JP3135364B2 - Measuring device for posture and position of moving object - Google Patents

Measuring device for posture and position of moving object

Info

Publication number
JP3135364B2
JP3135364B2 JP04154799A JP15479992A JP3135364B2 JP 3135364 B2 JP3135364 B2 JP 3135364B2 JP 04154799 A JP04154799 A JP 04154799A JP 15479992 A JP15479992 A JP 15479992A JP 3135364 B2 JP3135364 B2 JP 3135364B2
Authority
JP
Japan
Prior art keywords
optical sensors
signal
laser
moving body
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04154799A
Other languages
Japanese (ja)
Other versions
JPH05346460A (en
Inventor
徹哉 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP04154799A priority Critical patent/JP3135364B2/en
Publication of JPH05346460A publication Critical patent/JPH05346460A/en
Application granted granted Critical
Publication of JP3135364B2 publication Critical patent/JP3135364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、移動体の姿勢及び3
次元位置を遠隔測定するための装置の提供に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to providing an apparatus for remotely measuring a dimensional position.

【0002】[0002]

【従来の技術】従来、例えば不整地路面上に走行する車
両や波動海面上を航行する船舶、もしくは特殊な飛翔体
等、3次元経路に沿って移動する移動体の各時点におけ
る姿勢及び位置を遠隔的に認識するための方法/装置が
求められており、その一例として「レーザー灯台に用い
た移動体の位置方位測定法」(日本ロボット学会誌、第
2巻第6号、頁53、1984年)等の論文が発表され
ている。
2. Description of the Related Art Conventionally, the attitude and position of a moving object moving along a three-dimensional path, such as a vehicle traveling on an irregular road surface, a ship navigating on a wave sea surface, or a special flying object, at each time point, is known. There is a need for a method / apparatus for remote recognition, such as "Method of measuring the position and orientation of a moving object used in a laser lighthouse" (Journal of the Robotics Society of Japan, Vol. 2, No. 6, page 53, 1984). Papers have been published.

【0003】この方法では、ある基準点より発信する旋
回レーザ光を3個の光センサで受光し、その3つの受光
時刻情報のみからレーザ旋回平面上における位置と進行
方向を計測するよう構成されていた。
In this method, a turning laser beam transmitted from a certain reference point is received by three optical sensors, and a position and a traveling direction on a laser turning plane are measured from only the three light receiving time information. Was.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、応用の
目的により、これら移動体の各時点における姿勢/位置
制御等を必要とする場合など、以上のような従来方法例
にあっては、移動体の垂直方向位置(高さ)やピッチン
グ角あるいはローリング角等を計測することが不可能で
あるのみならず、移動体が有限のピッチング角やローリ
ング角を有する場合には、前記レーザ旋回面上での現在
位置や進行方向(ヘディング角)等も正しく計測するこ
とができなかった。
However, in the case of the conventional method as described above, for example, when the attitude / position control or the like of each of these moving objects is required at each point in time for the purpose of application, the moving object cannot be used. Not only is it impossible to measure the vertical position (height), pitching angle or rolling angle, etc., but also when the moving object has a finite pitching angle or rolling angle, The current position and traveling direction (heading angle) could not be measured correctly.

【0005】この発明は、以上のような局面にかんがみ
てなされたもので、比較的簡単な構成で、この種の移動
体の姿勢/位置に関するすべての3次元情報、例えばヘ
ディング角,ピッチング角,ローリング角や3次元高さ
位置等をも測定し得る手段の提供を目的としている。
The present invention has been made in view of the above-described aspects, and has a relatively simple structure and can provide all three-dimensional information relating to a posture / position of a moving object of this kind, for example, a heading angle, a pitching angle, and the like. It is an object of the present invention to provide means capable of measuring a rolling angle, a three-dimensional height position, and the like.

