JPH0650956A - All organic body carbon measuring device - Google Patents

All organic body carbon measuring device

Info

Publication number
JPH0650956A
JPH0650956A JP22349692A JP22349692A JPH0650956A JP H0650956 A JPH0650956 A JP H0650956A JP 22349692 A JP22349692 A JP 22349692A JP 22349692 A JP22349692 A JP 22349692A JP H0650956 A JPH0650956 A JP H0650956A
Authority
JP
Japan
Prior art keywords
carbon dioxide
gas
oxidation reaction
sparging
sample water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22349692A
Other languages
Japanese (ja)
Inventor
Kenji Iharada
健志 居原田
Yozo Morita
洋造 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP22349692A priority Critical patent/JPH0650956A/en
Publication of JPH0650956A publication Critical patent/JPH0650956A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase measurement accuracy by increasing carbon dioxide concentration which is extracted by a wet oxidation method. CONSTITUTION:A sparging gas is supplied to the lower part of an oxidation reaction container 2 from a sparging gas supply channel with a throttle 16 which becomes a channel resistance. A vapor part is located at the upper part of the oxidation reaction container 2 and a delivery gas channel 20 with a vacuum pump 22 is connected to the vapor part. The pressure of the vapor at the oxidation reaction container 2 is reduced and dissolved carbon dioxide is extracted by the sparge gas and then is detected by a non-dispersion type infrared ray analyzer 26 after the pressure is returned to a normal one.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は試料水中、例えば超純水
中の微量の有機体炭素を測定する全有機体炭素測定装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a total organic carbon measuring device for measuring a small amount of organic carbon in sample water, for example, ultrapure water.

【0002】[0002]

【従来の技術】全有機体炭素測定装置は酸化反応容器に
入れた試料水中の全有機体炭素を液相で酸化試薬又は紫
外線照射などにより二酸化炭素に変換し、その変換後の
試料水にスパージングガスを吹き込んで二酸化炭素を抽
出し、それを非分散型赤外分析計などの炭酸ガス検出器
に導いて全有機体炭素を測定する。従来は酸化されて試
料水中に溶存する二酸化炭素を常圧下でスパージングし
て抽出している。
2. Description of the Related Art An apparatus for measuring total organic carbon converts total organic carbon in sample water contained in an oxidation reaction container into carbon dioxide in a liquid phase by an oxidizing reagent or ultraviolet irradiation, and then spargs into the sample water after conversion. The gas is blown in to extract carbon dioxide, which is then introduced into a carbon dioxide gas detector such as a non-dispersive infrared analyzer to measure total organic carbon. Conventionally, carbon dioxide that has been oxidized and dissolved in sample water is extracted by sparging under normal pressure.

【0003】[0003]

【発明が解決しようとする課題】試料水中に溶存する二
酸化炭素をスパージングによって完全に抽出するには、
溶存二酸化炭素量に対して大量のスパージングガスを必
要とする。そのため、抽出された二酸化炭素は大量のス
パージングガスで希釈されてしまい、炭酸ガス検出器で
検出するときは二酸化炭素濃度が低くて、得られる検出
ピークの高さが低く、幅の広いものとなって、定量下限
の点で不利になる。本発明は全有機体炭素測定装置にお
いて、スパージングガスで試料水中から抽出された二酸
化炭素の濃度を高め、得られる二酸化炭素ピークを急峻
なものとして測定精度を高めることを目的とするもので
ある。
In order to completely extract carbon dioxide dissolved in sample water by sparging,
A large amount of sparging gas is required for the amount of dissolved carbon dioxide. Therefore, the extracted carbon dioxide is diluted with a large amount of sparging gas, and when it is detected by a carbon dioxide gas detector, the carbon dioxide concentration is low, and the height of the obtained detection peak is low, which makes it wide. Therefore, there is a disadvantage in the lower limit of quantification. An object of the present invention is to increase the concentration of carbon dioxide extracted from sample water with a sparging gas and to make the obtained carbon dioxide peak steep to improve the measurement accuracy in a total organic carbon measuring device.

