JPH0651896B2 - Heat and wear resistant aluminum alloy - Google Patents

Heat and wear resistant aluminum alloy

Info

Publication number
JPH0651896B2
JPH0651896B2 JP60167968A JP16796885A JPH0651896B2 JP H0651896 B2 JPH0651896 B2 JP H0651896B2 JP 60167968 A JP60167968 A JP 60167968A JP 16796885 A JP16796885 A JP 16796885A JP H0651896 B2 JPH0651896 B2 JP H0651896B2
Authority
JP
Japan
Prior art keywords
alloy
aluminum alloy
alloys
toughness
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60167968A
Other languages
Japanese (ja)
Other versions
JPS6227541A (en
Inventor
雄介 小谷
農士 黒石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ARUMINIUMU FUNMATSU YAKIN GIJUTSU KENKYU KUMIAI
Original Assignee
ARUMINIUMU FUNMATSU YAKIN GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ARUMINIUMU FUNMATSU YAKIN GIJUTSU KENKYU KUMIAI filed Critical ARUMINIUMU FUNMATSU YAKIN GIJUTSU KENKYU KUMIAI
Priority to JP60167968A priority Critical patent/JPH0651896B2/en
Publication of JPS6227541A publication Critical patent/JPS6227541A/en
Publication of JPH0651896B2 publication Critical patent/JPH0651896B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は自動車、航空機等に使用する耐熱耐摩耗性アル
ミニウム合金に関する。
TECHNICAL FIELD The present invention relates to a heat resistant and wear resistant aluminum alloy used in automobiles, aircrafts and the like.

従来の技術及び発明が解決しようとする問題点 耐熱耐摩耗性合金として、Al-Si系のAC8A,AC8B,AC9A等
の合金が開発されているが、これらの合金は耐熱性の面
で十分満足のいくものでない。最近ではさらに耐熱性を
改善したAl-Si-Fe及びAl-Si-Ni系合金が粉末冶金技術に
よって開発されている。しかし、Al-Si-Fe系合金は耐熱
性は高いが伸び、靱性が劣る。一方Al-Si-Ni系合金にお
いては、伸び、靱性はAl-Si-Fe系より優れているが耐熱
性の点で劣る。本発明はAl-Si-Fe系合金及びAl-Fe-Ni系
合金のFe及びNiの一部をNi及びFeによって置き換えるこ
とにより、Al-Si-Fe系合金の耐熱性を大きく損なわずに
伸びを向上し、又Al-Si-Ni系合金の伸びを大きく損なう
ことなく耐熱性を向上し、かつ靱性を改善することがで
きることを思い出した。
Problems to be solved by conventional techniques and inventionsAl-Si based alloys such as AC8A, AC8B, AC9A have been developed as heat and wear resistant alloys, but these alloys are sufficiently satisfactory in terms of heat resistance. It's not cheap. Recently, Al-Si-Fe and Al-Si-Ni alloys with further improved heat resistance have been developed by powder metallurgy technology. However, although Al-Si-Fe alloys have high heat resistance, they are elongated and inferior in toughness. On the other hand, Al-Si-Ni alloys are superior in elongation and toughness to Al-Si-Fe alloys, but inferior in heat resistance. The present invention replaces a part of Fe and Ni of Al-Si-Fe alloys and Al-Fe-Ni alloys with Ni and Fe, so that the heat resistance of Al-Si-Fe alloys is not significantly impaired and the elongation is improved. It was recalled that the heat resistance and the toughness can be improved without significantly decreasing the elongation of Al-Si-Ni alloys.

近年、自動車用エンジンおよび航空機等の材料は、省エ
ネルギー・高性能化の必要から小型軽量化、高出力化が
図られ、それに伴ってピストン等に使用される材料は、
従来よりも高荷重・高温度の厳しい条件での使用に耐え
ることができる高い耐熱耐摩耗性が要求されている。
In recent years, materials for automobile engines and aircraft have been made smaller and lighter and have higher output because of the need for energy saving and higher performance, and accordingly, the materials used for pistons and the like are
It is required to have high heat resistance and wear resistance that can withstand use under severe conditions of higher load and higher temperature than before.