【0006】[0006]

【課題を解決するための手段】このため、この発明にお
いては、この種の移動体の姿勢及び位置測定装置を、一
基準点に設置され、一定角速度でレーザ光を発信するた
めのレーザ発信手段と、そのレーザ光が特定方向に発信
されたとき無指向性信号を出力するための信号発信手段
と、測定すべき移動体上にそれぞれ異なる平面上に平行
に配設されたレーザ照射時刻情報を含む信号を出力する
ための少なくとも3個のライン形光センサと、これら光
センサの任意の2個が構成する少なくとも3平面上に沿
ってこれらの各光センサに対してそれぞれ非平行に配設
されたレーザ照射時刻情報を含む信号を出力するための
少なくとも3個のライン形光センサと、前記無指向性信
号を受信するための受信手段と、前記少なくとも6個の
前記ライン形光センサの号力より、少なくとも6つの受
光時刻と前記無指向性信号との受信時刻差を計測するた
めの各計時手段と、これら少なくとも6つの受光時刻よ
り、前記移動体の3次元位置及び姿勢データを算出する
ための演算手段とを備えるよう構成することにより、前
記目的を達成しようとするものである。
According to the present invention, there is provided in the present invention, a laser transmitting means for transmitting a laser beam at a constant angular velocity by installing this kind of moving object attitude and position measuring device at one reference point. And a signal transmitting means for outputting an omnidirectional signal when the laser light is transmitted in a specific direction, and laser irradiation time information arranged in parallel on different planes on a moving object to be measured. At least three line-shaped optical sensors for outputting a signal including at least three optical sensors arranged along at least three planes formed by any two of the optical sensors, and being non-parallel to each of these optical sensors. At least three line-type optical sensors for outputting a signal including the laser irradiation time information, receiving means for receiving the omnidirectional signal, and the at least six line-type optical sensors. Each time measuring means for measuring the difference between the reception time of at least six light reception times and the omnidirectional signal from the power of the sensor; and the three-dimensional position and attitude data of the moving body from these at least six light reception times. It is intended to achieve the above-mentioned object by providing a calculation means for calculating the above.

【0007】[0007]

【作用】以上のようなこの発明の装置構成により、対象
とする移動体の各時点の姿勢/位置、例えばヘディング
角,ピッチング角,ローリング角等の6自由度の計測が
可能となり、移動体の完全な3次元姿勢/位置制御情報
を得ることができる。
According to the apparatus configuration of the present invention as described above, it is possible to measure the posture / position of the target moving body at each time, for example, six degrees of freedom such as a heading angle, a pitching angle, and a rolling angle. Complete three-dimensional attitude / position control information can be obtained.

【0008】[0008]

【実施例】以下に、この発明を実施例に基づいて説明す
る。図1にこの発明に係るこの種の計測システムの一実
施例の概要説明図を示す。この図は、後述のレーザ光旋
回面に平行な方向から視た図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. FIG. 1 is a schematic explanatory diagram of one embodiment of this type of measurement system according to the present invention. This diagram is a diagram viewed from a direction parallel to a laser beam turning surface described later.

【0009】(構成)12は、不整地面G上を移動する
例えば不整地走行車両等の移動体、11は、地上Gの測
定基準点に配設された一定の角速度で一平面上を旋回す
るレーザ光19を発信するためのレーザ発信装置、13
は、ある基準方向を指向してこれを横切ったとき、光セ
ンサ14より無指向性の無線信号を発生するための信号
発信装置(送信機)である。
(Construction) 12 is a moving body such as a traveling vehicle traveling on an uneven ground G, and 11 turns on a plane at a constant angular velocity provided at a measurement reference point on the ground G. Laser transmitting device for transmitting laser light 19, 13
Is a signal transmitting device (transmitter) for generating a non-directional radio signal from the optical sensor 14 when the optical sensor 14 is directed in a certain reference direction and crosses the reference direction.

