JPH0651921A - Infrared image pickup device - Google Patents

Infrared image pickup device

Info

Publication number
JPH0651921A
JPH0651921A JP5025283A JP2528393A JPH0651921A JP H0651921 A JPH0651921 A JP H0651921A JP 5025283 A JP5025283 A JP 5025283A JP 2528393 A JP2528393 A JP 2528393A JP H0651921 A JPH0651921 A JP H0651921A
Authority
JP
Japan
Prior art keywords
polarization filter
infrared
light
filter
processing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5025283A
Other languages
Japanese (ja)
Inventor
Mitsusachi Matsuoka
光幸 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP4024751A external-priority patent/JPH08276623A/en
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5025283A priority Critical patent/JPH0651921A/en
Publication of JPH0651921A publication Critical patent/JPH0651921A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Image Input (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To optimize the ratio of reducing the influence of sunlight, with respect to the infrared image pickup device. CONSTITUTION:This device is provided with a light quantity detector 9 to detect infrared light transmitted through a polarizing filter 5, and the output value of this light quantity detector is inputted to an operation processing part 7. The operation processing part 7 outputs a current command to a polarizing filter driving part 6 so as to minimize the output value of the light quantity detector 9 and rotates the polarizing filter 5. Thus, the influence of mirror reflected sunlight is reduced at all times, and much sharper infrared images can be provided at the time of operating the device in daytime.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば移動体に搭載
される赤外線撮像装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared imaging device mounted on a moving body, for example.

【0002】[0002]

【従来の技術】図5は、従来の赤外線撮像装置の動作原
理を示すブロック図である。図において、1は赤外線カ
メラ用レンズ、2は短波長カットフィルタ、3はIRC
SD(Infra−Red Charge Sweep
Device)、4は画像処理部、5は偏光フィル
タ、6は偏光フィルタ駆動部、7は演算処理部、8は角
度検出器である。
2. Description of the Related Art FIG. 5 is a block diagram showing the operating principle of a conventional infrared imaging device. In the figure, 1 is an infrared camera lens, 2 is a short wavelength cut filter, and 3 is an IRC.
SD (Infra-Red Charge Sweep)
Device), 4 is an image processing unit, 5 is a polarization filter, 6 is a polarization filter driving unit, 7 is an arithmetic processing unit, and 8 is an angle detector.

【0003】図6は、直線偏波光の振動軸と偏光フィル
タ5の透過軸とのなす角に対する偏光フィルタ5の直線
偏波光を吸収する割合を示す図である。10は鏡面反射
され直線偏波光になった太陽光、11は偏光フィルタ5
を透過した直線偏波光、12は鏡面反射され直線偏波光
になった太陽光10の振動軸と偏光フィルタ5の透過軸
とのなす角である。
FIG. 6 is a diagram showing a ratio of absorbing the linearly polarized light of the polarization filter 5 with respect to an angle formed by the vibration axis of the linearly polarized light and the transmission axis of the polarization filter 5. Numeral 10 is sunlight that is specularly reflected and becomes linearly polarized light, and 11 is a polarization filter 5.
Is the linearly polarized light that has been transmitted through, and 12 is the angle between the vibration axis of the sunlight 10 that has been specularly reflected to become linearly polarized light and the transmission axis of the polarization filter 5.

