JPH0651050A - Moving body attitude and three-dimensional position measuring device - Google Patents

Moving body attitude and three-dimensional position measuring device

Info

Publication number
JPH0651050A
JPH0651050A JP4202330A JP20233092A JPH0651050A JP H0651050 A JPH0651050 A JP H0651050A JP 4202330 A JP4202330 A JP 4202330A JP 20233092 A JP20233092 A JP 20233092A JP H0651050 A JPH0651050 A JP H0651050A
Authority
JP
Japan
Prior art keywords
moving body
laser light
signal
dimensional position
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4202330A
Other languages
Japanese (ja)
Other versions
JP3107651B2 (en
Inventor
Yasuhiro Nakahara
康博 中原
Tetsuya Ishii
徹哉 石井
Makoto Hirano
信 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP04202330A priority Critical patent/JP3107651B2/en
Publication of JPH0651050A publication Critical patent/JPH0651050A/en
Application granted granted Critical
Publication of JP3107651B2 publication Critical patent/JP3107651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Navigation (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To provide a measuring device for the six degree-of-freedom attitude and three-dimensional position of a moving body at each point of time which travels on an ungraded surface of ground. CONSTITUTION:A moving body attitude/three-dimensional position measuring device concerned includes a laser beam transmitting device 11 installed at one reference point and revolving at a constant angular velocity omega and a non- directional signal transmitting device 13. On each moving body 12 are furnished a non-directional signal receiving antenna 15a and at least three line-form photo- sensors 16, 17, 18 arranged upon a vertically traveling table 20, and a CPU calculates the three pieces of coordinates information and three pieces of attitude information about the moving body 12 on the basis of the fed laser beam 19 receiving time signal and the receiving position signal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、移動体の姿勢及び3
次元位置を測定するための装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a device for measuring dimensional position.

【0002】[0002]

【従来の技術】従来、例えば走行車両や船舶もしくは特
殊な飛翔体等の移動体の姿勢及びその3次元位置を測定
するための方法の提案が特願平4−66942号により
開示されている。この提案においては、一基準点より発
する旋回レーザ光を少なくとも3個のライン形センサで
受光して得られる受光時刻情報と、これら各光センサか
らの出力により求められる光センサ上の受光位置情報か
ら移動体の姿勢及び3次元位置を測定するものであっ
た。
2. Description of the Related Art Conventionally, Japanese Patent Application No. 4-66942 discloses a method for measuring the posture and the three-dimensional position of a moving body such as a traveling vehicle, a ship or a special flying body. In this proposal, from the light receiving time information obtained by receiving the turning laser light emitted from one reference point by at least three line type sensors, and the light receiving position information on the optical sensor obtained by the output from each of these light sensors. The posture and the three-dimensional position of the moving body were measured.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来提案にあっては、その上を移動体が移動する表面が例
えば不整地や波浪の高い海面等で凸凹や勾配等が比較的
大きい場合など、前記旋回レーザ光がライン形光センサ
の受光部から外れた時には、移動体の姿勢や3次元位置
の測定は不可能となる。
However, in the above-mentioned conventional proposals, when the surface on which the moving body moves is rough, such as rough terrain or sea surface with high waves, etc. When the turning laser light comes out of the light receiving portion of the line type optical sensor, it becomes impossible to measure the posture and the three-dimensional position of the moving body.

【0004】この発明は、以上のような問題点にかんが
みてなされたもので、その上を移動体が移動する地面等
が比較的大きい起伏や勾配等を有する場合でも、前記測
定を可能とするこの種の測定装置の提供を目的としてい
る。
The present invention has been made in view of the above problems, and enables the measurement even when the ground or the like on which the moving body moves has a relatively large undulation or slope. The purpose is to provide a measuring device of this kind.