【0010】一方、移動体12上には、前記無指向性無
線信号を受信するための受信機15(15aはそのアン
テナを示す)が配設されている。16,17,18は、
それぞれ互に平行に、しかも同一平面上にならないよう
に移動体12に垂直に高さを揃えて配設された照射レー
ザ光の受光時刻情報を含む信号を出力し得る3個のライ
ン形光センサであり、20,21,22は、それぞれ任
意の2個の光センサ16と17,17と18,18と1
6が作る各平面上に各光センサ16,17,18とは平
行にならないようにN字型に配設された受光時刻情報を
含む信号を出力し得る3個のライン形光センサである。
これらの各ライン形光センサはそれぞれ光センサアレイ
や単一の長い光センサで構成されている。
On the other hand, a receiver 15 (15a indicates its antenna) for receiving the omnidirectional radio signal is provided on the mobile unit 12. 16, 17, 18
Three line-type optical sensors capable of outputting a signal including reception time information of the irradiation laser light, which are arranged in parallel with each other and at the same height vertically to the moving body 12 so as not to be on the same plane. 20, 21 and 22 are arbitrary two optical sensors 16 and 17, 17 and 18, and 18 and 1 respectively.
6 are three line-type optical sensors which are arranged in an N-shape so as not to be in parallel with the optical sensors 16, 17, 18 on each plane formed by 6 and which can output signals including light receiving time information.
Each of these line-type optical sensors is constituted by an optical sensor array or a single long optical sensor.

【0011】図2に、移動体12上に配設された信号処
理手段のブロック図を、また図3にこの信号処理手段の
各信号波形タイミングチャートの一例を示す。図2にお
いて、25は、受信機15のアンテナ15aから受信し
た信号の処理回路、29はその出力信号である。26,
27,28,30,31,32はそれぞれ各光センサ1
6,17,18,20,21,22からの出力信号処理
回路、36,37,38,40,41,42は各光セン
サ16,17,18,20,21,22の受光時刻を表
す信号、46,47,48,50,51,52はそれぞ
れの計時手段として6個のタイマである。また、60は
これらの各信号を演算処理するためのCPUを示す。
FIG. 2 is a block diagram of the signal processing means provided on the moving body 12, and FIG. 3 is an example of a timing chart of each signal waveform of the signal processing means. In FIG. 2, 25 is a processing circuit for a signal received from the antenna 15a of the receiver 15, and 29 is an output signal thereof. 26,
27, 28, 30, 31, and 32 are each optical sensor 1
Output signal processing circuits from 6, 17, 18, 20, 21, 22 and 36, 37, 38, 40, 41, 42 are signals representing the light receiving times of the respective optical sensors 16, 17, 18, 20, 21, 22. , 46, 47, 48, 50, 51 and 52 are six timers as respective time measuring means. Reference numeral 60 denotes a CPU for arithmetically processing these signals.

【0012】(動作)移動体12上に各ライン形光セン
サ16,17,18,20,21,22が図1の旋回レ
ーザ光19を順次に受光すると、それぞれの信号処理回
路26,27,28,30,31,32を介して各受光
時刻信号36,37,38,40,41,42に変換さ
れる。また受信機15は、アンテナ15aで送信機13
からの無指向性無線信号を受信すると、信号処理回路2
5に入力されて、直ちにパルス信号29を出力する。
(Operation) When the line type optical sensors 16, 17, 18, 20, 21, 22 sequentially receive the turning laser beam 19 of FIG. 1 on the moving body 12, the respective signal processing circuits 26, 27, The light-receiving time signals 36, 37, 38, 40, 41, and 42 are converted to light-receiving time signals 28, 30, 31, and 32, respectively. The receiver 15 is connected to the transmitter 13 by an antenna 15a.
Receiving the omnidirectional radio signal from the
5, and immediately outputs a pulse signal 29.