【0004】次に動作について説明する。従来の赤外線
撮像装置で太陽光の影響を低減する場合、短波長カット
フィルタ2と偏光フィルタ5によって行われている。短
波長カットフィルタ2は、赤外線撮像装置の検出波長帯
が3〜5μm帯であることより、波長が3.8μm以上
の赤外線を透過するフィルタである。これにより、太陽
光の影響が強く現れる波長3.8μm以下の赤外線を低
減させる。短波長カットフィルタ2だけでは低減されな
かった波長3.8μm以上の太陽光は、円偏波光である
太陽光が鏡面反射すると直線偏波光になるから、偏光フ
ィルタ5により低減される。移動体の動揺のために偏光
フィルタ5が移動体のロール軸回りに回転すると、鏡面
反射され直線偏波光になった太陽光10の振動軸と偏光
フィルタ5の透過軸とのなす角12が変化し太陽の鏡面
反射光を低減する割合が図4のように変化する。角度検
出器8により移動体のロール軸回りの回転角を検出し、
その値により演算処理部7から偏光フィルタ5をロール
軸回りに移動体の動揺による影響を打ち消すよう回転さ
せる指令を偏光フィルタ駆動部に送り、偏光フィルタ駆
動部6がその指令により偏光フィルタをロール軸回りに
回転させる。このようして、直線偏波光である太陽の鏡
面反射光を低減する。
Next, the operation will be described. When the influence of sunlight is reduced by the conventional infrared imaging device, it is performed by the short wavelength cut filter 2 and the polarization filter 5. The short wavelength cut filter 2 is a filter that transmits infrared rays having a wavelength of 3.8 μm or more because the detection wavelength band of the infrared imaging device is in the 3 to 5 μm band. This reduces infrared rays having a wavelength of 3.8 μm or less, which is strongly influenced by sunlight. The sunlight having a wavelength of 3.8 μm or more, which has not been reduced only by the short-wavelength cut filter 2, becomes linearly polarized light when the circularly polarized sunlight is specularly reflected, and therefore is reduced by the polarization filter 5. When the polarizing filter 5 rotates around the roll axis of the moving body due to the sway of the moving body, the angle 12 formed by the vibration axis of the sunlight 10 that is specularly reflected and becomes linearly polarized light and the transmission axis of the polarizing filter 5 changes. The rate of reducing the specular reflected light of the sun changes as shown in FIG. The angle detector 8 detects the rotation angle of the moving body around the roll axis,
Based on the value, the arithmetic processing unit 7 sends a command to the polarization filter driving unit to rotate the polarization filter 5 around the roll axis so as to cancel the influence of the motion of the moving body, and the polarization filter driving unit 6 causes the polarization filter driving unit 6 to rotate the polarization filter by the command. Rotate around. In this way, the specularly reflected light of the sun, which is linearly polarized light, is reduced.

【0005】[0005]

【発明が解決しようとする課題】従来の赤外線撮像装置
は以上のように構成されているので、偏光フィルタ5の
回転角は角度検出器8の値によって決定されている。例
えば、偏光フィルタ5の回転角が太陽の鏡面反射光の影
響を最も低減できる場合、すなわち、鏡面反射され直角
偏波光になった太陽光10の振動面と偏光フィルタ5の
透過軸とのなす角12が90゜の場合に於いても、角度
検出器8が移動体の動揺角を検出して偏光フィルタ5の
回転角を変えてしまい、図4を見てわかるように太陽の
鏡面反射光の影響を低減する割合が低下する。以上のよ
うに従来の赤外線撮像装置では、鏡面反射された太陽光
の影響の低減が最適化されていないという問題点があっ
た。
Since the conventional infrared imaging device is constructed as described above, the rotation angle of the polarization filter 5 is determined by the value of the angle detector 8. For example, when the rotation angle of the polarization filter 5 can most reduce the influence of the specular reflection light of the sun, that is, the angle formed by the vibration surface of the sunlight 10 that is specularly reflected and becomes orthogonally polarized light and the transmission axis of the polarization filter 5. Even when 12 is 90 °, the angle detector 8 detects the swaying angle of the moving body and changes the rotation angle of the polarizing filter 5, and as shown in FIG. The rate of reducing the impact decreases. As described above, the conventional infrared imaging device has a problem in that the reduction of the influence of the sunlight reflected on the mirror surface is not optimized.

【0006】この発明は上記のような問題点を解消する
ためになされたもので、常に太陽の鏡面反射光の影響を
最も低減させた赤外画像を得ることのできる装置を提供
するものである。
The present invention has been made to solve the above problems, and provides an apparatus capable of always obtaining an infrared image in which the influence of the specular reflected light of the sun is minimized. .