自動車用ピストンを例にとれば、従来のピストン用Al合
金は、AC8BといったAl-Si系の鋳造材が用いられてい
る。しかし鋳造法では、さらに耐摩耗性、耐熱性を改善
する為に多量のSiやFe,Ni等を添加すると、元素の偏析
や初晶の粗大化等により強度、伸び、靱性等の特性が著
しく低下し、要求特性を十分に満たすことができない。
従って近年、急冷高Si含有アルミニウム合金粉を出発原
料として用い熱間押出法等によって無気孔の均一微細結
晶粒の耐熱耐摩耗アルミニウム合金材料の開発が開始さ
れている。このようにして作られた合金は、急冷凝固の
効果による固溶限の拡大によって多量のSiやFe及びNi等
の元素を固溶しており、鋳造材にみられるような粗大な
析出物、偏析物はほとんど生じない。
Taking automotive pistons as an example, Al-Si casting materials such as AC8B are used as conventional piston Al alloys. However, in the casting method, if a large amount of Si, Fe, Ni, etc. is added in order to further improve wear resistance and heat resistance, the properties such as strength, elongation and toughness are remarkably increased due to element segregation and coarsening of primary crystals. And the required characteristics cannot be sufficiently satisfied.
Therefore, in recent years, development of a heat-resistant and wear-resistant aluminum alloy material having non-porous uniform fine crystal grains has been started by a hot extrusion method or the like using a rapidly cooled high Si content aluminum alloy powder as a starting material. The alloy produced in this way is a solid solution of a large amount of elements such as Si, Fe and Ni due to the expansion of the solid solution limit by the effect of rapid solidification, and coarse precipitates such as those found in cast materials, Segregation hardly occurs.

しかしながら、急冷粉末を用いる場合には、緻密化のた
めの成形時の加熱による粒成長等の問題もあり、おのず
と製造方法に限界がある。例えば、急冷粉末冶金法によ
って製造した耐熱耐摩合金で主として20〜30重量%のSi
と2〜10重量%のFe,Ni等の遷移元素を含む高合金化ア
ルミニウム合金は、急冷凝固粉末を熱間押出することに
より製造するが、こうして得られたアルミニウム合金は
耐熱耐摩耗性は改善されるが、伸び、靱性が著しく低下
する。
However, when the quenched powder is used, there are problems such as grain growth due to heating at the time of molding for densification, which naturally limits the manufacturing method. For example, a heat-resistant and wear-resistant alloy produced by quenching powder metallurgy mainly contains 20 to 30% by weight of Si.
Highly alloyed aluminum alloys containing 2-10% by weight of transition elements such as Fe and Ni are produced by hot extrusion of rapidly solidified powder. The aluminum alloys thus obtained have improved heat and wear resistance. However, the elongation and toughness are significantly reduced.

この原因は熱間押出中に生じる初晶析出物や、金属間化
合物である。この低い伸び及び靱性のため、急冷粉末冶
金法によって製造した高合金化アルミニウム合金の用途
は限られてしまう。
The cause of this is an intermetallic compound or a primary crystal precipitate generated during hot extrusion. This low elongation and toughness limits the applications of the highly alloyed aluminum alloys produced by quench powder metallurgy.

問題点を解決するための手段 本発明はAl,Si及びFe,Niの遷移元素からなる、高合金化
アルミニウム合金の靱性及び伸びを改善するためになさ
れたものであり、合金中に含まれるFe,Niの遷移元素を
適度の割合で含有せしめることにより、従来のAl-Si-Fe
またはAl-Si-Ni合金等主として3元素よりなる高合金化
アルミニウム合金の耐熱耐摩耗性又は伸びを大きく低下
させることなく靱性を向上させることを目的とするもの
である。
Means for Solving the Problems The present invention has been made to improve the toughness and elongation of a highly alloyed aluminum alloy composed of transition elements of Al, Si and Fe, Ni, and Fe contained in the alloy. By including the transition elements Ni and Ni in appropriate proportions, the conventional Al-Si-Fe
Another object is to improve the toughness of the highly alloyed aluminum alloy mainly composed of three elements such as Al-Si-Ni alloy without significantly reducing the heat resistance and wear resistance or the elongation.

本発明のアルミニウム合金の主要添加元素としては耐摩
耗性の改善に効果的であるSiと耐熱性の改善に有効であ
るFe及びNiである。Al中にSiを多量に添加すると凝固時
に初晶Si粒子として析出し、合金の耐摩耗性が向上す
る。初晶Si粒子の大きさ及び量は、合金の凝固速度、Si
添加量に大きく依存し、凝固速度が速いとSi初晶粒子は
小さくなるがSi量が多くなるに従い粗大となる。この限
界として、40%とする。Si量がこれ以上になると初晶Si
粒子が粗大となりこの為合金速度が著しく低下する。又
5%以下となると耐摩耗性の改善効果が非常に小さく、
耐摩耗性材料として利用し難い。
The main additive elements of the aluminum alloy of the present invention are Si which is effective in improving wear resistance and Fe and Ni which are effective in improving heat resistance. When a large amount of Si is added to Al, it precipitates as primary crystal Si particles during solidification, and the wear resistance of the alloy is improved. The size and amount of primary Si particles depend on the solidification rate of the alloy, Si
When the solidification rate is high, the Si primary crystal grains become small, but they become coarse as the Si amount increases, depending on the addition amount. The limit is 40%. When the amount of Si exceeds this, primary crystal Si
The particles become coarse, which causes the alloy speed to decrease significantly. If it is less than 5%, the effect of improving wear resistance is very small,
Hard to use as a wear resistant material.

Fe及びNiはアルミ合金の耐熱性を改善するがその効果は
Feの方が大きい。しかし、Niに比べ伸び及び靱性は低
い。このAl-Si-Fe及びAl-Si-Ni合金のFe及びNiの一部を
Ni及びFeにより置き換えることにより元の合金に比べ良
好な特性を有する合金が得られる。すなわち、Al-Si-Fe
-Ni合金はAl-Si-Fe合金に比べ耐熱性はやや低下するも
のの伸びが改善され、Al-Si-Ni合金に比べては伸びがや
や低下するものの耐熱性が向上する。特に注目すべきは
靱性に関してAl-Si-Fe,Al-Si-Niのどちらよりも高くな
ることである。この理由は次のように考えられる。Fe,N
iともにAlへの固溶限は0.04重量%と非常に小さいが急
冷凝固することにより固溶限は拡大され最高固溶範囲は
Feで4〜12重量%、Niで3〜15重量%と報告されてい
る。Al中に添加されたFeまたはNiのうち急冷により拡大
された固溶限を越える過飽和分は化合物等の析出物とし
て析出し、これは合金の靱性を著しく低下する。しか
し、Feの一部をNiで、またNiの一部をFeで置き換えてや
ることにより各元素の過飽和度を小さくすることができ
析出物は微細で均一なものとなる。この為靱性は大きく
改善されると考えられる。ここではFe,Niのみについて
示しているが、他の元素との組み合わせについても同様
の考え方が適用できるため元素置き換えによる靱性の改
善効果が期待できる。このAl-Si-Fe-Ni合金がAl-Si-Ni
合金とほぼ同じ靱性値を示すFe:Ni比の範囲が1:4〜
4:1である。最も好ましくはFe:Niが1:1である。
Fe+Niの量が12%以上になると靱性、伸びともに著しく
小さくなるためFe+Niの量は12%以下とする。またFe+Ni
量が2%以下となると耐熱性の改善効果がほとんどなく
なる為Fe+Ni量は2%以上とする。
Fe and Ni improve the heat resistance of aluminum alloys, but the effect is
Fe is larger. However, it has lower elongation and toughness than Ni. Part of Fe and Ni of this Al-Si-Fe and Al-Si-Ni alloy
By replacing with Ni and Fe, an alloy having better characteristics than the original alloy can be obtained. That is, Al-Si-Fe
-Ni alloy has slightly lower heat resistance than Al-Si-Fe alloy but improved elongation, and slightly higher elongation than Al-Si-Ni alloy, but improved heat resistance. Of particular note is that the toughness is higher than either Al-Si-Fe or Al-Si-Ni. The reason for this is considered as follows. Fe, N
In both cases, the solid solution limit to Al is very small, 0.04% by weight, but the solid solution limit is expanded by rapid solidification, and the maximum solid solution range is
It is reported that Fe is 4 to 12% by weight and Ni is 3 to 15% by weight. Of Fe or Ni added to Al, the supersaturated content that exceeds the solid solubility limit expanded by quenching is precipitated as a precipitate of a compound or the like, which significantly reduces the toughness of the alloy. However, by substituting a part of Fe with Ni and a part of Ni with Fe, the supersaturation degree of each element can be reduced, and the precipitate becomes fine and uniform. Therefore, it is considered that the toughness is greatly improved. Although only Fe and Ni are shown here, the same idea can be applied to the combination with other elements, so that the effect of improving toughness by element replacement can be expected. This Al-Si-Fe-Ni alloy is Al-Si-Ni
Fe: Ni ratio that shows almost the same toughness value as the alloy ranges from 1: 4
It is 4: 1. Most preferably, Fe: Ni is 1: 1.
If the amount of Fe + Ni is 12% or more, the toughness and elongation are significantly reduced, so the amount of Fe + Ni is 12% or less. Also Fe + Ni
If the amount is 2% or less, the effect of improving heat resistance is almost lost, so the amount of Fe + Ni is set to 2% or more.

上記のようにSi,Fe,Niを多量に含むAl合金を従来からの
溶解、鋳造法により製造する場合、凝固速度が遅い(1
℃/sec以下)為、Si初晶や金属間化合物が粗大化し、
材料強度は著しく低下する。粗大な析出物を押える方法
としては急冷凝固法やホットトップ法があるが、ホット
トップ法では元素添加量の限界が低い。急冷法において
は、100℃/sec以上の凝固速度で急冷すると本特許請求
の範囲に示す元素添加量の範囲においては析出物の大き
さは最大50μm程度となり、大きく材料特性を低下させ
る原因とはならない。このような凝固速度を得るにはア
トマイズ法等により合金を溶湯状態から粉末にすること
により容易に達成できる。粉末の成形性または凝固速度
の点から考えて、使用に適する粉末の粒度は40メッシュ
以下が適する。これらの高合金粉末は粉末粒子自体の硬
度が高い為、合金とするには熱間押出のような強い塑性
加工を与えることが必要である。
When an Al alloy containing a large amount of Si, Fe, and Ni as described above is manufactured by the conventional melting and casting methods, the solidification rate is slow (1
℃ / sec or less), Si primary crystals and intermetallic compounds become coarse,
Material strength is significantly reduced. As a method for suppressing coarse precipitates, there are a rapid solidification method and a hot top method, but the hot top method has a low limit of the amount of elements added. In the quenching method, when the material is rapidly cooled at a solidification rate of 100 ° C./sec or more, the size of the precipitates becomes about 50 μm at maximum in the range of the element addition amount shown in the scope of the present claims, which causes the material properties to be greatly deteriorated I won't. Such a solidification rate can be easily achieved by converting the molten alloy into powder by an atomizing method or the like. Considering the formability or solidification rate of the powder, the particle size of the powder suitable for use is 40 mesh or less. Since these high alloy powders have high hardness of the powder particles themselves, it is necessary to give strong plastic working such as hot extrusion to form an alloy.

実施例 99.0%以上の純度をもつアルミニウム合金にSi,Fe,及
びNiを第1表に示す組成となるように調整したAl-Si-Fe
-Ni系合金粉末をエアーアトマイズ法により製造し、こ
れらの粉末を450℃の温度にて熱間押出を行うことによ
って合金とした。これらの材料特性について第1表に示
す。比較のため同じ方法により製造したAl-Si-Fe,及びA
l-Si-Ni系合金についても調査した。表よりわかるよう
にAl-Si-Fe-Ni系合金は、Al-Si-Fe系合金に比べ衝撃
値、伸びがすぐれている。またAl-Si-Ni系合金に比べ強
度、靱性が改善されている。
Example 9 Al-Si-Fe prepared by adjusting the composition of an aluminum alloy having a purity of 99.0% or more to have Si, Fe, and Ni as shown in Table 1.
-Ni-based alloy powder was produced by the air atomization method, and these powders were hot extruded at a temperature of 450 ° C to obtain an alloy. The material properties are shown in Table 1. Al-Si-Fe and A produced by the same method for comparison
We also investigated l-Si-Ni alloys. As can be seen from the table, the Al-Si-Fe-Ni alloy has superior impact value and elongation compared to the Al-Si-Fe alloy. It also has improved strength and toughness compared to Al-Si-Ni alloys.

発明の効果 上述の如く本発明のアルミニウム合金は、従来のAl-Si-
Fe系合金の靱性と伸びを又Al-Si-Ni系合金の靱性と強度
を改善したものであり、従来靱性を必要とする耐熱、耐
摩耗部品である自動車等のエンジン部品、コンロッド、
ピストンまたはコンプレッサー部品のベーン等に使用が
可能となる。
EFFECTS OF THE INVENTION As described above, the aluminum alloy of the present invention is a conventional Al-Si-
The toughness and elongation of Fe-based alloys and the toughness and strength of Al-Si-Ni-based alloys have been improved. Engine parts such as automobiles, connecting rods, etc.
It can be used as a vane for pistons or compressor parts.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Si,Fe及びNiを含むアルミニウム合
金においてSi元素が5.1重量%から40重量%であり、
かつFe及びNi元素が(Fe+Ni)で2〜12重量
%、同時にFe:Niの比が1:4から4:1の割合で
あり、残部が実質的にアルミニウムよりなり、かつまた
初晶Si、金属間化合物の粒径が50μm以下であること
を特徴とする粉末冶金製Al−Si−Fe−Ni系耐熱
耐摩耗性アルミニウム合金。
1. An aluminum alloy containing Si, Fe and Ni, wherein the Si element is 5.1% by weight to 40% by weight,
And Fe and Ni elements are (Fe + Ni) 2 to 12% by weight, the ratio of Fe: Ni is 1: 4 to 4: 1 at the same time, the balance is substantially aluminum, and primary crystal Si, A powder metallurgical Al-Si-Fe-Ni-based heat- and wear-resistant aluminum alloy, characterized in that the intermetallic compound has a particle size of 50 µm or less.
JP60167968A 1985-07-29 1985-07-29 Heat and wear resistant aluminum alloy Expired - Lifetime JPH0651896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60167968A JPH0651896B2 (en) 1985-07-29 1985-07-29 Heat and wear resistant aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60167968A JPH0651896B2 (en) 1985-07-29 1985-07-29 Heat and wear resistant aluminum alloy

Publications (2)

Publication Number Publication Date
JPS6227541A JPS6227541A (en) 1987-02-05
JPH0651896B2 true JPH0651896B2 (en) 1994-07-06

Family

ID=15859370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60167968A Expired - Lifetime JPH0651896B2 (en) 1985-07-29 1985-07-29 Heat and wear resistant aluminum alloy

Country Status (1)

Country Link
JP (1) JPH0651896B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913041A (en) * 1982-07-12 1984-01-23 Showa Denko Kk Aluminum alloy powder having high resistance to heat and abrasion and high strength and molding of said alloy powder and its production
FR2577941B1 (en) * 1985-02-27 1991-02-08 Pechiney AMORPHOUS AL-BASED ALLOYS CONTAINING ESSENTIALLY NI AND / OR FE AND SI AND PROCESS FOR OBTAINING SAME

Also Published As

Publication number Publication date
JPS6227541A (en) 1987-02-05

Similar Documents

Publication Publication Date Title
US4818308A (en) Aluminum alloy and method for producing the same
JPS6050138A (en) Heat- and wear-resistant high-strength aluminum alloy member of hard particle dispersion type and its production
JP3448990B2 (en) Die-cast products with excellent high-temperature strength and toughness
JPH02500289A (en) Chromium-containing aluminum alloy produced by rapid solidification route
JP3430684B2 (en) Die-cast internal combustion engine parts excellent in high-temperature strength, wear resistance and vibration damping properties, and a method for manufacturing the same
JPH08104937A (en) Aluminum alloy for internal combustion engine piston excellent in high temperature strength and its production
JPS6338541B2 (en)
JPH0474402B2 (en)
CN113897520A (en) High-strength heat-resistant cast aluminum-silicon alloy for engine piston
JPH0610086A (en) Wear resistant aluminum alloy and working method therefor
JPS6283444A (en) Heat and wear resistant aluminum alloy
JPH10226840A (en) Aluminum alloy for piston
JP3223619B2 (en) High heat and high wear resistant aluminum alloy, high heat and high wear resistant aluminum alloy powder and method for producing the same
JPH0261023A (en) Heat-resistant and wear-resistant aluminum alloy material and its manufacture
JPH0651896B2 (en) Heat and wear resistant aluminum alloy
JP2711296B2 (en) Heat resistant aluminum alloy
JP3355673B2 (en) Heat-resistant aluminum alloy and method for producing the same
JP3291551B2 (en) Sintered aluminum alloy with excellent strength and wear resistance
JPH0261021A (en) Heat-resistant and wear-resistant aluminum alloy material and its manufacture
JPS6311641A (en) Aluminum alloy excellent in heat resistance and wear resistance
JP2787703B2 (en) A-l-Si alloy powder forged member with extremely low coefficient of thermal expansion
JPH01159345A (en) Heat-resistant and wear-resistant aluminum alloy powder molded body and its manufacture
JPH06172903A (en) Aluminum matrix composite with high heat resistance and high wear resistance
JP3043375B2 (en) Aluminum alloy piston for internal combustion engine
JPS62149840A (en) High strength, heat and wear resistant al alloy