【0013】各受光時刻信号36,37,38,40,
41,42と無線受信時刻信号29の各時間間隔t0
1 ,t2 ,t3 ,t4 ,t5 は、それぞれ計時手段と
してのタイマ46,47,48,50,51,52によ
り計測されてデジタル信号に変換される。これら6つの
デジタル信号は、CPU60で演算処理されて、移動体
12の3つの位置座標情報(γ,θ,z)と3つの姿勢
情報、すなわちヘディング角φ,ピッチング角σ,ロー
リング角ρに変換される。
Each of the light receiving time signals 36, 37, 38, 40,
Each time interval t 0 between 41, 42 and the radio reception time signal 29,
t 1 , t 2 , t 3 , t 4 , and t 5 are measured by timers 46, 47, 48, 50, 51, and 52, respectively, and converted into digital signals. These six digital signals are arithmetically processed by the CPU 60 and converted into three position coordinate information (γ, θ, z) and three attitude information of the moving body 12, that is, a heading angle φ, a pitching angle σ, and a rolling angle ρ. Is done.

【0014】図4に、この計測システム(図1)の真上
から見た位置関係説明図を示し、Oをレーザ発信機11
の位置、移動体12の位置を光センサ16の付け根部分
0と定義する。レーザ発信機11からの旋回レーザ光
19の旋回角速度をωとし、移動体12上の各光センサ
16,17,18,20,21,22のレーザ受光位置
をそれぞれR0 ,R1 ,R2 ,R3 ,R4 ,R5 、それ
らの付け根部分位置をそれぞれS0 ,S1 ,S2 ,S
3 ,S4 ,S5 (図4ではS0 =S5 ,S1 =S 3 ,S
2 =S4 となっている)とし、基準位置方向から各レー
ザ受光位置R0 ,R1 ,R2 ,R3 ,R4 ,R5 を見込
んだ角度をそれぞれθ0 ,θ1 ,θ2 ,θ 3 ,θ4 ,θ
5 ,θ6 とすると、それらは θi =ωti (i=0,1,2,……5) (1) と表わされる。また、各光センサ16,17,18の間
のそれぞれの間隔を図4に示すようにa,b,cとし、
レーザ受光位置間隔をA,B,Cとする。多くの場合、
r>>a,b,cの関係が満たされるため、このときの
場合のみを考える。移動体12上に固定された座標系
(X,Y,Z)において各付け根部分位置S 0 ,S1
2 の座標は、 S0 :(X0 ,Y0 ,0) S1 :(X1 ,Y1 ,0) S2 :(X2 ,Y2 ,0) (2) と与えられる。また、各レーザ受光位置R0 からR5
での座標をそれぞれ Ri :(ξi ,ηi ,ζi ) (i=0,1,2……
5)として、先ずζ1 ,ζ2 ,ζ3 を求める。各光セン
サ16,17,18はそれぞれ移動体12から高さを揃
えて垂直に立っているので、 ξi =Xi (i=0,1,2) ηi =Yi (i=0,1,2) (3) である。
FIG. 4 shows the measuring system (FIG. 1).
FIG. 2 shows a positional relation explanatory view as viewed from the side, where O is a laser transmitter 11;
Position of the moving body 12 at the base of the optical sensor 16
S0Is defined. Turning laser light from laser transmitter 11
Each optical sensor on the moving body 12 is defined as
16, 17, 18, 20, 21, and 22 laser receiving positions
To R0 , R1 , RTwo , RThree , RFour , RFive ,It
The root positions of0 , S1 , STwo , S
Three , SFour , SFive (S in FIG. 40 = SFive , S1 = S Three , S
Two = SFour From the reference position direction.
The light receiving position R0 , R1 , RTwo , RThree , RFour , RFive Anticipate
Angle is θ0 , Θ1 , ΘTwo , Θ Three , ΘFour , Θ
Five , Θ6 Then, they are θi = Ωti (I = 0, 1, 2,... 5) (1) In addition, between each optical sensor 16,17,18
Are defined as a, b, and c as shown in FIG.
The laser light receiving position intervals are A, B, and C. In many cases,
Since the relationship of r >> a, b, c is satisfied,
Only consider the case. Coordinate system fixed on moving body 12
At (X, Y, Z), each root portion position S 0 , S1 ,
STwo Coordinates of S0 : (X0 , Y0 , 0) S1 : (X1 , Y1 , 0) STwo : (XTwo , YTwo , 0) (2). In addition, each laser receiving position R0 To RFive Ma
The coordinates at Ri : (Ξi , Ηi , Ζi ) (I = 0,1,2, ...)
5)1 , ΖTwo , ΖThree Ask for. Each light center
The heights of the mobile units 16, 17, and 18 are the same from the mobile unit 12.
垂直i = Xi (I = 0, 1, 2) ηi = Yi (I = 0, 1, 2) (3)