【0007】[0007]

【課題を解決するための手段】この発明における赤外線
撮像装置は、従来の赤外線撮像装置に光量検出器を設
け、その出力値が最小となるように偏光フィルタを回転
させることにより、常時太陽の鏡面反射光の影響を最大
に低減させるものである。
In the infrared image pickup device of the present invention, a conventional infrared image pickup device is provided with a light amount detector, and the polarization filter is rotated so that the output value thereof is minimized, whereby the mirror surface of the sun is always obtained. The effect of reflected light is reduced to the maximum.

【0008】また、この発明は画像処理部からビデオ信
号の出力値を取り出し、その値が最小となるように偏光
フィルタを回転させることにより、常時太陽の鏡面反射
光の影響を最大に低減させるものである。
Further, according to the present invention, the output value of the video signal is taken out from the image processing section, and the polarization filter is rotated so that the output value is minimized, thereby maximizing the influence of the specular reflection light of the sun. Is.

【0009】さらに、この発明は偏光フィルタが自由に
回転できる偏光フィルタ取り付け部と、重力を利用し
て、上記偏光フィルタ取り付け部の回転角を一定に保持
する手段とを具備したものである。
Further, the present invention is provided with a polarizing filter mounting portion in which the polarizing filter can freely rotate, and means for maintaining a constant rotation angle of the polarizing filter mounting portion by utilizing gravity.

【0010】[0010]

【作用】この発明における赤外線撮像装置は、光量検出
器の出力又は画像処理部の出力値が最小となるように偏
光フィルタを回転させて常に太陽の鏡面反射光の影響を
低減させる。
In the infrared image pickup device according to the present invention, the influence of the specular reflected light of the sun is always reduced by rotating the polarization filter so that the output of the light quantity detector or the output value of the image processing unit becomes minimum.

【0011】またこの発明は赤外線撮像装置において、
鏡面反射した太陽光の影響を低減し、昼間の運用時にお
いて鮮明な赤外画像が得られ、かつ赤外線撮像装置の小
型軽量化及び低コスト化が図れる。
The present invention also provides an infrared imaging device,
The influence of sunlight reflected on the mirror surface can be reduced, a clear infrared image can be obtained during daytime operation, and the infrared imaging device can be reduced in size, weight and cost.

【0012】[0012]

【実施例】【Example】

実施例1.以下、この発明の一実施例を図について説明
する。図1は、この発明の一実施例の動作原理を示すブ
ロック図である。図において、1〜7は従来の装置と同
一のものである。9は光量検出器である。
Example 1. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the operating principle of an embodiment of the present invention. In the figure, 1 to 7 are the same as the conventional device. Reference numeral 9 is a light amount detector.