【0005】[0005]

【課題を解決するための手段】このため、この発明にお
いては、この種の移動体の姿勢及び3次元位置測定装置
を、一基準点に設置され、実質的に一定の旋回角速度で
レーザ光を発信するためのレーザ発信手段と、そのレー
ザ光が特定の方向に発信させたとき無指向性信号を出力
するための信号発信手段と、測定すべき移動体上に装着
され、前記レーザ光照射位置と照射時刻の情報を含む信
号を出力するための少なくとも3個の光センサと、前記
無指向性信号を受信するための受信手段と、前記光セン
サからの出力より、各光センサ上の受光位置を求めるた
めの信号処理手段と、前記各光センサのレーザ光受光時
刻と前記無指向性信号の受信時刻との差を測定するため
の少なくとも3個の計時手段と、その計時情報と、レー
ザ受光位置情報から前記移動体の姿勢及び3次元位置を
算出するための演算手段と、前記各センサを特定の位置
に配設するためのテーブルと、このテーブルを必要距離
だけ上下動させるための駆動機構と、前記各光センサの
内の1個の出力より前記レーザ光がこれらセンサから外
れないよう駆動機構を制御するための制御手段と、前記
テーブルの基準位置からの高さを検出するための検出手
段を備えるよう構成することにより前記目的を達成使用
とするものである。
Therefore, in the present invention, this type of posture and three-dimensional position measuring device for a moving body is installed at one reference point, and laser light is emitted at a substantially constant angular velocity of rotation. Laser emitting means for transmitting, signal transmitting means for outputting an omnidirectional signal when the laser light is emitted in a specific direction, and the laser light irradiation position mounted on the moving body to be measured. And at least three photosensors for outputting signals including information on irradiation time, receiving means for receiving the omnidirectional signal, and a light receiving position on each photosensor based on the output from the photosensors. Signal processing means for obtaining the difference, at least three time measuring means for measuring the difference between the laser light reception time of each of the optical sensors and the reception time of the omnidirectional signal, the time measurement information, and the laser light reception. Location information Calculating means for calculating the posture and three-dimensional position of the moving body; a table for arranging the sensors at specific positions; a drive mechanism for moving the table up and down by a required distance; Control means for controlling the drive mechanism so that the laser light does not deviate from these sensors from one output of each optical sensor, and detection means for detecting the height of the table from the reference position. The above-mentioned object is achieved and used by such a constitution.

【0006】[0006]

【作用】以上のような本発明構成により、移動体の6自
由度の姿勢や3次元位置を測定することができる。ま
た、ヘディング角,ピッチング角,ローリング角等の姿
勢情報が不要の場合にも、その姿勢とは無関係に各時点
の位置を正確に求めることができるため、凹凸のある面
上を移動するときの位置認識用に最適である。また、前
記上下動テーブルの高さを、前記各光センサの中心で旋
回レーザ光を受光できるよう制御しているため、凸凹や
勾配の比較的大きい移動面でも、前記測定が可能であ
る。
With the configuration of the present invention as described above, the posture and the three-dimensional position of the moving body in six degrees of freedom can be measured. Further, even when the posture information such as the heading angle, the pitching angle, and the rolling angle is unnecessary, the position at each time point can be accurately obtained regardless of the posture, and therefore, when moving on an uneven surface. Best for position recognition. Further, since the height of the vertical movement table is controlled so that the turning laser light can be received at the center of each optical sensor, the measurement can be performed even on a moving surface having unevenness or a relatively large gradient.

【0007】[0007]

【実施例】以下に、この発明を実施例に基づいて説明す
る。図1にこの発明に係るこの種の計測システムの一実
施例の概要説明図を示す。この図は、後述するレーザ光
旋回面に平行な方向から視た図である。
EXAMPLES The present invention will be described below based on examples. FIG. 1 is a schematic explanatory view of an embodiment of this type of measuring system according to the present invention. This figure is a view as seen from a direction parallel to the laser light turning plane described later.

【0008】(構成)12は、不整地面G上を移動する
不整地走行車両等の移動体、11は、地上Gの一測定基
準点に配設された実質的に一定の角速度ωで一平面上を
旋回するレーザ光19を発信するためのレーザ発信装
置、14は、ある基準方向を指向して配設された光セン
サ、13はレーザ光19がある方向を指向してこれを横
切ったとき光センサ14により無指向性の無線信号を発
生するための信号発生装置、13aはその発信用アンテ
ナである。
(Structure) 12 is a moving body such as a vehicle traveling on an uneven ground G or the like, and 11 is a plane at a substantially constant angular velocity ω disposed at one measurement reference point on the ground G. A laser emitting device for emitting a laser beam 19 that swirls above, 14 is an optical sensor arranged in a certain reference direction, and 13 is a laser beam 19 in a certain direction and crosses the same. A signal generator for generating an omnidirectional radio signal by the optical sensor 14, and 13a is its transmitting antenna.