【0015】このとき、各レーザ受光位置R3 ,R4
5 の座標は、それぞれ R3 :(X0 +{(θ3 −θ0 )/(θ1 −θ0 )}(X1 −X0 ), Y0 +{(θ3 −θ0 )/(θ1 −θ0 )}(Y1 −Y0 ), L+{(θ3 −θ0 )/(θ1 −θ0 )}L) R4 :(X1 +{(θ4 −θ1 )/(θ2 −θ1 )}(X2 −X1 ), Y0 +{(θ4 −θ1 )/(θ2 −θ1 )}(Y2 −Y1 ), L+{(θ4 −θ1 )/(θ4 −θ1 )}L) R5 :(X2 +{(θ5 −θ2 )/(θ0 −θ2 )}(X0 −X2 ), Y0 +{(θ5 −θ2 )/(θ0 −θ2 )}(Y0 −Y2 ), L+{(θ5 −θ2 )/(θ0 −θ2 )}L) (4) で与えられ、ξi ,ηi ,ζi (i=3,4,5)が求
められる。
At this time, each of the laser receiving positions R 3 , R 4 ,
Coordinates of R 5 are each R 3: (X 0 + { (θ 3 -θ 0) / (θ 1 -θ 0)} (X 1 -X 0), Y 0 + {(θ 3 -θ 0) / (Θ 1 −θ 0 )} (Y 1 −Y 0 ), L + {(θ 3 −θ 0 ) / (θ 1 −θ 0 )} L) R 4 : (X 1 + {(θ 4 −θ) 1 ) / (θ 2 −θ 1 )} (X 2 −X 1 ), Y 0 + {(θ 4 −θ 1 ) / (θ 2 −θ 1 )} (Y 2 −Y 1 ), L + {( θ 4 −θ 1 ) / (θ 4 −θ 1 )} L) R 5 : (X 2 + {(θ 5 −θ 2 ) / (θ 0 −θ 2 )} (X 0 −X 2 ), Y 0 + {(θ 5 -θ 2 ) / (θ 0 -θ 2)} (Y 0 -Y 2), L + {(θ 5 -θ 2) / (θ 0 -θ 2)} L) (4) And ξ i , η i , ζ i (i = 3, 4, 5) are obtained.

【0016】各レーザ受光位置R3 ,R4 ,R5 が作る
平面をsX+tY+uZ=1としたとき、s,t,uは
When the plane formed by the laser receiving positions R 3 , R 4 and R 5 is sX + tY + uZ = 1, s, t and u are

【0017】[0017]

【数1】 (Equation 1)

【0018】と求められる。Is required.

【0019】このs,t,uを使ってζ0 ,ζ1 ,ζ2
は、それぞれ ζi =(1−sXi −tYi )/u (i=0,1,2) (6) として求められる。
Using s, t, and u, ζ 0 , ζ 1 , ζ 2
Are obtained as ζ i = (1−sX i −tY i ) / u (i = 0, 1, 2) (6).