【0004】[0004]

【課題を解決するための手段】本発明では、試料水中の
全有機体炭素を二酸化炭素に変換する酸化反応容器内の
試料水中にスパージングガスを供給するスパージングガ
ス供給流路に流路抵抗を設け、試料水中の二酸化炭素を
スパージングガスにより抽出して排出させる排出ガス流
路には排気手段を設け、酸化反応容器内の気相部分を減
圧状態にして試料水中の二酸化炭素をスパージングガス
により抽出する。
According to the present invention, a flow path resistance is provided in a sparging gas supply flow path for supplying a sparging gas into a sample water in an oxidation reaction container for converting all organic carbon in the sample water into carbon dioxide. An exhaust means is provided in the exhaust gas flow path for extracting carbon dioxide in the sample water with a sparging gas and discharging the carbon dioxide in the sample water with the sparging gas by providing a gas phase portion in the oxidation reaction vessel with a decompressed state. .

【0005】[0005]

【作用】酸化反応容器内で試料水中の全有機体炭素が酸
化されて二酸化炭素に変換された後、スパージングガス
供給流路からスパージングガスが供給され、排出ガス流
路の排気手段を作動させながらスパージングガスによる
二酸化炭素の抽出を行なうと、スパージングガス供給流
路の流路抵抗と排出ガス流路の排気手段によって酸化反
応容器内の気相が減圧状態になって抽出が行なわれる。
気相を減圧状態にすると、次の理由によって溶存二酸化
炭素の気相への移行が促進される。1つの理由は、気相
を減圧状態にすることによって溶存二酸化炭素の気相と
液相間での分配平衡が移動することであり、これによっ
て溶存二酸化炭素の気相への移行が促進される。他の理
由は、スパージングを行なうとき、スパージングガスと
試料水との気液接触面積が大きいほど溶存二酸化炭素は
スパージングガスに移行しやすくなるが、減圧下では常
圧下に比べてスパージングガスの見掛けの体積が増すた
めに気液接触面積が増すからである。したがって、同じ
量のスパージングガスであれば常圧下よりも減圧下の方
が溶存二酸化炭素の抽出効率が良くなる。
[Function] After all the organic carbon in the sample water is oxidized and converted into carbon dioxide in the oxidation reaction container, the sparging gas is supplied from the sparging gas supply passage and the exhaust means of the exhaust gas passage is operated. When the carbon dioxide is extracted by the sparging gas, the gas phase in the oxidation reaction container is depressurized by the flow path resistance of the sparging gas supply flow path and the exhaust means of the exhaust gas flow path for extraction.
When the gas phase is depressurized, the transfer of dissolved carbon dioxide to the gas phase is promoted for the following reasons. One reason is that the decompression state of the gas phase shifts the distribution equilibrium of the dissolved carbon dioxide between the gas phase and the liquid phase, which promotes the transfer of the dissolved carbon dioxide to the gas phase. . Another reason is that when performing sparging, the larger the gas-liquid contact area between the sparging gas and the sample water, the easier the dissolved carbon dioxide is transferred to the sparging gas. This is because the gas-liquid contact area increases because the volume increases. Therefore, if the amount of sparging gas is the same, the extraction efficiency of dissolved carbon dioxide will be better under reduced pressure than under normal pressure.

【0006】[0006]

【実施例】図1は一実施例を表わす。2は酸化反応容器
であり、下部に設けられた試料水等の導入排出機構4に
よって試料水と酸化試薬が導入される。3は酸化反応容
器2に導入された試料水等であり、試料水に酸化試薬を
含んだものである。酸化試薬としては、硫酸とペルオキ
ソ二硫酸カリウムなどが用いられる。酸化試薬に変えて
紫外線照射により試料水中の有機体炭素を酸化してもよ
い。そのときは試料水等3には酸化試薬を添加してもよ
いし、しなくてもよい。測定終了後の試料水等3は導入
排出機構4から排出される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment. Reference numeral 2 denotes an oxidation reaction container, into which sample water and an oxidizing reagent are introduced by a mechanism 4 for introducing and discharging sample water or the like provided at the bottom. Reference numeral 3 is a sample water or the like introduced into the oxidation reaction container 2, and the sample water contains an oxidizing reagent. As the oxidizing reagent, sulfuric acid, potassium peroxodisulfate and the like are used. The organic carbon in the sample water may be oxidized by UV irradiation instead of the oxidizing reagent. At that time, the oxidizing reagent may or may not be added to the sample water 3 or the like. The sample water 3 after the measurement is discharged from the introduction / discharge mechanism 4.

【0007】酸化反応容器2の下部にはスパージングガ
スを供給するスパージングガス供給流路6が設けられて
いる。スパージングガス供給流路6は高純度空気や窒素
など炭素成分を含まないスパーシングガスのガス源8か
ら流量調整器10、フローメータ12、流路切換えのた
めの三方電磁弁14、流路抵抗となる絞り16、及び酸
化反応容器2内の下部にスパージングガスを放出するバ
ブラー18を備えている。酸化反応容器2の上部には気
相部分があり、その気相部分には排出ガス流路20がつ
ながっている。排出ガス流路20には真空ポンプ22が
設けられている。真空ポンプ22は炭素成分を放出しな
いものであり、その一例は2段ダイヤフラム型真空ポン
プである。真空ポンプ22の下流には抽出された二酸化
炭素を含むスパージングガスから水分を除去するための
電子クーラ24が設けられ、電子クーラ24の下流に炭
酸ガス検出器である非分散型赤外分析計26が設けられ
ている。スパージングガス供給流路6に設けられている
三方電磁弁14の他方の接点(NO)は真空ポンプ22
と電子クーラ24の間の流路に接続されている。
A sparging gas supply channel 6 for supplying a sparging gas is provided below the oxidation reaction container 2. The sparging gas supply flow path 6 includes a gas source 8 of a sparging gas that does not contain carbon components such as high-purity air and nitrogen, a flow rate controller 10, a flow meter 12, a three-way solenoid valve 14 for switching the flow path, and a flow path resistance. A diaphragm 16 and a bubbler 18 for discharging sparging gas are provided below the oxidation reaction container 2. There is a vapor phase portion in the upper part of the oxidation reaction container 2, and the exhaust gas flow path 20 is connected to the vapor phase portion. A vacuum pump 22 is provided in the exhaust gas passage 20. The vacuum pump 22 does not emit a carbon component, and an example thereof is a two-stage diaphragm type vacuum pump. An electronic cooler 24 for removing water from the sparged gas containing the extracted carbon dioxide is provided downstream of the vacuum pump 22, and a non-dispersive infrared analyzer 26, which is a carbon dioxide gas detector, is provided downstream of the electronic cooler 24. Is provided. The other contact (NO) of the three-way solenoid valve 14 provided in the sparging gas supply channel 6 is a vacuum pump 22.
And the electronic cooler 24 are connected to the flow path.

【0008】次に、図1の実施例の動作について説明す
る。酸化反応容器2へ試料水等3を導入する操作を行な
うとき、酸化反応容器2中の試料水等3を排出する操作
を行なうとき、又は酸化反応容器2中で酸化反応を行な
わせているときは、三方電磁弁14をCOMとNOを接
続する方に設定してスパージングガスを酸化反応容器2
を経ないで分析計26に流しておく。酸化反応終了後は
三方電磁弁14をCOMとNCを接続する方に切り換
え、スパージングガスを絞り16を経てバブラー18か
ら試料水等3中に導入し、それとともに真空ポンプ22
を作動させる。スパージングガス供給流路6の絞り16
によって酸化反応容器2に流入するスパージングガス量
が制限され、酸化反応容器2の上部からは真空ポンプ2
2で排気されるので、酸化反応容器2内の気相の圧力は
常圧以下に下がり、減圧状態でスパージングが行なわれ
る。真空ポンプ22を通った二酸化炭素を含むスパージ
ングガスは常圧に戻り、電子クーラ24を経て分析計2
6に送られ、二酸化炭素濃度が測定される。
Next, the operation of the embodiment shown in FIG. 1 will be described. When performing an operation of introducing the sample water 3 or the like into the oxidation reaction vessel 2, performing an operation of discharging the sample water 3 or the like in the oxidation reaction vessel 2, or when performing an oxidation reaction in the oxidation reaction vessel 2. Sets the three-way solenoid valve 14 to one for connecting COM and NO to set the sparging gas to the oxidation reaction container 2
Flow through the analyzer 26 without passing. After the oxidation reaction is completed, the three-way solenoid valve 14 is switched to the one connecting COM and NC, and the sparging gas is introduced into the sample water 3 or the like from the bubbler 18 through the throttle 16, and the vacuum pump 22
Operate. Restrictor 16 of sparging gas supply channel 6
The amount of sparging gas flowing into the oxidation reaction container 2 is limited by the above, and the vacuum pump 2 is supplied from above the oxidation reaction container 2.
Since the gas is exhausted at 2, the pressure of the gas phase in the oxidation reaction container 2 drops below atmospheric pressure, and sparging is performed under reduced pressure. The sparging gas containing carbon dioxide that has passed through the vacuum pump 22 returns to normal pressure, passes through the electronic cooler 24, and then the analyzer 2
6, and the carbon dioxide concentration is measured.

【0009】図2に測定結果の一例を示す。試料水とし
ては炭素濃度が400ppbのもの250μlを酸化反
応容器2に導入して測定を行なった。スパージングガス
としては高純度空気を用い、その流量は150ml/分
とした。(A)は真空ポンプ22を働かせず、従来と同
じように常圧下でスパージングを行なって溶存二酸化炭
素を抽出した場合である。これに対し、(B)は真空ポ
ンプ22を作動させ、酸化反応容器2内の気相圧力を約
1/2気圧に減圧してスパージングを行なって溶存二酸
化炭素を抽出した場合である。(A)と(B)は縦軸、
横軸ともに同じスケールで表示している。従来の場合
(図2(A))と本実施例の場合(図2(B))とを比
較すれば、両者のピーク面積はほぼ等しいが、減圧にす
ることによってピーク高さが約2倍になっていることが
わかる。
FIG. 2 shows an example of the measurement result. 250 μl of sample water having a carbon concentration of 400 ppb was introduced into the oxidation reaction container 2 for measurement. High-purity air was used as the sparging gas, and the flow rate was 150 ml / min. (A) is a case where the dissolved carbon dioxide is extracted by sparging under normal pressure without operating the vacuum pump 22 as in the conventional case. On the other hand, (B) is a case where the vacuum pump 22 is operated, the gas phase pressure in the oxidation reaction container 2 is reduced to about 1/2 atm, and the sparging is performed to extract the dissolved carbon dioxide. (A) and (B) are vertical axes,
The horizontal axis shows the same scale. Comparing the conventional case (FIG. 2 (A)) and the case of this embodiment (FIG. 2 (B)), the peak areas of both are almost equal, but the peak height is approximately doubled by reducing the pressure. You can see that it is.

【0010】図3は第2の実施例を表わしたものであ
る。図1の実施例における電子クーラ24と分析計26
の間に加圧ポンプ28を設け、さらに分析計26の出口
に流路抵抗の絞り30を設けている。これにより、抽出
された二酸化炭素を圧縮して分析計26で検出するよう
にしている。分析計26で二酸化炭素を検出する場合、
その目的とする二酸化炭素がスパージングガス流路の流
れ方向に広く分散すればするほど検出器の出力ピークは
なだらかな形状となり、微量測定に不利となる。それに
対し、図1の実施例のように減圧下でスパージングをし
て二酸化炭素を抽出し、その抽出された二酸化炭素を検
出するときは常圧に戻すことによって出力信号のピーク
を急峻にするのに有利であり、さらに図3の実施例のよ
うに抽出二酸化炭素を含むスパージングガスを積極的に
圧縮することによってスパージングガスの流れ方向に対
する二酸化炭素の分散をさらに小さくすることによっ
て、出力信号のピーク高さをさらに高くすることができ
る。
FIG. 3 shows a second embodiment. The electronic cooler 24 and the analyzer 26 in the embodiment of FIG.
A pressurizing pump 28 is provided between them, and a passage resistance throttle 30 is provided at the outlet of the analyzer 26. Thereby, the extracted carbon dioxide is compressed and detected by the analyzer 26. When detecting carbon dioxide with the analyzer 26,
The wider the target carbon dioxide is dispersed in the flow direction of the sparging gas flow path, the more gently the output peak of the detector becomes, which is disadvantageous for trace measurement. On the other hand, as in the embodiment of FIG. 1, carbon dioxide is extracted by performing sparging under reduced pressure, and when the extracted carbon dioxide is detected, the peak of the output signal is made sharp by returning to normal pressure. Further, as in the embodiment of FIG. 3, by actively compressing the sparging gas containing the extracted carbon dioxide to further reduce the dispersion of carbon dioxide in the flow direction of the sparging gas, the peak of the output signal can be obtained. The height can be further increased.

【0011】[0011]

【発明の効果】酸化反応容器中の溶存二酸化炭素を抽出
するスパージングを減圧下で行ない、抽出された二酸化
炭素を常圧下又は加圧下で検出するようにしたので、常
圧のスパージングガス流量に換算したとき少量のスパー
ジングガスで溶存二酸化炭素を効率よく抽出することが
でき、したがって常圧に戻したときにはスパージングガ
ス中の二酸化炭素濃度を濃縮することができる。その結
果、炭酸ガス検出器の仕様を変更することなく、高感度
な二酸化炭素検出を行なうことができるようになる。
EFFECTS OF THE INVENTION Since sparging for extracting dissolved carbon dioxide in an oxidation reaction vessel is carried out under reduced pressure, and the extracted carbon dioxide is detected under normal pressure or under increased pressure, it is converted into the normal pressure sparging gas flow rate. At this time, the dissolved carbon dioxide can be efficiently extracted with a small amount of sparging gas, and therefore, the carbon dioxide concentration in the sparging gas can be concentrated when the pressure is returned to normal pressure. As a result, highly sensitive carbon dioxide detection can be performed without changing the specifications of the carbon dioxide detector.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施例を示す流路図である。FIG. 1 is a flow chart showing an example.

【図2】従来例と本実施例での測定結果を比較する図で
あり、(A)は従来の常圧下でのスパージングによる
例、(B)は一実施例による減圧下でのスパージングに
よる例である。
2A and 2B are diagrams comparing measurement results of a conventional example and this example, FIG. 2A is an example of conventional sparging under normal pressure, and FIG. 2B is an example of sparging under reduced pressure according to one example. Is.

【図3】他の実施例における排出ガス流路及び炭酸ガス
検出器部分を示す流路図である。
FIG. 3 is a flow chart showing an exhaust gas flow passage and a carbon dioxide gas detector portion in another embodiment.

【符号の説明】[Explanation of symbols]

2 酸化反応容器 3 試料水等 4 試料水等の導入排出機構 6 スパージングガス供給流路 14 三方電磁弁 16,30 絞り 20 排出ガス流路 22 真空ポンプ 26 非分散型赤外分析計 28 加圧ポンプ 2 Oxidation reaction vessel 3 Sample water, etc. 4 Introduction mechanism of sample water, etc. Discharge mechanism 6 Sparging gas supply flow path 14 Three-way solenoid valve 16, 30 Throttle 20 Exhaust gas flow path 22 Vacuum pump 26 Non-dispersive infrared analyzer 28 Pressurization pump

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 試料水中の全有機体炭素を二酸化炭素に
変換する酸化反応容器と、前記酸化反応容器内の試料水
中に炭素成分を含まないスパージングガスを流路抵抗を
介して供給するスパージングガス供給流路と、排気手段
を備え前記酸化反応容器内の気相部分を減圧状態として
試料水中の二酸化炭素をスパージングガスにより抽出し
て排出させる排出ガス流路と、前記排出ガス流路により
導かれた二酸化炭素を検出する炭酸ガス検出器とを備え
たことを特徴とする全有機体炭素測定装置。
1. An oxidation reaction vessel for converting all organic carbon in sample water into carbon dioxide, and a sparging gas for supplying a sparging gas containing no carbon component to the sample water in the oxidation reaction vessel via a flow path resistance. A supply flow path, an exhaust gas flow path which is provided with an exhaust means and which makes the gas phase portion in the oxidation reaction vessel a decompressed state to extract carbon dioxide in the sample water by a sparging gas and discharges it, and is guided by the exhaust gas flow path. And a carbon dioxide gas detector for detecting carbon dioxide.
JP22349692A 1992-07-29 1992-07-29 All organic body carbon measuring device Pending JPH0650956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22349692A JPH0650956A (en) 1992-07-29 1992-07-29 All organic body carbon measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22349692A JPH0650956A (en) 1992-07-29 1992-07-29 All organic body carbon measuring device

Publications (1)

Publication Number Publication Date
JPH0650956A true JPH0650956A (en) 1994-02-25

Family

ID=16799057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22349692A Pending JPH0650956A (en) 1992-07-29 1992-07-29 All organic body carbon measuring device

Country Status (1)

Country Link
JP (1) JPH0650956A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987000692A1 (en) * 1985-07-26 1987-01-29 Hitachi, Ltd. Semiconductor device
GB2389903A (en) * 2002-04-16 2003-12-24 Univ Bern Providing a gaseous product for analysis
WO2012093482A1 (en) * 2011-01-06 2012-07-12 株式会社島津製作所 Measurement device for total organic carbon

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987000692A1 (en) * 1985-07-26 1987-01-29 Hitachi, Ltd. Semiconductor device
GB2389903A (en) * 2002-04-16 2003-12-24 Univ Bern Providing a gaseous product for analysis
GB2389903B (en) * 2002-04-16 2006-06-07 Univ Bern Process and apparatus for providing a gaseous substance for the analysis of chemical elements or compounds
US7985597B2 (en) 2002-04-16 2011-07-26 Universitat Bern Process and apparatus for providing a gaseous substance for the analysis of chemical elements or compounds
WO2012093482A1 (en) * 2011-01-06 2012-07-12 株式会社島津製作所 Measurement device for total organic carbon
US9194850B2 (en) 2011-01-06 2015-11-24 Shimadzu Corporation Measurement device for total organic carbon

Similar Documents

Publication Publication Date Title
US4775634A (en) Method and apparatus for measuring dissolved organic carbon in a water sample
US5494824A (en) Apparatus for measuring aldehye
EP0469437B1 (en) Method of and apparatus for preparing calibration gas
EP0338744A2 (en) Apparatus and method for measuring dissolved gas in oil
JP2002504682A (en) Method and apparatus for the definition of gaseous compounds
US6355150B1 (en) Analyzer for measuring H2S and its use for a sulfur oxidation reactor
JP5317692B2 (en) Plasma spectroscopy system with gas supply
JP2980556B2 (en) Particle sampling system for gas supply system
EP1148337B1 (en) Method for analyzing impurities in a gas stream
JPH0650956A (en) All organic body carbon measuring device
JPH08501393A (en) Apparatus and method for measuring nitrogen content in a water-containing system
TW550384B (en) Method and apparatus for analyzing impurities in gases
CA2215875A1 (en) Apparatus for high oxygen concentration measurement using limiting current oxygen sensor
KR20030022849A (en) A method for measuring the total concentration of carbon monoxide and hydrocarbons in oxygen by means of ion mobility spectrometry
Ek et al. Sequential injection analysis system for the determination of hydride-forming elements by direct current plasma atomic emission spectrometry
SU1713882A1 (en) Method of measuring hydrogen concentration
JP4185728B2 (en) Method and apparatus for analyzing trace impurities in gas
JPH057567Y2 (en)
JP7234202B2 (en) Apparatus and method for continuous analysis of dissolved inorganic carbon (DIC) concentration and its isotopic carbon and oxygen composition
CA2037514A1 (en) Method and apparatus for measuring the water soluble strong acids suspended in air
GB1591368A (en) Apparatus for analysis of samples by combustion
JPH10239280A (en) Mass spectrometry method and sample gas mixing device
JP3796163B2 (en) Nitrogen oxide measuring device
JP4515135B2 (en) Gas analysis method, gas analyzer, and inspection apparatus using the same
JPH0580022A (en) Device for measuring amount of carbon