【0009】一方、移動体12上には、前記無指向性信
号を受信するための受信機(不図示)と、そのセンサと
してのアンテナ15aを備え、また、移動体12の上面
には、これと平行な上下動テーブル20が設けられ、そ
の上面に垂直に少なくとも3個のライン形センサ16,
17,18が互いに一直線上とならないような位置関係
に配設されて、それぞれレーザ光19の受光時刻(t
0 ,t1 ,t2 )と受光位置(ζ'0,ζ'1,ζ'2)の情
報を出力し得るよう、図2にその測定系及び信号処理回
路のブロック図を示すように、それぞれの光センサ1
6,17,18に対して各信号処理回路35,36,3
7、計時手段としての各タイマ42,43,44、演算
手段としてのCPU51等を備えている。
On the other hand, a receiver (not shown) for receiving the omnidirectional signal and an antenna 15a as a sensor for the receiver are provided on the moving body 12, and the receiver is provided on the upper surface of the moving body 12. And a vertical movement table 20 parallel to the vertical movement table 20.
17 and 18 are arranged in such a positional relationship that they are not aligned with each other, and the reception time (t
0 , t 1 , t 2 ) and the light receiving position (ζ ′ 0 , ζ ′ 1 , ζ ′ 2 ) information can be output, as shown in the block diagram of the measurement system and the signal processing circuit in FIG. Each optical sensor 1
Signal processing circuits 35, 36, 3 for 6, 17, 18
7, each timer 42, 43, 44 as a time measuring means, a CPU 51 as a calculating means, and the like.

【0010】また、図3に上下動テーブル20を必要な
距離だけ上下動させるための駆動機構の垂直断面図を示
す。上下動テーブル20は、ボールねじみぞを備えた垂
直軸23により支持されており、正逆転可能なモータ2
1により、歯車29を介してスリーブ24が回転し、こ
のスリーブ24とボールねじ機構で連結されて軸23が
それぞれ上/下に変位し得る。32,33は、上下動テ
ーブル20が、スリーブ24と共に回転することを防止
するための各回り止め軸である。また、22は、このテ
ーブル20の基準位置からの上/下移動量Zの検出機を
示す。
Further, FIG. 3 shows a vertical sectional view of a drive mechanism for vertically moving the vertically movable table 20 by a required distance. The up-and-down moving table 20 is supported by a vertical shaft 23 having a ball screw groove, and the motor 2 is capable of forward and reverse rotation.
1, the sleeve 24 rotates via the gear 29, and the shaft 24 can be displaced upward / downward by being connected to the sleeve 24 by a ball screw mechanism. Reference numerals 32 and 33 are detent shafts for preventing the vertical movement table 20 from rotating together with the sleeve 24. Reference numeral 22 denotes a detector for detecting the amount of upward / downward movement Z of the table 20 from the reference position.

【0011】前記各ライン形センサ16,17,18と
しては、光位置検出素子(PSD)や光センサアレイ等
が挙げられ、また上下動テーブル20移動量検出機22
は、その基準位置からの移動情報を含む信号を出力し得
るよう構成され、この検出手段としては、モータ21の
回転角度を測定するためのロータリ・エンコーダ等が挙
げられる。
As each of the line type sensors 16, 17 and 18, an optical position detecting element (PSD), an optical sensor array, etc. may be mentioned, and a vertical movement table 20 and a movement amount detector 22.
Is configured so as to be able to output a signal including movement information from the reference position, and the detecting means may be a rotary encoder for measuring the rotation angle of the motor 21.