【0020】このζi を使用して、本出願と同一出願人
による特願平4−66942号に開示したものと同一の
アルゴリズム(詳細の重複説明は省略する)により、各
根付け部分位置ベクトルOS0 ,OS1 ,OS2 (=O
3 ,OS4 ,OS5 )をそれぞれ求めることにより、
移動体12の姿勢はこれらより与えられる各点座標S
0 ,S1 ,S2 で一義的に決定することができ、また、
それをそれぞれヘディング角φ,ピッチング角σ及びロ
ーリング角ρに変換することにより、移動体12の空間
上の位置と姿勢とを完全に決定することができる。
[0020]i Using the same applicant as the present application
The same as that disclosed in Japanese Patent Application No. 4-66942.
Algorithm (detailed description is omitted)
Netting part position vector OS0 , OS1 , OSTwo (= O
SThree , OSFour , OSFive )
The posture of the moving body 12 is determined by the respective point coordinates S
0 , S1 , STwo Can be determined uniquely, and
The heading angle φ, pitching angle σ and b
Is converted to the ringing angle ρ, the space of the moving body 12 is obtained.
The position and orientation above can be completely determined.

【0021】この実施例は、以上のような移動体12の
完全な3次元姿勢/位置情報を得ることができるため、
例えば土木用の測量ロボットや船舶等の航行制御等に有
効に応用することができる。
In this embodiment, since the complete three-dimensional attitude / position information of the moving body 12 as described above can be obtained,
For example, it can be effectively applied to a surveying robot for civil engineering, navigation control of a ship, and the like.

【0022】[0022]

【発明の効果】以上説明したように、この発明の計測シ
ステムによれば、対象とする移動体の現在の3次元姿勢
/位置、例えばヘディング角,ピッチング角,ローリン
グ角等の6自由度の測定が可能となり、移動体の完全な
姿勢/位置制御情報を得ることができる。
As described above, according to the measuring system of the present invention, the current three-dimensional posture / position of a target moving object, for example, the measurement of six degrees of freedom such as a heading angle, a pitching angle, and a rolling angle. And complete attitude / position control information of the moving body can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 一実施例の概要説明図FIG. 1 is a schematic explanatory diagram of one embodiment.

【図2】 移動体上の信号処理手段ブロック図FIG. 2 is a block diagram of a signal processing means on a moving object.

【図3】 各信号波形タイミングチャートFIG. 3 is a timing chart of each signal waveform.

【図4】 図1の位置関係説明上面図FIG. 4 is a top view illustrating the positional relationship of FIG. 1;

【符号の説明】[Explanation of symbols]

11 レーザ発信装置 12 移動体 13 信号発信装置 14 光センサ 15 受信機 16,17,18,20,21,22 各ライン形光セ
ンサ 19 旋回レーザ光 25,26,27,28,30,31,32 各信号処
理回路 29 受信時刻信号 36,37,38,40,41,42 各受光時刻信号 46,47,48,50,51,52 各タイマ 60 CPU
REFERENCE SIGNS LIST 11 laser transmitting device 12 moving body 13 signal transmitting device 14 optical sensor 15 receiver 16, 17, 18, 20, 21, 22 each line-shaped optical sensor 19 rotating laser light 25, 26, 27, 28, 30, 31, 32 Each signal processing circuit 29 Receiving time signal 36, 37, 38, 40, 41, 42 Receiving time signal 46, 47, 48, 50, 51, 52 Timer 60 CPU

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01S 5/16 G01C 15/00 G05D 1/02 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01S 5/16 G01C 15/00 G05D 1/02

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一基準点に設置され、一定角速度でレー
ザ光を発信するためのレーザ発信手段と、そのレーザ光
が特定方向に発信されたとき無指向性信号を出力するた
めの信号発信手段と、測定すべき移動体上にそれぞれ異
なる平面上に平行に配設されたレーザ照射時刻情報を含
む信号を出力するための少なくとも3個のライン形光セ
ンサと、これら光センサの任意の2個が構成する少なく
とも3平面上に沿ってこれらの各光センサに対してそれ
ぞれ非平行に配設されたレーザ照射時刻情報を含む信号
を出力するための少なくとも3個のライン形光センサ
と、前記無指向性信号を受信するための受信手段と、前
記少なくとも6個の前記ライン形光センサの出力より、
少なくとも6つの受光時刻と前記無指向性信号との受信
時刻差を計測するための各計時手段と、これら少なくと
も6つの受光時刻より、前記移動体の3次元位置及び姿
勢データを算出するための演算手段とを備えたことを特
徴とする移動体の姿勢及び位置測定装置。
1. A laser transmitting means installed at one reference point for transmitting laser light at a constant angular velocity, and a signal transmitting means for outputting an omnidirectional signal when the laser light is transmitted in a specific direction. And at least three line-type optical sensors for outputting signals including laser irradiation time information disposed in parallel on different planes on the moving object to be measured, and any two of these optical sensors At least three line-shaped optical sensors for outputting signals including laser irradiation time information, which are respectively provided in a non-parallel manner with respect to each of these optical sensors along at least three planes constituted by: Receiving means for receiving a directional signal, and from the outputs of the at least six line-type optical sensors,
Time measuring means for measuring a difference between at least six light receiving times and the omnidirectional signal, and an operation for calculating three-dimensional position and attitude data of the moving body from the at least six light receiving times Means for measuring a posture and a position of a moving body.
JP04154799A 1992-06-15 1992-06-15 Measuring device for posture and position of moving object Expired - Fee Related JP3135364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04154799A JP3135364B2 (en) 1992-06-15 1992-06-15 Measuring device for posture and position of moving object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04154799A JP3135364B2 (en) 1992-06-15 1992-06-15 Measuring device for posture and position of moving object

Publications (2)

Publication Number Publication Date
JPH05346460A JPH05346460A (en) 1993-12-27
JP3135364B2 true JP3135364B2 (en) 2001-02-13

Family

ID=15592151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04154799A Expired - Fee Related JP3135364B2 (en) 1992-06-15 1992-06-15 Measuring device for posture and position of moving object

Country Status (1)

Country Link
JP (1) JP3135364B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6364373B2 (en) * 2015-03-26 2018-07-25 株式会社日立製作所 Inclination detection method and inclination detection apparatus
CN106291465B (en) * 2015-06-18 2019-05-07 北京智谷睿拓技术服务有限公司 Position control method, localization method and its device

Also Published As

Publication number Publication date
JPH05346460A (en) 1993-12-27

Similar Documents

Publication Publication Date Title
US6176837B1 (en) Motion tracking system
Whitcomb et al. Advances in underwater robot vehicles for deep ocean exploration: Navigation, control, and survey operations
WO1987007368A1 (en) Apparatus for measuring position of moving body
EP1085497A2 (en) Swept transmit beam bathymetric sonar
KR102218582B1 (en) System for underwater localization
WO2020151214A1 (en) Multi-sensor data fusion method for integrated surveying and mapping of intertidal zone
JP2596364B2 (en) Topographic map generator using three-dimensional information obtained from interferometric synthetic aperture radar
JP2002090456A (en) Topographic measuring apparatus
JP3135364B2 (en) Measuring device for posture and position of moving object
CN108227744A (en) A kind of underwater robot location navigation system and positioning navigation method
Wang et al. InSAS'00: Interferometric SAS and INS aided SAS imaging
JPH1090017A (en) Multi-purpose pod floating at fixed point of sea level
JPH10318743A (en) Method and apparatus for surveying by using flying object
JP3107651B2 (en) Measuring device for posture and three-dimensional position of moving object
JPH05274039A (en) Moving body attitude and position measuring instrument
JP3963179B2 (en) Positioning device
JPH11190771A (en) Gps measurement position correction device
JP2916708B2 (en) Current position measurement device for moving objects
JPH09184720A (en) Geodetic survey method and device therefor
CN112241170A (en) Unmanned ship self-stabilizing system based on parallel six-degree-of-freedom platform
JPH0651060A (en) Underwater ground shape measuring device
JPH10115522A (en) Method for guiding and mounting box body, etc.
JPH05257530A (en) Method and device for correcting bearing and position of moving robot
JPH09304066A (en) Surveying instrument using wide region positioning system
JP2948812B1 (en) Workpiece detector, Workpiece detection method, Workpiece measuring device, Workpiece measurement method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees