated as compared with the conventional example.

また上記実施例では出口ミラー内面の中央部と周囲部と
を通過するレーザビーム間の位相差は小さく問題となら
なかつたが,部分反射膜(7)の構成によつてはこれが問
題となることも考えられ,その場合は両レーザビーム間
の位相差を打消す手段をもうけてもよい。これはたとえ
ば第6図に示すように,出口ミラー(6)の外面に段差(7
1)を設けて出口ミラー内面の部分反射膜(7)と無反射膜
(8)を通過するレーザビーム間に光路差を設けたり,第
7図に示すようにレーザビームを,段差(71)を有するウ
インドミラー(72)を通してとり出すようにしてもよい。
Further, in the above-mentioned embodiment, the phase difference between the laser beams passing through the central portion and the peripheral portion of the inner surface of the exit mirror is small and has no problem.However, this is a problem depending on the structure of the partial reflection film (7). In that case, a means for canceling the phase difference between the two laser beams may be provided. For example, as shown in FIG. 6, a step (7) is formed on the outer surface of the exit mirror (6).
Providing 1), the partial reflection film (7) and the non-reflection film on the inner surface of the exit mirror
An optical path difference may be provided between the laser beams passing through (8), or the laser beam may be extracted through a wind mirror (72) having a step (71) as shown in FIG.

また,上記実施例では全反射ミラー(2)は固体素子の側
面に形成するものを示したが,第8図に示すように両者
を分離してもよい。また固体素子も第9図,第10図に
示すように出口ミラー(6)の近くに設置してもよい。
Further, although the total reflection mirror (2) is formed on the side surface of the solid-state element in the above-mentioned embodiment, both may be separated as shown in FIG. Further, the solid-state element may be installed near the exit mirror (6) as shown in FIGS.

また,上記実施例では全反射ミラーからは集光状のレー
ザビームが反射されてる例を示したが平行状のレーザビ
ームが反射されるようにしてもよく,第1図,第8図,
第9図,及び第10図に対応して,第11図,第12
図,第13図及び第14図に示すような変形例が考えら
れる。
Further, in the above embodiment, an example in which a condensed laser beam is reflected from the total reflection mirror is shown, but a parallel laser beam may be reflected, as shown in FIGS.
11 and 12 in correspondence with FIGS. 9 and 10.
Modifications shown in FIGS. 13, 13 and 14 are possible.

さらに,ミラーの駆動も,第15図に示すように,全反
射ミラー(20)を動かすようにしてもよく,また固体素子
(1)自身を第16図に示すように動かしても,光学的に
第1図と同じことが実現できる。
Further, the mirror may be driven by moving the total reflection mirror (20) as shown in FIG.
(1) Even if the lens itself is moved as shown in FIG. 16, the same optically as in FIG. 1 can be realized.

また,上記実施例では不安定共振器はネガテイブブラン
チの構成で,しかも固体素子がミラーに近接して配設さ
れたものを示したが,ポジテイブブランチのものでもよ
く,また,固体素子の位置も各ミラー間の中央であつて
もよい。ただし,これらの場合は,ミラーや固体素子の
移動量が上記実施例で示されたものより大きくなる。
Further, in the above embodiment, the unstable resonator has a negative branch structure and the solid-state element is arranged in the vicinity of the mirror. It may be at the center between the mirrors. However, in these cases, the movement amount of the mirror and the solid-state element becomes larger than that shown in the above-mentioned embodiment.

さらに,上記実施例では固体レーザ装置について説明し
たが,レーザ媒質の温度分布がレンズ状に作用するもの
にはすべて適用できる。
Further, although the solid-state laser device has been described in the above embodiment, it can be applied to any device in which the temperature distribution of the laser medium acts like a lens.

〔発明の効果〕〔The invention's effect〕

以上のように,本発明によればレーザ共振器を構成する
複数の光学素子のいずれか,もしくはレーザ媒質を,レ
ーザ媒質への投入エネルギー量に対応して,光軸方向に
移動する駆動系を設けたので,レーザ媒質のレンズ化を
打消して,常に平行な高品質レーザビームが安定して得
られる効果がある。
As described above, according to the present invention, a drive system that moves any one of a plurality of optical elements forming a laser resonator or a laser medium in the optical axis direction in accordance with the amount of energy input to the laser medium is provided. Since it is provided, there is an effect that the lensing of the laser medium is canceled and a parallel high-quality laser beam can be stably obtained.

また、レーザ共振器として不安定型共振器を用いると発
散角の小さいレーザビームが得られる効果がある。
Further, when an unstable resonator is used as the laser resonator, there is an effect that a laser beam with a small divergence angle can be obtained.

また,不安定型共振器を構成するミラーとして,中央に
部分反射部,その周囲部に無反射部をもつ出口ミラーと
全反射ミラーとを用いると,集光性のよい高品質のビー
ムを得ることができる。またこの場合,部分反射部と無
反射部とを通過するレーザビーム間の位相差を打消す手
段を設けることにより,ビーム品質がさらに向上する。
In addition, if an exit mirror and a total reflection mirror having a partial reflection part in the center and a non-reflection part in the periphery are used as the mirrors forming the unstable resonator, a high-quality beam with good condensing property can be obtained. You can Further, in this case, by providing means for canceling the phase difference between the laser beams passing through the partially reflecting portion and the non-reflecting portion, the beam quality is further improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例による固体レーザ装置を示す
断面構成図,第2図はその出力特性を示す特性図,第3
図(a)(b)は各々本発明の一実施例,及び従来の固体レー
ザ装置における集光パターンを示す特性図,第4図(a)
(b)(c)は各々本発明の一実施例による固体レーザ装置の
動作を説明する説明図,第5図ないし第16図は各々本
発明の他の実施例によるレーザ装置を示す断面構成図,
第17図は従来の固体レーザ装置を示す断面構成図,並
びに第18図及び第19図は各々従来の固体レーザ装置
におけるレーザ出力及び発散角を示す特性図である。 (1)…固体素子,(2)(20)…全反射ミラー,(3)…光源,
(6)…出口ミラー,(7)…部分反射膜,(8)…無反射膜,
(9)(10)(11)…レーザビーム,(30)…リニアステージ,
(71)…段差。 なお、図中,同一符号は同一又は相当部分を示す。
FIG. 1 is a sectional configuration diagram showing a solid-state laser device according to an embodiment of the present invention, FIG. 2 is a characteristic diagram showing its output characteristics, and FIG.
FIGS. 4 (a) and 4 (b) are characteristic diagrams showing focusing patterns in one embodiment of the present invention and a conventional solid-state laser device, respectively.
(b) and (c) are explanatory views for explaining the operation of the solid-state laser device according to one embodiment of the present invention, and FIGS. 5 to 16 are cross-sectional structural views showing a laser device according to another embodiment of the present invention. ,
FIG. 17 is a sectional configuration diagram showing a conventional solid-state laser device, and FIGS. 18 and 19 are characteristic diagrams showing laser output and divergence angle in the conventional solid-state laser device, respectively. (1) ... Solid state element, (2) (20) ... Total reflection mirror, (3) ... Light source,
(6)… Exit mirror, (7)… Partial reflection film, (8)… No reflection film,
(9) (10) (11)… laser beam, (30)… linear stage,
(71)… Step. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】レーザ共振器を構成する複数の光学素子、
これら光学素子間に配設されたレーザ媒質、及び上記光
学素子のいずれか、もしくは上記レーザ媒質を、上記レ
ーザ媒質への投入エネルギー量に対応して光軸方向に移
動させる駆動系を備えたレーザ装置。
1. A plurality of optical elements constituting a laser resonator,
A laser medium provided between these optical elements, and a laser provided with a drive system for moving one of the optical elements or the laser medium in the optical axis direction in accordance with the amount of energy input to the laser medium. apparatus.
【請求項2】不安定型レーザ共振器を構成する複数のレ
ーザミラー、これらミラー間に配設されたレーザ媒質、
及び上記ミラーのいずれか、もしくは上記レーザ媒質
を、上記レーザ媒質への投入エネルギー量に対応して光
軸方向に移動させる駆動系を備えたレーザ装置。
2. A plurality of laser mirrors constituting an unstable laser resonator, a laser medium arranged between these mirrors,
And a laser device including a drive system for moving any of the mirrors or the laser medium in the optical axis direction in accordance with the amount of energy input to the laser medium.
【請求項3】レーザ共振器は、中央に部分反射部を、そ
の周囲部に無反射部をもつ出口ミラーと全反射ミラーと
で構成した請求項2記載のレーザ装置。
3. A laser device according to claim 2, wherein the laser resonator comprises a partial reflection portion in the center and an exit mirror and a total reflection mirror each having a non-reflection portion in the periphery thereof.
【請求項4】部分反射部と無反射部を通過するレーザビ
ーム間の位相を打消す手段を設けた請求項3記載のレー
ザ装置。
4. The laser device according to claim 3, further comprising means for canceling the phase between the laser beams passing through the partially reflecting portion and the non-reflecting portion.
JP9981688A 1988-04-22 1988-04-22 Laser equipment Expired - Lifetime JPH0652815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9981688A JPH0652815B2 (en) 1988-04-22 1988-04-22 Laser equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9981688A JPH0652815B2 (en) 1988-04-22 1988-04-22 Laser equipment

Publications (2)

Publication Number Publication Date
JPH01270377A JPH01270377A (en) 1989-10-27
JPH0652815B2 true JPH0652815B2 (en) 1994-07-06

Family

ID=14257369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9981688A Expired - Lifetime JPH0652815B2 (en) 1988-04-22 1988-04-22 Laser equipment

Country Status (1)

Country Link
JP (1) JPH0652815B2 (en)

Also Published As

Publication number Publication date
JPH01270377A (en) 1989-10-27

Similar Documents

Publication Publication Date Title
KR910009016B1 (en) Laser processing apparatus
US4903271A (en) Laser apparatus
JPH05145148A (en) Solid state laser resonator
JP2002319740A (en) Optical resonator for optical element
JPH0652815B2 (en) Laser equipment
JP2663497B2 (en) Laser device
JPH1168197A (en) Solid laser device excited by semiconductor laser
JPH03233986A (en) End face exciting type solid state laser oscillator
JP2738053B2 (en) Solid-state laser device
JP2673303B2 (en) Negative branch unstable laser cavity
JP2580702B2 (en) Laser device
JP3003172B2 (en) Solid state laser oscillator
JP2580703B2 (en) Laser device
JP2691773B2 (en) Solid-state laser device
JP2526946B2 (en) Laser device
JP2673301B2 (en) Solid-state laser device
JPH0637368A (en) Laser and beam expander
JPH021192A (en) Solid-state laser equipment
JPH0344982A (en) Solid state laser device
JP2666350B2 (en) Solid-state laser device
JP2550499B2 (en) Solid-state laser device
JP2704337B2 (en) Optical wavelength converter
JPH01231387A (en) Semiconductor light emitting device
JP2597499B2 (en) Laser device
JPH01270369A (en) Laser device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070706

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20080706