【0013】次に動作について説明する。1〜6の動作
原理は従来の装置と同等である。演算処理部7は、光量
検出器9の値を取り出しその値が常に最小となるように
指令を偏光フィルタ駆動部6に送信する。光量検出器9
は、短波長カットフィルタ2と偏光フィルタ5を透過し
てきた赤外光を検出する。まず、演算処理部7は、光量
検出器9の値を前回値として記憶し、そのとき偏光フィ
ルタ駆動部6へ送った偏光フィルタ5の指令回転角も記
憶する。次に、演算処理部7から偏光フィルタ駆動部6
へ、現在の偏光フィルタ5の透過軸と鏡面反射された直
線偏波光になった太陽光10の振動面とのなす角12が
僅かに増減するように指令を送る。このとき光量検出器
9の値を取り出し前回値と比較し、前回値より小さい場
合この時の値を前回値として記憶し、そのときの偏光フ
ィルタ駆動部6へ送った偏光フィルタ5の指令回転角も
記憶する。前回値より大きい場合、記憶しておいた偏光
フィルタの回転角に戻るように、演算処理部7から偏光
フィルタ駆動部6へ指令を送る。以上を常に繰り返し行
い、光量検出器9の値を最小となるようにする。このよ
うして、直線偏波光である太陽の反射光を常時最大に低
減できるようにするものである。
Next, the operation will be described. The operation principle of 1 to 6 is equivalent to that of the conventional device. The arithmetic processing unit 7 takes out the value of the light amount detector 9 and sends a command to the polarization filter driving unit 6 so that the value is always minimized. Light intensity detector 9
Detects the infrared light transmitted through the short wavelength cut filter 2 and the polarization filter 5. First, the arithmetic processing unit 7 stores the value of the light amount detector 9 as the previous value, and also stores the command rotation angle of the polarization filter 5 sent to the polarization filter driving unit 6 at that time. Next, from the arithmetic processing unit 7 to the polarization filter driving unit 6
The command is sent to slightly increase or decrease the angle 12 formed between the current transmission axis of the polarization filter 5 and the vibrating surface of the sunlight 10 that has become the specularly reflected linearly polarized light. At this time, the value of the light quantity detector 9 is taken out and compared with the previous value, and if it is smaller than the previous value, the value at this time is stored as the previous value, and the command rotation angle of the polarization filter 5 sent to the polarization filter drive unit 6 at that time is stored. Also remember. If it is larger than the previous value, the arithmetic processing unit 7 sends a command to the polarization filter driving unit 6 to return to the stored rotation angle of the polarization filter. The above is always repeated to minimize the value of the light amount detector 9. In this way, the reflected light of the sun, which is linearly polarized light, can be always reduced to the maximum.

【0014】実施例2.図2は、この発明の他の実施例
の動作原理を示すブロック図である。図において、1〜
7は従来の装置と同一のものである。
Example 2. FIG. 2 is a block diagram showing the operating principle of another embodiment of the present invention. In the figure,
7 is the same as the conventional device.

【0015】次に動作について説明する。1〜6の動作
原理は従来の装置と同等である。演算処理部7は、画像
処理部4のビデオ信号の出力値を取り出しその値が常に
最小となるように指令を偏光フィルタ駆動部6に送信す
る。まず、演算処理部7は、画像処理部4のビデオ信号
の出力値を前回値として記憶し、そのとき偏光フィルタ
駆動部6へ送った偏光フィルタ5の指令回転角も記憶す
る。次に、演算処理部7から偏光フィルタ駆動部6へ、
現在の偏光フィルタ5の透過軸と鏡面反射され直線偏波
光になった太陽光の振動面とのなす角が僅かに増減する
ように指令を送る。このとき画像処理部4のビデオ信号
の出力値を取り出し前回値と比較し、前回値より小さい
場合この時の値を前回値として記憶し、そのときの偏光
フィルタ駆動部6へ送った偏光フィルタ5の指令回転角
も記憶する。前回値より大きい場合、記憶しておいた偏
光フィルタの回転角に戻るように、演算処理部7から偏
光フィルタ駆動部6へ指令を送る。以上を常に繰り返し
行い、画像処理部4のビデオ信号の出力値を最小となる
ようにする。このようにして、実施例1に於ける光量検
出器9の値の代わりに画像処理部4のビデオ信号の1出
力値を用い、直線偏波光である太陽の反射光を常時最大
に低減できるようにする。
Next, the operation will be described. The operation principle of 1 to 6 is equivalent to that of the conventional device. The arithmetic processing unit 7 takes out the output value of the video signal of the image processing unit 4 and sends a command to the polarization filter driving unit 6 so that the output value is always minimized. First, the arithmetic processing unit 7 stores the output value of the video signal of the image processing unit 4 as the previous value, and also stores the command rotation angle of the polarization filter 5 sent to the polarization filter driving unit 6 at that time. Next, from the arithmetic processing unit 7 to the polarization filter driving unit 6,
A command is sent to slightly increase or decrease the angle formed between the current transmission axis of the polarization filter 5 and the vibrating surface of the sunlight that is specularly reflected and becomes linearly polarized light. At this time, the output value of the video signal of the image processing unit 4 is extracted and compared with the previous value. If it is smaller than the previous value, the value at this time is stored as the previous value, and the polarization filter 5 sent to the polarization filter driving unit 6 at that time is stored. The command rotation angle of is also stored. If it is larger than the previous value, the arithmetic processing unit 7 sends a command to the polarization filter driving unit 6 to return to the stored rotation angle of the polarization filter. The above is always repeated to minimize the output value of the video signal of the image processing unit 4. In this way, one output value of the video signal of the image processing unit 4 is used instead of the value of the light amount detector 9 in the first embodiment, and the reflected light of the sun, which is linearly polarized light, can be always reduced to the maximum. To