【0012】(動作)つぎに、図1〜図3ならびに、図
2の信号処理装置からの出力信号波形図の一例を示す図
4を参照して動作説明する。各ライン形光センサ16,
17,18に順次入射された旋回レーザ光19は、それ
ぞれの信号処理回路35,36,37を通って各受光時
刻信号39,40,41と、各ラインセンサ上での受光
信号位置信号45,46,47に変換される。一方、ア
ンテナ13aからの無指向性の無線入号は、アンテナ1
5aで受信されて処理回路34に入力されると、直ちに
パルス信号38を発生する。各受光時刻信号39,4
0,41と、このパルス信号38との各時間間隔t0
1 ,t2 は、それぞれ計時手段としての各タイマ4
2,43,44で、計測されてそれぞれディジタル信号
に変換される。
(Operation) Next, an operation will be described with reference to FIGS. 1 to 3 and FIG. 4 showing an example of a waveform diagram of an output signal from the signal processing device of FIG. Each line type optical sensor 16,
The orbiting laser light 19 sequentially incident on 17, 18 passes through the respective signal processing circuits 35, 36, 37 and each light reception time signal 39, 40, 41 and the light reception signal position signal 45 on each line sensor. Converted to 46, 47. On the other hand, the omnidirectional wireless entry from the antenna 13a is
When it is received at 5a and input to the processing circuit 34, the pulse signal 38 is immediately generated. Each light reception time signal 39, 4
0 , 41 and each time interval t 0 between this pulse signal 38,
Each of t 1 and t 2 is a timer 4 as a time measuring means.
At 2, 43 and 44, they are measured and converted into digital signals.

【0013】一方、レーザ光受光位置情報45,46,
47は、各信号処理回路35,36,37において、各
受光位置ζ'0,ζ'1,ζ'2にそれぞれ比例した電圧に変
換され、それぞれA/D変換器48,49,50により
ディジタル信号に変換される。また、ライン形光センサ
16からの受光位置信号45は、上下動テーブル20の
高さ(移動量Z)を、旋回レーザ光19が光センサ16
のほぼ中心に入射するように駆動制御するためにも利用
されており、制御回路52により上下動テーブル20の
移動量Zが決定され、モータドライバ53に指令してモ
ータ21を駆動制御し、エンコーダ22からカウンタ5
4により、上下動テーブル20の移動量を計測する。こ
れらの7つのディジタル信号は、CPU51で演算/処
理されて、移動体12の3つの座標情報(r,θ,z)
と、3つの姿勢情報、すなわち、ヘディング角,ピッチ
ング角,ローリング角(φ,σ,ρ)に変換される。
On the other hand, laser light receiving position information 45, 46,
47 is converted into a voltage proportional to each of the light receiving positions ζ ′ 0 , ζ ′ 1 , ζ ′ 2 in each of the signal processing circuits 35, 36 and 37, and digitalized by the A / D converters 48, 49 and 50, respectively. Converted to a signal. Further, the light receiving position signal 45 from the line type optical sensor 16 indicates that the height (moving amount Z) of the vertically movable table 20 indicates that the turning laser beam 19 is the optical sensor 16.
It is also used to control the drive so that the light beam is incident on almost the center of the vertical axis. 22 to counter 5
4, the amount of movement of the vertical movement table 20 is measured. These seven digital signals are calculated / processed by the CPU 51, and three coordinate information (r, θ, z) of the moving body 12 is obtained.
And three posture information, that is, heading angle, pitching angle, and rolling angle (φ, σ, ρ).

【0014】(位置/姿勢の算出)つぎに、前記座標/
姿勢情報の各量を求めるための演算式を説明する。図5
に、旋回レーザ光19と、上下動テーブル20上の各ラ
イン形光センサ16,17,18との幾何学的配置例を
レーザ旋回面に垂直な方向から視た図を示す。R0,R1
,R2 は各光センサ16,17,18のレーザ光受光
位置、S0 ,S1 ,S2 は、各光センサの中心線を延長
した線が、移動体12の上面と交わる点の位置を示す。
また、Oは図1における旋回レーザ発信装置11の位
置、Pは光センサ14の位置ある。
(Calculation of Position / Attitude) Next, the coordinates /
An arithmetic expression for obtaining each amount of posture information will be described. Figure 5
FIG. 3 is a diagram showing an example of the geometrical arrangement of the turning laser light 19 and the line type photosensors 16, 17, 18 on the vertical movement table 20 as seen from the direction perpendicular to the laser turning surface. R 0 , R 1
, R 2 is the laser light receiving position of each optical sensor 16, 17, 18 and S 0 , S 1 , S 2 are the positions of the points where the line extending from the center line of each optical sensor intersects the upper surface of the moving body 12. Indicates.
Further, O is the position of the turning laser transmitter 11 in FIG. 1, and P is the position of the optical sensor 14.

【0015】レーザ光19の旋回角速度をω、基準方向
からR0 ,R1 ,R2 を見込んだ角度をそれぞれθ1
θ1 ,θ2 とすると、それらは θ0 =ωt0 ……(1) θ1 =ωt1 ……(2) θ2 =ωt2 ……(3) と表される。また、上下動テーブル20の移動量をZと
し、 ζ0 =Z+ζ'0 ……(4) ζ1 =Z+ζ'1 ……(5) ζ2 =Z+ζ'2 ……(6) とおき、各光センサ間の間隔をそれぞれ図5に示すよう
にa,b,cとし、レーザ光受光位置間隔をA,B,C
とすると、 A=(a2 +(ζ1 −ζ0)2)1/2 ……(7) B=(b2 +(ζ2 −ζ0)2)1/2 ……(8) C=(c2 +(ζ2 −ζ1)2)1/2 ……(9) と表わされ、直ちに計測値Z,ζ'0,ζ'1,ζ'2より計
算できる。
The turning angular velocity of the laser beam 19 is ω, and the angles in which R 0 , R 1 , and R 2 are considered from the reference direction are θ 1 and
Letting θ 1 and θ 2 be expressed as θ 0 = ωt 0 (1) θ 1 = ωt 1 (2) θ 2 = ωt 2 (3) Further, letting Z be the amount of movement of the vertical movement table 20, ζ 0 = Z + ζ ′ 0 (4) ζ 1 = Z + ζ ′ 1 (5) ζ 2 = Z + ζ ′ 2 (6), and The distances between the optical sensors are a, b, and c as shown in FIG. 5, and the laser light receiving position distances are A, B, and C, respectively.
Then, A = (a 2 + (ζ 1 −ζ 0 ) 2 ) 1/2 …… (7) B = (b 2 + (ζ 2 −ζ 0 ) 2 ) 1/2 …… (8) C = (c 2 + (ζ 2 -ζ 1) 2) represented 1/2 ... (9), immediately measured value Z, ζ '0, ζ' 1, can be calculated from the zeta '2.

【0016】つぎにここで求めたA,B,Cを用いて各
レーザ光受光位置R0 ,R1 ,R2の座標を求める;
Next, the coordinates of the respective laser beam receiving positions R 0 , R 1 and R 2 are calculated using A, B and C obtained here;

【0017】[0017]

【数1】 [Equation 1]

【0018】[0018]

【数2】 [Equation 2]

【0019】[0019]

【数3】 [Equation 3]

【0020】(他の実施例)なお、上記実施例は、ライ
ン形光センサが3個の場合について説明したが、使用す
るセンサの個数はこれのみに限定されるものでなく、そ
れ以上の複数であっても差支えない。また上下動テーブ
ル20の変位機構/駆動手段等も他の変形であってもよ
いことはもちろんである。
(Other Embodiments) In the above embodiment, the case where the number of line type optical sensors is three has been described, but the number of sensors to be used is not limited to this, and a plurality of sensors may be used. But it doesn't matter. Further, it goes without saying that the displacement mechanism / driving means of the vertical movement table 20 may be modified.

【0021】[0021]

【発明の効果】以上、説明したように、この発明によれ
ば、この種の移動体の6自由度の姿勢や3次元位置を測
定することができ、また上下動テーブルの高さを適当に
調節制御することにより、比較的大きい凸凹や傾斜の移
動表面に対しても追随して測定することができる。
As described above, according to the present invention, it is possible to measure the 6-degree-of-freedom posture and the three-dimensional position of this type of moving body, and to adjust the height of the vertically movable table appropriately. By adjusting and controlling, it is possible to follow and measure even a relatively large uneven or inclined moving surface.

【図面の簡単な説明】[Brief description of drawings]

【図1】 計測システムの一実施例の概要説明図FIG. 1 is a schematic explanatory diagram of an embodiment of a measurement system.

【図2】 移動体上の測定系及び信号処理回路のブロッ
ク図
FIG. 2 is a block diagram of a measurement system and a signal processing circuit on a moving body.

【図3】 上下動テーブルの駆動機構垂直断面図FIG. 3 is a vertical sectional view of a vertically movable table drive mechanism.

【図4】 図2の信号処理装置からの出力信号波形図の
一例
FIG. 4 is an example of an output signal waveform diagram from the signal processing device of FIG.

【図5】 旋回のレーザ光と各光センサとの幾何学的配
置例
FIG. 5: Example of geometrical arrangement of turning laser light and each optical sensor

【符号の説明】[Explanation of symbols]

11 レーザ光発信装置 12 移動体 13 無指向性信号発信装置 16,17,18 ライン形光センサ 20 上下動テーブル 21 モータ 22 上下移動量検出機 34,35,36,37 信号処理回路 38 パルス信号 39,40,41 受光時刻信号 42,43,44 タイマ 45,46,47 受光位置信号 51 CPU 11 Laser Light Transmitter 12 Moving Object 13 Omnidirectional Signal Transmitter 16, 17, 18 Line Type Optical Sensor 20 Vertical Moving Table 21 Motor 22 Vertical Moving Distance Detector 34, 35, 36, 37 Signal Processing Circuit 38 Pulse Signal 39 , 40, 41 Light receiving time signal 42, 43, 44 Timer 45, 46, 47 Light receiving position signal 51 CPU

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一基準点に設置され、実質的に一定の旋
回角速度でレーザ光を発信するためのレーザ発信手段
と、そのレーザ光が特定の方向に発信させたとき無指向
性信号を出力するための信号発信手段と、測定すべき移
動体上に装着され、前記レーザ光照射位置と照射時刻の
情報を含む信号を出力するための少なくとも3個の光セ
ンサと、前記無指向性信号を受信するための受信手段
と、前記光センサからの出力より、各光センサ上の受光
位置を求めるための信号処理手段と、前記各光センサの
レーザ光受光時刻と前記無指向性信号の受信時刻との差
を測定するための少なくとも3個の計時手段と、その計
時情報と、レーザ受光位置情報から前記移動体の姿勢及
び3次元位置を算出するための演算手段と、前記各セン
サを特定の位置に配設するためのテーブルと、このテー
ブルを必要距離だけ上下動させるための駆動機構と、前
記各光センサの内の1個の出力より前記レーザ光がこれ
らセンサから外れないよう駆動機構を制御するための制
御手段と、前記テーブルの基準位置からの高さを検出す
るための検出手段を備えたことを特徴とする移動体の姿
勢及び3次元位置測定装置。
1. A laser emitting means installed at one reference point for emitting laser light at a substantially constant angular velocity of rotation and an omnidirectional signal when the laser light is emitted in a specific direction. For transmitting the signal, at least three optical sensors mounted on the moving body to be measured for outputting signals including information on the laser light irradiation position and irradiation time, and the omnidirectional signal. Receiving means for receiving, signal processing means for obtaining a light receiving position on each optical sensor from the output from the optical sensor, laser light receiving time of each optical sensor and receiving time of the omnidirectional signal And at least three time measuring means for measuring the difference between the sensor and a specific means for calculating the posture and the three-dimensional position of the moving body from the laser light receiving position information. To place Table, a drive mechanism for moving the table up and down by a required distance, and a drive mechanism for controlling the laser light from the output of one of the optical sensors so that the laser light does not deviate from these sensors. A posture and three-dimensional position measuring apparatus for a moving body, comprising: a control unit and a detection unit for detecting a height of the table from a reference position.
JP04202330A 1992-07-29 1992-07-29 Measuring device for posture and three-dimensional position of moving object Expired - Fee Related JP3107651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04202330A JP3107651B2 (en) 1992-07-29 1992-07-29 Measuring device for posture and three-dimensional position of moving object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04202330A JP3107651B2 (en) 1992-07-29 1992-07-29 Measuring device for posture and three-dimensional position of moving object