【0016】実施例3.図3は、この発明の実施例3の
動作原理を示す構成図であり、1〜5は従来の装置と同
一のものである。55は偏光フィルタ取り付け部であ
る。
Embodiment 3. FIG. 3 is a block diagram showing the operating principle of the third embodiment of the present invention, in which 1 to 5 are the same as the conventional device. Reference numeral 55 is a polarizing filter mounting portion.

【0017】図4(a)は、偏光フィルタ取り付け部5
5の構造を示す概略図である。図4(b)は、偏光フィ
ルタ5を偏光フィルタ取り付け部55に装着したときの
断面図である。偏光フィルタ取り付け部55は、偏光フ
ィルタ5を装着し一方に偏った重りを持つリング状の回
転部13と、回転部13が装着される固定部14と回転
部13が固定部14に対して非常に滑らかに回転できる
ようにするためのベアリング15から構成される。従っ
て偏光フィルタ取り付け部として、偏光フィルタを保持
する手段に偏光フィルタ取り付け部の偏光フィルタ透過
波面と平行方向の一方の質量を他の部分の質量よりも大
きくしてある。
FIG. 4A shows a polarization filter mounting portion 5
5 is a schematic diagram showing the structure of FIG. FIG. 4B is a sectional view when the polarization filter 5 is attached to the polarization filter attachment portion 55. The polarization filter attachment part 55 includes a ring-shaped rotating part 13 to which the polarizing filter 5 is attached and which has a weight that is biased to one side, a fixed part 14 to which the rotating part 13 is attached, and the rotating part 13 which is very close to the fixed part 14. It is composed of a bearing 15 for allowing smooth rotation. Therefore, as the polarization filter mounting portion, one mass in the direction parallel to the polarization filter transmitted wavefront of the polarization filter mounting part is made larger than the mass of the other part in the means for holding the polarization filter.

【0018】次に動作について説明する。1〜5の動作
原理は従来の装置と同等である。移動体の動揺のために
偏光フィルタ取り付け部の固定部がロール軸回りに回転
しても、偏光フィルタ取り付け部55の回転部13は固
定部14と非常に滑らかでかつ一方に偏った重りを持つ
ため、偏光フィルタ5の透過軸と地表面とのなす角が一
定になるように偏光フィルタ5が自由に回転する。この
ようにして、直線偏波光である太陽の反射光を低減でき
るようにするものである。
Next, the operation will be described. The operation principle of 1 to 5 is equivalent to that of the conventional device. Even if the fixed part of the polarization filter mounting part rotates around the roll axis due to the motion of the moving body, the rotating part 13 of the polarization filter mounting part 55 has a weight that is very smooth with respect to the fixed part 14 and is biased to one side. Therefore, the polarization filter 5 is freely rotated so that the angle formed by the transmission axis of the polarization filter 5 and the ground surface is constant. In this way, the reflected light of the sun, which is linearly polarized light, can be reduced.

【0019】なお、上記実施例1〜3のIRCSDとし
ては、例えばIRCSDシリコンとその表面に白金を蒸
着して形成したパラチナシリサイドを撮像素子とし、電
荷転送方式を各水平同期信号期間内に垂直転送ライン内
に電位勾配を設け電荷蓄積領域が垂直転送領域に転送さ
れた電荷を水平転送ラインに転送する電荷掃き寄せ方式
とする2次元の赤外線撮像素子IRCSDを用いる。
As the IRCSD of the above-mentioned first to third embodiments, for example, IRCSD silicon and a paratin silicide formed by depositing platinum on the surface of the IRCSD are used as an image pickup element, and the charge transfer method is set to vertical in each horizontal synchronizing signal period. A two-dimensional infrared image pickup device IRCSD of a charge sweeping type is used in which a potential gradient is provided in the transfer line and the charge storage region transfers the charges transferred to the vertical transfer region to the horizontal transfer line.

【0020】[0020]

【発明の効果】以上のように、この発明によれば、光量
検出器の出力値又は画像処理部の出力値が最小となるよ
うに偏光フィルタを回転させることによって鏡面反射さ
れ直線偏波光になった太陽反射光の影響を、常時最も低
減し、より鮮明な赤外画像を得られるという効果があ
る。
As described above, according to the present invention, by rotating the polarization filter so that the output value of the light quantity detector or the output value of the image processing unit becomes the minimum, specular reflection results in linearly polarized light. The effect of the sun reflected light is always reduced most, and a clearer infrared image can be obtained.

【0021】この発明によれば、偏光フィルタの透過軸
と地表面とのなす角が一定にできるような偏光フィルタ
取り付け部を付加することによって、鏡面反射され直線
偏波光になった太陽反射光の影響を低減し、従来の装置
とほぼ同等の鮮明な赤外画像が得られる装置の小型軽量
化及び低コスト化が図れるという効果がある。
According to the present invention, the addition of the polarization filter mounting portion which can make the angle between the transmission axis of the polarization filter and the ground surface constant makes it possible to reflect the sun reflected light which is specularly reflected and becomes linearly polarized light. There is an effect that the influence can be reduced, and the size, weight and cost of the device that can obtain a clear infrared image almost equal to that of the conventional device can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1による赤外線撮像装置を示
すブロック図である。
FIG. 1 is a block diagram showing an infrared imaging device according to a first embodiment of the present invention.

【図2】この発明の実施例2による赤外線撮像装置を示
すブロック図である。
FIG. 2 is a block diagram showing an infrared imaging device according to a second embodiment of the present invention.

【図3】この発明の実施例3による赤外線撮像装置を示
すブロック図である。
FIG. 3 is a block diagram showing an infrared imaging device according to a third embodiment of the present invention.

【図4】偏光フィルタ取り付け部の構造を示す概略図で
ある。
FIG. 4 is a schematic view showing a structure of a polarization filter mounting portion.

【図5】従来の赤外線撮像装置を示すブロック図であ
る。
FIG. 5 is a block diagram showing a conventional infrared imaging device.

【図6】直線偏波の振動軸と偏光フィルタの透過軸との
なす角に対する偏光フィルタの直線偏波光を吸収する割
合を示す図である。
FIG. 6 is a diagram showing a ratio of absorption of linearly polarized light of a polarization filter with respect to an angle formed by a vibration axis of the linearly polarized wave and a transmission axis of the polarization filter.

【符号の説明】[Explanation of symbols]

1 赤外線カメラ用レンズ 2 短波長カットフィルタ 3 IRCSD(Infra−Red Charge
Sweep Device) 4 画像処理部 5 偏光フィルタ 6 偏光フィルタ駆動部 7 演算処理部 9 光量検出器 10 直線偏波光 11 偏光フィルタを透過した直線偏波光 12 直線偏波光の振動軸と偏光フィルタの透過軸のな
す角 13 偏光フィルタ取り付け回転部 14 偏光フィルタ取り付け固定部 15 ベアリング 55 偏光フィルタ取り付け部
1 Infrared camera lens 2 Short wavelength cut filter 3 IRCSD (Infra-Red Charge)
Sweep Device 4 Image processing unit 5 Polarization filter 6 Polarization filter drive unit 7 Arithmetic processing unit 9 Light intensity detector 10 Linearly polarized light 11 Linearly polarized light that has passed through the polarizing filter 12 Vibration axis of linearly polarized light and transmission axis of polarizing filter Forming angle 13 Polarizing filter mounting rotating part 14 Polarizing filter mounting fixed part 15 Bearing 55 Polarizing filter mounting part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 赤外光を集光・結像する赤外線カメラ用
レンズと、太陽光の影響を低減する短波長カットフィル
タと、赤外光を光電変換するIRCSD(Infra−
Red Charge Sweep Device)
と、上記IRCSDの出力信号を処理して赤外画像を得
る画像処理部とから構成される赤外線撮像装置におい
て、鏡面反射され直線偏波光になる太陽反射光の影響を
低減する偏光フィルタと、上記偏光フィルタを回転させ
る偏光フィルタ駆動部と、上記短波長カットフィルタと
偏光フィルタを透過した赤外光を検出する光量検出器
と、上記光量検出器の出力値が最小となるように上記偏
光フィルタ駆動部へ指令を送信する演算処理部とを具備
したことを特徴とする赤外線撮像装置。
1. An infrared camera lens that collects and forms infrared light, a short-wavelength cut filter that reduces the effect of sunlight, and an IRCSD (Infra-) that photoelectrically converts infrared light.
Red Charge Sweep Device)
And an image processing unit for processing the output signal of the IRCSD to obtain an infrared image, and a polarization filter for reducing the influence of sun reflected light that is specularly reflected and becomes linearly polarized light, A polarization filter drive unit that rotates a polarization filter, a light amount detector that detects infrared light that has passed through the short wavelength cut filter and the polarization filter, and the polarization filter drive unit that minimizes the output value of the light amount detector. An infrared imaging device, comprising: an arithmetic processing unit that transmits a command to the unit.
【請求項2】 赤外光を集光・結像する赤外線カメラ用
レンズと、太陽光の影響を低減する短波長カットフィル
タと、赤外光を光電変換するIRCSD(Infra−
Red Charge Sweep Device)
と、上記IRCSDの出力信号を処理して赤外画像を得
る画像処理部とから構成される赤外線撮像装置におい
て、鏡面反射され直線偏波光になる太陽反射光の影響を
低減する偏光フィルタと、上記偏光フィルタを回転させ
る偏光フィルタ駆動部と、上記画像処理部から画像出力
値を受けてその値を最小となるように上記偏光フィルタ
駆動部へ指令を出力する演算処理部とを具備したことを
特徴とする赤外線撮像装置。
2. An infrared camera lens that collects and forms infrared light, a short wavelength cut filter that reduces the effect of sunlight, and an IRCSD (Infra-) that photoelectrically converts infrared light.
Red Charge Sweep Device)
And an image processing unit for processing the output signal of the IRCSD to obtain an infrared image, and a polarization filter for reducing the influence of sun reflected light that is specularly reflected and becomes linearly polarized light, A polarization filter driving unit that rotates the polarization filter, and an arithmetic processing unit that receives an image output value from the image processing unit and outputs a command to the polarization filter driving unit so as to minimize the value are characterized. Infrared imaging device.
【請求項3】 赤外光を集光・結像する赤外線カメラ用
レンズと、太陽光の影響を低減する短波長カットフィル
タと、赤外光を光電変換するIRCSD(Infra−
Red Charge Sweep Device)
と、上記IRCSDの出力信号を処理して赤外画像を得
る画像処理部とから構成される赤外線撮像装置におい
て、太陽反射光の影響を低減する偏光フィルタと、上記
偏光フィルタが自由に回転できる偏光フィルタ取り付け
部と、重力を利用して、上記偏光フィルタ取り付け部の
回転角を一定に保持する手段とを具備したことを特徴と
する赤外線撮像装置。
3. An infrared camera lens that collects and forms infrared light, a short wavelength cut filter that reduces the effect of sunlight, and an IRCSD (Infra-) that photoelectrically converts infrared light.
Red Charge Sweep Device)
And an image processing unit for processing the output signal of the IRCSD to obtain an infrared image, and an infrared imaging device comprising: a polarization filter for reducing the influence of sun reflected light; and a polarization for freely rotating the polarization filter. An infrared imaging device comprising: a filter mounting portion; and means for maintaining a constant rotation angle of the polarization filter mounting portion by utilizing gravity.
JP5025283A 1992-01-14 1993-02-15 Infrared image pickup device Pending JPH0651921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5025283A JPH0651921A (en) 1992-01-14 1993-02-15 Infrared image pickup device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4024751A JPH08276623A (en) 1992-01-14 1992-01-14 Printing data processor of printer
JP4-24751 1992-01-14
JP5025283A JPH0651921A (en) 1992-01-14 1993-02-15 Infrared image pickup device

Publications (1)

Publication Number Publication Date
JPH0651921A true JPH0651921A (en) 1994-02-25

Family

ID=26362329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5025283A Pending JPH0651921A (en) 1992-01-14 1993-02-15 Infrared image pickup device

Country Status (1)

Country Link
JP (1) JPH0651921A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002024818A (en) * 2000-07-12 2002-01-25 National Institute Of Advanced Industrial & Technology Separation method of diffused and mirror reflected component
JP2007322374A (en) * 2006-06-05 2007-12-13 Mitsubishi Electric Corp Infrared target selector
WO2008136186A1 (en) 2007-05-01 2008-11-13 Shima Seiki Mfg., Ltd. Knitting method for tubular knitted fabric and tubular knitted fabric
JP2011082855A (en) * 2009-10-08 2011-04-21 Hoya Corp Imaging apparatus
JP2011082856A (en) * 2009-10-08 2011-04-21 Hoya Corp Imaging apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002024818A (en) * 2000-07-12 2002-01-25 National Institute Of Advanced Industrial & Technology Separation method of diffused and mirror reflected component
JP2007322374A (en) * 2006-06-05 2007-12-13 Mitsubishi Electric Corp Infrared target selector
WO2008136186A1 (en) 2007-05-01 2008-11-13 Shima Seiki Mfg., Ltd. Knitting method for tubular knitted fabric and tubular knitted fabric
JP2011082855A (en) * 2009-10-08 2011-04-21 Hoya Corp Imaging apparatus
JP2011082856A (en) * 2009-10-08 2011-04-21 Hoya Corp Imaging apparatus

Similar Documents

Publication Publication Date Title
JP5468676B2 (en) Image capture device and method
EP1966995B1 (en) Automatic polarizer for cctv applications
CN106796293A (en) Linear model calculates sensing LADAR
JP2001154097A (en) Imaging device capable of taking scenery image with different image resolutions
JPH1169209A (en) Image-pickup device
JPH0651921A (en) Infrared image pickup device
FR2947132A1 (en) Scene e.g. extended scene, imaging method for panoramic image field, involves compensating continuous rotation of imaging apparatus for image taking time by oscillation of image reflexion unit in front of optical axis
FR2595151A1 (en) OPTICAL SCANNING APPARATUS
CN107870415A (en) Panoramic scanning device
CN206077558U (en) Panoramic scanning monitoring system
CN206411336U (en) Panoramic scanning bogey
CN206411335U (en) Panoramic scanning device
EP0657019B1 (en) Wide-field high-resolution camera device for aircraft
CN107870414A (en) Panoramic scanning bogey
JPH0585170U (en) Infrared imaging device
JPH0510825A (en) Disaster detecting device with thermal image detecting means
JPH0969985A (en) Spatial frequency limiter device and image pickup device using same
JPH0748812B2 (en) Surveillance camera device
JPH0534534U (en) Infrared imaging device
JPH01184410A (en) Scan type image pickup device
FR2709631A1 (en) Panoramic imaging method for surveillance and identification, incorporating a scanning camera and operating system
CN2479527Y (en) Scanning apparatus for medical infrared thermal imaging diagnostic system
FR2566143A1 (en) METHOD AND CIRCUIT FOR PROCESSING THE SIGNALS OF A SENSOR FROM THE EARTH HORIZON IN AN EARTH SATELLITE
CN107872615A (en) Panoramic scanning monitoring system
CN206178144U (en) Scanning formula photoelectricity radar