Publications (2)

Publication Number Publication Date
JPH0651050A true JPH0651050A (en) 1994-02-25
JP3107651B2 JP3107651B2 (en) 2000-11-13

Family

ID=16455768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04202330A Expired - Fee Related JP3107651B2 (en) 1992-07-29 1992-07-29 Measuring device for posture and three-dimensional position of moving object

Country Status (1)

Country Link
JP (1) JP3107651B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7042561B1 (en) 1998-11-10 2006-05-09 Damalini Ab Device and method for alignment
US20140074295A1 (en) * 2012-09-12 2014-03-13 Kabushiki Kaisha Topcon Construction Machine Control Method And Construction Machine Control System
CN105917284A (en) * 2014-02-25 2016-08-31 阿尔弗雷德·凯驰两合公司 Method for docking a floor treatment device to a base station, and floor treatment system
CN108387871A (en) * 2018-01-30 2018-08-10 吉林大学 A kind of ultrasonic three-dimensional positioning system and localization method for realizing that six degree of freedom measures
CN113441479A (en) * 2020-03-25 2021-09-28 中移(上海)信息通信科技有限公司 Laser cleaning device and equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7042561B1 (en) 1998-11-10 2006-05-09 Damalini Ab Device and method for alignment
US20140074295A1 (en) * 2012-09-12 2014-03-13 Kabushiki Kaisha Topcon Construction Machine Control Method And Construction Machine Control System
US9279679B2 (en) * 2012-09-12 2016-03-08 Kabushiki Kaisha Topcon Construction machine control method and construction machine control system
CN105917284A (en) * 2014-02-25 2016-08-31 阿尔弗雷德·凯驰两合公司 Method for docking a floor treatment device to a base station, and floor treatment system
CN108387871A (en) * 2018-01-30 2018-08-10 吉林大学 A kind of ultrasonic three-dimensional positioning system and localization method for realizing that six degree of freedom measures
CN113441479A (en) * 2020-03-25 2021-09-28 中移(上海)信息通信科技有限公司 Laser cleaning device and equipment

Also Published As

Publication number Publication date
JP3107651B2 (en) 2000-11-13

Similar Documents

Publication Publication Date Title
US7747349B2 (en) Mobile robot platform and method for sensing movement of the same
US7141772B2 (en) Three-dimensional location measurement sensor
EP0273976A1 (en) Guiding apparatus for unmanned movable bodies
WO2003019231A1 (en) Six dimensional laser tracking system and method
JP2006500266A5 (en)
JP2009096335A (en) Legged robot
KR100227202B1 (en) Offset detecting apparatus and aircraft guiding system used thereof
JPH0651050A (en) Moving body attitude and three-dimensional position measuring device
JP3135364B2 (en) Measuring device for posture and position of moving object
JPH05274039A (en) Moving body attitude and position measuring instrument
JP2988699B2 (en) Moving object position detection device
JPS5927841B2 (en) Displacement posture measuring device
JPH038684B2 (en)
US20230195132A1 (en) Underground Exploration Device
CN116087900B (en) Inter-travel detection vehicle-mounted platform for one-dimensional phased array radar
JP3517303B2 (en) Total station
CN115183676B (en) Posture adjusting sensor for moving object linear navigation
JPH07332972A (en) Track survey apparatus
JPH0659725A (en) Location and azimuth measuring device of traveling object
JPH06214000A (en) Position detector using acoustic sensor
JPH11325892A (en) Road surface shape measuring apparatus
JP2503533Y2 (en) Vehicle position / speed detector
JP2842675B2 (en) Moving object distance measuring device
JP2800922B2 (en) Moving object distance measuring device
JPS61189405A (en) Non-contacting shape measuring instrument

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees