JPH0650729B2 - Method for forming amorphous semiconductor film - Google Patents

Method for forming amorphous semiconductor film

Info

Publication number
JPH0650729B2
JPH0650729B2 JP60212922A JP21292285A JPH0650729B2 JP H0650729 B2 JPH0650729 B2 JP H0650729B2 JP 60212922 A JP60212922 A JP 60212922A JP 21292285 A JP21292285 A JP 21292285A JP H0650729 B2 JPH0650729 B2 JP H0650729B2
Authority
JP
Japan
Prior art keywords
gas
substrate
raw material
semiconductor film
amorphous semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60212922A
Other languages
Japanese (ja)
Other versions
JPS6273622A (en
Inventor
栄一郎 田中
昭雄 滝本
浩二 秋山
晋匡 倉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60212922A priority Critical patent/JPH0650729B2/en
Publication of JPS6273622A publication Critical patent/JPS6273622A/en
Publication of JPH0650729B2 publication Critical patent/JPH0650729B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はシリコン、ゲルニューム、カーボンなどの局在
化状態密度を減少せしめる補償元素を含む非晶質半導体
膜を形成する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an amorphous semiconductor film containing a compensating element such as silicon, germanium, carbon, etc., which reduces the localized density of states.

従来の技術 太陽電池、電子写真感光体などの非晶質シリコン、非晶
質ゲルマニューム、非晶質カーボンなどの非晶質半導体
膜の形成には従来、比較的低温で薄膜が形成できるプラ
ズCVD法が最もよく使用されている。この方法は、例
えば非晶質シリコン膜を形成する場合、原料ガスとして
SiH4(シランガス)あるいはSiH4とHの混合ガスを使
用し、基板温度を200〜350℃に、またガス圧力を
0.1〜10Torrに制御しながら電極と対向した基板間に
高周波電力を印加してプラズマを発生させ、シランガス
を分解して基板上に膜を形成する方法である。この場
合、堆積速度は約3μm/hと遅く、約20μm以上を
要する電子写真感光体を製作する場合には6時間以上を
必要とし、迅速な量産が困難である。また、堆積速度を
上げるために高周波電力を増加すると、原料ガス中で気
相反応により粉体状のシリコンが大量に発生し、製造装
置の排気系にめづまりを起こし量産上大きな問題であっ
た。
2. Description of the Related Art Conventionally, a plasma CVD method capable of forming a thin film at a relatively low temperature has been used for forming an amorphous semiconductor film such as amorphous silicon for a solar cell or an electrophotographic photoreceptor, amorphous germanium, or amorphous carbon. Is most commonly used. This method is used as a source gas when forming an amorphous silicon film, for example.
SiH 4 (silane gas) or mixed gas of SiH 4 and H 2 is used, the substrate temperature is 200 to 350 ° C., and the gas pressure is
This is a method of applying high frequency power between the substrates facing the electrodes to generate plasma while controlling to 0.1 to 10 Torr to decompose silane gas to form a film on the substrate. In this case, the deposition rate is as slow as about 3 μm / h, and it takes 6 hours or more to manufacture an electrophotographic photosensitive member requiring about 20 μm or more, which makes rapid mass production difficult. Further, when the high frequency power is increased to increase the deposition rate, a large amount of powdery silicon is generated due to a gas phase reaction in the raw material gas, which causes a problem in the exhaust system of the manufacturing apparatus, which is a big problem in mass production.

上記のプラズCVD装置の持つ問題点を解決する手段と
して提案されたのが、電子サイクロトロン共鳴(EC
R)を用いたプラズCVD装置である。(特開昭56−
155535号公報、特開昭59−159167号公
報) 第1図にこの装置の基本構成を示す。1はプラズマ生成
室、2は膜形成室であり、プラズマ生成室1はマグネト
ロン電源(図示せず)と導波管3及び導波用窓4で接続
されており、その外周には磁気コイル5が設置されてい
る。また、プラズマ生成室1はその外部に配した水冷パ
イプ6で冷却されている。プラズマ生成室1には第1ガ
ス導入口7よりプラズマ励起用ガスを導入し、マイクロ
波によりプラズマ生成室1内にプラズマを励起し、更に
磁場を印加することによりプラズマ中に電子サイクロト
ロン共鳴を起こし、拡散磁界によりプラズマを導入口8
より膜形成室2に配置された基板ホルダー9上の基板1
0に導く。膜形成室2に第2ガス導入口11,11Aよ
り原料ガスを導入しプラズマと接触させ、原料ガス12
を分解し膜を堆積させる。
Electron cyclotron resonance (EC) has been proposed as a means for solving the problems of the above-mentioned plasma CVD apparatus.
It is a plasma CVD apparatus using R). (JP-A-56-
No. 155535, Japanese Patent Laid-Open No. 59-159167) FIG. 1 shows the basic configuration of this device. Reference numeral 1 is a plasma generation chamber, 2 is a film formation chamber, and the plasma generation chamber 1 is connected to a magnetron power source (not shown) through a waveguide 3 and a waveguide window 4, and a magnetic coil 5 is provided on the outer periphery thereof. Is installed. The plasma generation chamber 1 is cooled by a water cooling pipe 6 arranged outside the plasma generation chamber 1. A plasma excitation gas is introduced into the plasma generation chamber 1 through the first gas inlet 7, plasma is excited in the plasma generation chamber 1 by microwaves, and a magnetic field is further applied to cause electron cyclotron resonance in the plasma. , Plasma introduction port 8 by diffusion magnetic field
Substrate 1 on substrate holder 9 arranged in film formation chamber 2
Lead to 0. The raw material gas is introduced into the film forming chamber 2 through the second gas introduction ports 11 and 11A and brought into contact with plasma, and the raw material gas 12
To decompose and deposit a film.

この方法は、電子サイクロトロン共鳴を用いていること
から、2×10−5〜0.1Torrの低圧力下でも放電の持
続が可能になっており、更に膜形成に利用されるエネル
ギーは基板に入射するイオンの有するエネルギーで与え
られ、膜表面のイオンの衝突が膜をちみつにするため、
基板温度を室温に設定している場合においても良質な膜
が得られる。この方法により半導体プロセス用として良
質なSi3N4、SiO2などの絶縁層、またはSiを低温で形成
できることが示されている。これは、ごく表面のみがイ
オンエネネルギーによって高温に上昇しSi−Hの結合を
立ち切ることによると考えられている。
Since this method uses electron cyclotron resonance, discharge can be sustained even under a low pressure of 2 × 10 −5 to 0.1 Torr, and energy used for film formation is incident on the substrate. Given by the energy of the ions, the collision of ions on the film surface causes the film to honey,
A good film can be obtained even when the substrate temperature is set to room temperature. It has been shown that this method can form a good quality insulating layer such as Si 3 N 4 or SiO 2 or Si for a semiconductor process at a low temperature. It is believed that this is because only the very surface rises to a high temperature due to ion energy and breaks the Si—H bond.

一方、特開昭59−159167号公報には、励起ガス
して不活性ガス、水素を含むガスを用いて非晶質シリコ
ン膜を堆積することが開示されている。しかしながらこ
れは、プラズマの影響を避けるため0.1Torr以上にて堆
積するものであり、基板加熱を必要とする従来のCVD
法と同じ堆積機構のためシリコン粉体の発生も多く、非
晶質シリコンを用いた電子写真感光体のような20μm
以上の厚みを必要とする場合、粉体の処理が製造上非常
に重要な課題となっていた。
On the other hand, Japanese Patent Application Laid-Open No. 59-159167 discloses that an amorphous silicon film is deposited by using a gas containing an inert gas and hydrogen as an exciting gas. However, this is deposited at 0.1 Torr or more in order to avoid the influence of plasma, and the conventional CVD that requires substrate heating is used.
Due to the same deposition mechanism as in the method, silicon powder is often generated, and it is 20 μm like the electrophotographic photoreceptor using amorphous silicon.
When the above thickness is required, processing of powder has been a very important issue in manufacturing.

発明が解決しようとする問題点 上記のようなECRを用いたCVD法は低温で高速に絶
縁膜の堆積ができる半面、良質な半導体膜を形成するに
は基板加熱が必要で、またCVD法の欠点であったシリ
コン粉体の発生についてもまだまだ未解決の状態であ
る。
Problems to be Solved by the Invention While the CVD method using ECR as described above allows an insulating film to be deposited at a low temperature and at a high speed, substrate heating is required to form a good-quality semiconductor film. The generation of silicon powder, which was a drawback, is still unsolved.

つまり、イオンの入射により局在化状態密度を減少せし
める1価補償元素である水素を含む良質な非晶質半導体
膜が室温にて形成できるか否かについては未知の状態で
ある。
That is, it is unknown whether or not a high-quality amorphous semiconductor film containing hydrogen, which is a monovalent compensating element that reduces the localized density of states by the incidence of ions, can be formed at room temperature.

本発明は、粉体の発生量が著しく少なく、また室温にお
いては良質な非晶質半導体膜が大面積においても均一に
得られる非晶質半導体膜の堆積方法の実現を目的とす
る。
It is an object of the present invention to realize a method for depositing an amorphous semiconductor film in which the amount of powder generated is extremely small and a good quality amorphous semiconductor film can be obtained uniformly at room temperature even in a large area.

問題点を解決するための手段 被着される基板が配置された減圧容器内に、被着膜原材
料であるガス化された分子を導入し前記基板上に稚積す
る非晶質膜の形成方法であって、電気的放電を用いて励
起ガスを前励起しイオンを含む励起されたガスを前記容
器内に導入された前記原材料ガスと接触させ、その原材
料ガスをラジカル化し前記基板上に堆積する工程を含
み、前記基板と前記イオン及びラジカルを含むプラズマ
を導入する導入口との間の距離(dとする)が、容器内
に存在する分子の平均自由行程(λとする)に対しd<
100λとなるガス圧とするとともに、前記励起ガスと
前記原材料ガスの流量をそれぞれFa、Fmとした時の
比がFm/(Fa+Fm)<0.9となるガス流比にて堆
積する。
Means for Solving Problems A method for forming an amorphous film in which gasified molecules, which are a raw material for a film to be deposited, are introduced into a decompression container in which a substrate to be deposited is placed and then deposited on the substrate. And pre-exciting an excited gas using an electric discharge to bring the excited gas containing ions into contact with the raw material gas introduced into the container, radicalize the raw material gas and deposit it on the substrate. Including the steps, the distance between the substrate and the inlet for introducing the plasma containing the ions and radicals (d) is d <with respect to the mean free path of the molecules existing in the container (λ).
The gas pressure is 100 λ, and the gas flow ratio is Fm / (Fa + Fm) <0.9 when the flow rates of the excitation gas and the raw material gas are Fa and Fm, respectively.

作用 電気的放電によって励起されイオン化された励起ガスは
基板が設置された容器内に導入される時、イオンは電子
をひきつれ原材料ガスと接触し多量のラジカルを生成す
る。このラジカルは基板表面まで拡散し基板上の膜材料
と反応し堆積する。
When the excited gas that is excited and ionized by the electric discharge is introduced into the container in which the substrate is installed, the ions attract electrons and come into contact with the raw material gas to generate a large amount of radicals. These radicals diffuse to the surface of the substrate and react with the film material on the substrate to be deposited.

その際、イオンの寿命は比較的短く、プラズマの存在し
ないシース内に存在する中性分子との衝突により基板に
付着する前にエネルギーを失う。このため、多量に発生
したイオンも基板に到達する量は極く少ないことが、堆
積速度を遅くしている原因と考えられる。またこの際、
気相においてイオン、ラジカルどうしの衝突により多量
の気相反応が誘起され半導体材料のポリマーが発生し、
反応容器内に粉体を付着させる。
At that time, the lifetime of the ions is relatively short, and energy is lost before they are attached to the substrate due to collision with neutral molecules existing in the sheath where plasma is not present. Therefore, it is considered that the reason why the deposition rate is slowed is that the amount of ions generated in a large amount reaches the substrate is extremely small. Also at this time,
In the gas phase, a large amount of gas phase reaction is induced by collision of ions and radicals, and a polymer of semiconductor material is generated,
The powder is deposited in the reaction vessel.

従って、プラズマの導入口と基板間の距離に対して分子
の平均自由行程が十分大きくなるように反応容器内の分
子の圧力を制御することにより、粉体の発生を著しく減
少させることが出来る。また、励起ガスプラズマのイオ
ンが十分なエネルギーを持った状態で基板に入射させる
ことにより、室温においても、局在化状態密度を減少せ
しめる1価原子を含む光感度の高い良質な半導体膜を形
成することができる。
Therefore, by controlling the pressure of the molecules in the reaction vessel so that the mean free path of the molecules becomes sufficiently large with respect to the distance between the plasma inlet and the substrate, the generation of powder can be significantly reduced. Further, by making the ions of the excited gas plasma incident on the substrate in a state having sufficient energy, a high-quality semiconductor film with high photosensitivity containing monovalent atoms that reduces the localized density of states is formed even at room temperature. can do.

また、この時入射するイオンの量が堆積する分子に対し
て一定量以上を必要とすることから原料ガスが励起ガス
に対しその流量化を一定量以下とすることが必要である
と考えられる。
Further, at this time, the amount of incident ions needs to be a certain amount or more with respect to the deposited molecules, so that it is considered necessary that the flow rate of the source gas with respect to the excited gas be made a certain amount or less.

実施例 以下、図面をもって本発明の実施例について述べる。Embodiments Embodiments of the present invention will be described below with reference to the drawings.

〔実施例1〕 第1図に示す従来と同様の膜堆積装置を用いた。イオン
源には励起ガスとして水素を含むガスを励起ガス導入口
7より導入した。プラズマを発生させるために2.45GHz
のマイクロ波を空洞共振器を構成するプラズマ生成室1
に導き、励起ガスを励起する。プラズマ生成室1には外
部磁気コイル5より磁界を印加し、プラズマを反応容器
2内に導く発散磁界(空洞共振器から反応容器内に近ず
くにつれて磁界が弱くなる)を形成した。この磁界はプ
ラズマ生成室1の中央付近にて電子サイクロトロン共鳴
条件を満足するよう設定した。発散磁界によってプラズ
マは反応容器を構成する膜形成室2内に導入口8から導
入され、膜形成室2内にて原料ガス導入11Aより導入
されたシランガス(SiH4)と接触し、シランガスをラジ
カル化した。この時の磁界は最大約1KGであった。こ
の時、膜形成室2では、プラズマと電気的に絶縁された
基板10との間にシースを形成し自己負バイアス約20
Vが誘起されている。このためプラズマ中の陽イオンは
基板に加速される。この時反応室の圧力は原料ガスで5
×10−2〜3×10−4Torrにポンプによって排気、
制御した。またプラズマ導入口8から基板10までの距
離は約15cmに設定した。この時導入されたガス分子の
平均自由行程は0.15〜20cmである。このような状態に
て基板10上に堆積した非晶質シリコン膜の、室温にお
ける暗導電率、光伝導率(546nm光で1.4μW/c
m2)、および水素含有量を赤外吸収の吸光度からもとめ
た。基板は室温からヒータ13により350℃まで制御
したが基板温度に対する依存性は認められなかった。
Example 1 A film deposition apparatus similar to the conventional one shown in FIG. 1 was used. A gas containing hydrogen as an exciting gas was introduced into the ion source through the exciting gas inlet 7. 2.45GHz to generate plasma
Plasma generation chamber 1 which forms a cavity resonator
To excite the excited gas. A magnetic field was applied to the plasma generation chamber 1 from the external magnetic coil 5 to form a divergent magnetic field for guiding plasma into the reaction vessel 2 (the magnetic field becomes weaker as it approaches the reaction vessel from the cavity resonator). This magnetic field was set to satisfy the electron cyclotron resonance condition near the center of the plasma generation chamber 1. Due to the divergent magnetic field, plasma is introduced into the film forming chamber 2 forming the reaction vessel through the inlet 8 and contacts the silane gas (SiH 4 ) introduced from the source gas introduction 11A in the film forming chamber 2 to radicalize the silane gas. Turned into The maximum magnetic field at this time was about 1 KG. At this time, in the film forming chamber 2, a sheath is formed between the plasma and the electrically insulated substrate 10 so that a self-negative bias of about 20 is obtained.
V is induced. Therefore, the positive ions in the plasma are accelerated to the substrate. At this time, the pressure in the reaction chamber is 5
Exhausted by a pump to × 10 −2 to 3 × 10 −4 Torr,
Controlled. The distance from the plasma inlet 8 to the substrate 10 was set to about 15 cm. The mean free path of the gas molecules introduced at this time is 0.15 to 20 cm. Dark conductivity and photoconductivity (1.4 μW / c at 546 nm light) of the amorphous silicon film deposited on the substrate 10 in such a state at room temperature.
m 2 ), and hydrogen content were determined from the absorbance of infrared absorption. The temperature of the substrate was controlled from room temperature to 350 ° C. by the heater 13, but no dependency on the substrate temperature was recognized.

またこの時の堆積速度は11μm/hと非常に早いこと
が確認された。
Further, it was confirmed that the deposition rate at this time was as high as 11 μm / h.

第2図に暗導電率と光導電率の結果を示す。図中21
a,21bは、それぞれ原料ガスと励起ガスにSiH4とH
をもちい、それぞれの流量比SiH4/(SiH4+H)が
67%、22a,22bは流量の比が34%の条件で作
成したものであり、21b,22bは暗導電率、21
a,22aは光導電率を示す。ガス導入口と基板までの
距離が15cmであるため、膜形成室内に存在する分子に
対し平均自由行程λ(0.15cm)の100倍となる5×1
−2Torr付近で光導電率が暗導電率と等しくなる。ま
た、λの約20倍となる1×10−3では十分良好な光
感度が得られるようになる。一方、5×10−4Torrで
の原料ガスと励起ガスの流量の比によって非晶質シリコ
ン膜に含まれる水素量が変わる。このようすを第6図に
示す。61は励起ガスに水素を100%、62は励起ガ
スにHeを用いた場合について示したもので、それぞれ4
0〜14atm%、13〜5atm%まで変化する事が分かっ
た。このような水素量の変化にも拘らず、光感度は高く
良質な非晶質半導体膜が形成できた。
Figure 2 shows the results of dark conductivity and photoconductivity. 21 in the figure
a and 21b are SiH 4 and H for the source gas and the excitation gas, respectively.
2 and the respective flow rate ratios SiH 4 / (SiH 4 + H 2 ) are 67%, 22a and 22b are prepared under the condition that the flow rate ratio is 34%, and 21b and 22b are dark conductivity, 21
a and 22a represent photoconductivity. Since the distance between the gas inlet and the substrate is 15 cm, it is 100 times the mean free path λ (0.15 cm) of the molecules in the film formation chamber.
The photoconductivity becomes equal to the dark conductivity near 0 −2 Torr. Further, at 1 × 10 −3 which is about 20 times λ, sufficiently good photosensitivity can be obtained. On the other hand, the amount of hydrogen contained in the amorphous silicon film changes depending on the ratio of the flow rates of the source gas and the excitation gas at 5 × 10 −4 Torr. This is shown in FIG. 61 is the case where hydrogen is used as the exciting gas, and 62 is the case where He is used as the exciting gas.
It was found that it changed from 0 to 14 atm% and 13 to 5 atm%. Despite this change in the amount of hydrogen, an amorphous semiconductor film with high photosensitivity and high quality could be formed.

また、このような堆積条件では通常のプラズマCVD法
と明らかに異なり、堆積容器内のシリコン粉体の発生量
が著しく少なく、電子写真感光体に必要な20μm以上
の膜厚に堆積しても粉体の発生が極めて少ないため、装
置の保守に必要だった時間が不用になるため生産性が著
しく向上することができた。
Further, under such a deposition condition, unlike the ordinary plasma CVD method, the amount of silicon powder generated in the deposition container is remarkably small, and even if the film is deposited to a film thickness of 20 μm or more required for the electrophotographic photoreceptor, the powder is not produced. Since the generation of the body is extremely small, the time required for the maintenance of the device is not required, and the productivity can be remarkably improved.

次に励起ガスと原料ガスの比を変えて堆積速度及び光感
度の測定を行なった。第3図における31a,31bは
水素を励起ガスとし、原料ガスとしてSiH4を用いた結果
を示す。横軸は原料ガス流量/(原料ガス流量+励起ガ
ス流量)をパーセントで示している。31bは室温での
暗導電率を、31aは光導電率を示す。5×10−4To
rrでも90%では光感度は著しく減少し、60%以下で
は、良好な光感度が得られている。
Next, the deposition rate and photosensitivity were measured by changing the ratio of the excitation gas and the source gas. 31a and 31b in FIG. 3 show the results when hydrogen was used as the excitation gas and SiH 4 was used as the source gas. The horizontal axis represents the raw material gas flow rate / (raw material gas flow rate + excitation gas flow rate) in percent. 31b shows dark conductivity at room temperature, and 31a shows photoconductivity. 5 × 10 -4 To
When rr is 90%, the photosensitivity is remarkably reduced, and when it is 60% or less, good photosensitivity is obtained.

また、第4図に膜堆積速度の結果を示す。図中41では
50%付近で飽和しつつあるものの10μm/H以上の
堆積速度が得られている。50%以下では急激に減少し
Oに直接的に接近する。下限値は製造時間を制限する堆
積速度で制約される。
Further, FIG. 4 shows the results of the film deposition rate. In 41 in the figure, although it is saturated at around 50%, a deposition rate of 10 μm / H or more is obtained. When it is less than 50%, it rapidly decreases and approaches O directly. The lower limit is constrained by the deposition rate which limits manufacturing time.

また、原料ガスしてSiH4を用いたが、他のSiF4,SiC
l4,Si2H6,Si2F6,SiH2H2,SiH3F,SiHCl3などのシリ
コン系ガスのほかに、GeH4,GeF4,GeH2F2,Ge2F6,GeH
3F,GeHF3などのゲルマニューム系ガスを用いて非晶質
ゲルマニューム、あるいは非晶質シリコン、ゲルマニュ
ーム半導体膜を形成することもできる。
Although SiH 4 was used as the source gas, other SiF 4 , SiC
In addition to silicon-based gases such as l 4 , Si 2 H 6 , Si 2 F 6 , SiH 2 H 2 , SiH 3 F, and SiHCl 3 , GeH 4 , GeF 4 , GeH 2 F 2 , Ge 2 F 6 , GeH
Amorphous germanium or amorphous silicon or germanium semiconductor film can be formed by using germanium-based gas such as 3 F or GeHF 3 .

また、CH4,C2H6,C2H4,C3H6,n−C4H10,i−C
4H10,C4H8,CH3Cl,C2H5Cl,CH3Br,Si(C2H5)4,Si(C
H3)4,SiCl(CH3)3,SiCl2(CH3)2,SiCl3CH3を用いて非
晶質カーボン膜、あるいは上記シリコン、ゲルマニュー
ムガスと混合し、非晶質ゲルマニュームカーバイド、非
晶質シリコンカーバイド、非晶質ゲルマニュームシリコ
ンカーバイド等の半導体膜も形成出来る。
Further, CH 4, C 2 H 6 , C 2 H 4, C 3 H 6, n-C 4 H 10, i-C
4 H 10 , C 4 H 8 , CH 3 Cl, C 2 H 5 Cl, CH 3 Br, Si (C 2 H 5 ) 4 , Si (C
H 3) 4, SiCl (CH 3) 3, SiCl 2 (CH 3) amorphous carbon film by using the 2, SiCl 3 CH 3, or mixed with the silicon, germanium gas, an amorphous germanium carbide, non Semiconductor films such as crystalline silicon carbide and amorphous germanium silicon carbide can also be formed.

〔実施例2〕 次に、第1図の装置を用いて堆積容器内にドーピングガ
スとしてB2H6を添加した場合について述べる。
Example 2 Next, the case where B 2 H 6 is added as a doping gas into the deposition container using the apparatus shown in FIG. 1 will be described.

第5図に、5×10−4Torr、SiH4/Hが34%でB2
H6の量を変化させて第3図と同様に暗導電率51bと光
導電率51aを測定した結果を示す。一方、5×10
−2Torrでは、52b,52aに示すように感度が低
く、またシリコン粉体の発生量も著しく増加してくる。
In Figure 5, 5x10 -4 Torr, SiH 4 / H 2 at 34% B 2
The results of measuring the dark conductivity 51b and the photoconductivity 51a by changing the amount of H 6 are shown as in FIG. On the other hand, 5 × 10
At -2 Torr, the sensitivity is low as shown by 52b and 52a, and the amount of silicon powder generated is remarkably increased.

〔実施例3〕 次に、励起ガスとしてHeガスを用いたが、第4図42の
ようにHガスと同様に堆積速度も高い。また、第3図
32a,32bに示すように高い光感度の良質な半導体
膜が得られる。図中32aは光導電率を32bは室温に
おける暗導電率を示す。励起ガスして水素を混合しても
同じような結果が得られる。
[Example 3] Next, He gas was used as the excitation gas, but the deposition rate is high as in the case of H 2 gas as shown in FIG. Moreover, as shown in FIGS. 32a and 32b, a high-quality semiconductor film having high photosensitivity can be obtained. In the figure, 32a indicates photoconductivity and 32b indicates dark conductivity at room temperature. Similar results can be obtained by mixing hydrogen as the exciting gas.

ドーピング材料としては、B以外にもP、As、Gaなどの
ガス化可能な材料はすべて適応出来ることは明らかであ
る。
As the doping material, it is clear that in addition to B, all gasifiable materials such as P, As and Ga can be applied.

発明の効果 本発明によると、極めて早い堆積速度でしかも反応容器
内にほとんど粉体を発生させずに低温にて良質な非晶質
半導体膜を堆積できる。さらに半導体膜には局在化状態
密度を減少せしめる1価元素を含み価電子制御が可能な
非晶質半導体膜が容易に得られる。
EFFECTS OF THE INVENTION According to the present invention, a good quality amorphous semiconductor film can be deposited at a very high deposition rate and at a low temperature with almost no powder generated in the reaction vessel. Furthermore, an amorphous semiconductor film containing a monovalent element that reduces the localized density of states in the semiconductor film and capable of controlling valence electrons can be easily obtained.

これにより、電子写真感光体、太陽電池などの非晶質半
導体膜をもちいた機能デバイスは従来のCVD法に比較
して更に安価に、容易に製造できる。
As a result, a functional device using an amorphous semiconductor film, such as an electrophotographic photoreceptor or a solar cell, can be manufactured more easily at a lower cost than the conventional CVD method.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に用いる堆積装置の一実施例を示す概略
図、第2図,第3図はそれぞれ本発明に係わる非晶質半
導体膜の暗導電率,光導電率を示す特性図、第4図は本
発明に係わる非晶質半導体膜の堆積速度を示す特性図、
第5図はBドープによる暗導電率,光導電率の変化を示
す特性図、第6図はガス流量比と膜中の水素濃度との関
係を示す特性図である。 1……プラズマ生成室、2……膜形成室、3……導波
管、4……導波用窓、5……磁気コイル、6……水冷パ
イプ、7……励起ガス導入口、8……プラズマ導入口、
9……基板ホルダ、10……基板、11,11A……原
料ガス導入口、12……原料ガス、13……ヒータ。
FIG. 1 is a schematic diagram showing one embodiment of a deposition apparatus used in the present invention, and FIGS. 2 and 3 are characteristic diagrams showing dark conductivity and photoconductivity of an amorphous semiconductor film according to the present invention, FIG. 4 is a characteristic diagram showing the deposition rate of an amorphous semiconductor film according to the present invention,
FIG. 5 is a characteristic diagram showing changes in dark conductivity and photoconductivity due to B doping, and FIG. 6 is a characteristic diagram showing a relationship between gas flow rate ratio and hydrogen concentration in the film. 1 ... Plasma generation chamber, 2 ... Film formation chamber, 3 ... Waveguide, 4 ... Waveguide window, 5 ... Magnetic coil, 6 ... Water cooling pipe, 7 ... Excitation gas inlet, 8 ...... Plasma inlet,
9 ... Substrate holder, 10 ... Substrate, 11, 11A ... Raw material gas inlet, 12 ... Raw material gas, 13 ... Heater.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】被着される基板が配置された減圧された容
器内に、被着膜原材料のガス化された原材料ガスを導入
し前記基板上に堆積する非晶質半導体膜の形成方法にお
いて、前記容器に隣接した空間で電気的放電を用いて励
起ガスを前励起し、イオンを含む励起されたガスを前記
容器内に導入された前記原材料ガスと接触させ、前記原
材料ガスをラジカル化し基板上に堆積する工程を含み、
前記基板と、前記イオン及びラジカルを含むプラズマを
導入する導入口との間の距離(dとする)が容器内の分
子の平均自由行程(λとする)に対しd<100λとな
るガス圧とするとともに、前記励起ガスと前記原材料ガ
スの流量をそれぞれFa、Fmとした時、Fm/(Fa
+Fm)<0.9となるガス流量比にて前記堆積工程を実
施する事を特徴とする非晶質半導体膜の形成方法。
1. A method for forming an amorphous semiconductor film, comprising introducing a gasified raw material gas of an adhered film raw material into a depressurized container in which a substrate to be adhered is placed and depositing the gas on the substrate. , Pre-exciting an excited gas using an electric discharge in a space adjacent to the container, contacting the excited gas containing ions with the raw material gas introduced into the container, radicalizing the raw material gas and a substrate Including depositing on,
A gas pressure at which the distance (d) between the substrate and the inlet for introducing the plasma containing the ions and radicals is d <100λ with respect to the mean free path (λ) of the molecules in the container; In addition, when the flow rates of the excitation gas and the raw material gas are Fa and Fm, respectively, Fm / (Fa
A method for forming an amorphous semiconductor film, characterized in that the deposition step is performed at a gas flow rate ratio of + Fm) <0.9.
【請求項2】原材料ガスにシリコンを含むガスを用い、
また励起ガスとして水素を含むガスを用い、水素を含む
非晶質シリコン膜を堆積する特許請求の範囲第1項記載
の非晶質半導体膜の形成方法。
2. A gas containing silicon is used as a raw material gas,
The method for forming an amorphous semiconductor film according to claim 1, wherein a gas containing hydrogen is used as an exciting gas to deposit an amorphous silicon film containing hydrogen.
【請求項3】励起ガスとして不活性ガスを用い、ガス流
量比をFm/(Fa+Fm)<0.6とすることを特徴と
する特許請求の範囲第1項記載の非晶質半導体膜の形成
方法。
3. The method for forming an amorphous semiconductor film according to claim 1, wherein an inert gas is used as the exciting gas, and the gas flow rate ratio is Fm / (Fa + Fm) <0.6.
JP60212922A 1985-09-26 1985-09-26 Method for forming amorphous semiconductor film Expired - Lifetime JPH0650729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60212922A JPH0650729B2 (en) 1985-09-26 1985-09-26 Method for forming amorphous semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60212922A JPH0650729B2 (en) 1985-09-26 1985-09-26 Method for forming amorphous semiconductor film

Publications (2)

Publication Number Publication Date
JPS6273622A JPS6273622A (en) 1987-04-04
JPH0650729B2 true JPH0650729B2 (en) 1994-06-29

Family

ID=16630505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60212922A Expired - Lifetime JPH0650729B2 (en) 1985-09-26 1985-09-26 Method for forming amorphous semiconductor film

Country Status (1)

Country Link
JP (1) JPH0650729B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658887B2 (en) * 1986-06-16 1994-08-03 株式会社日立製作所 Method for forming silicon-based amorphous film
JPH0732135B2 (en) * 1987-10-07 1995-04-10 松下電器産業株式会社 Method for manufacturing heterojunction element
JPH01295412A (en) * 1988-05-24 1989-11-29 Sumitomo Metal Ind Ltd Plasma vapor growth apparatus
JPH02208928A (en) * 1989-02-08 1990-08-20 Matsushita Electric Ind Co Ltd Manufacture of amorphous thin film
KR101207582B1 (en) * 2009-02-17 2012-12-05 한국생산기술연구원 Method for fabricating solar cell applications using inductively coupled plasma chemical vapor deposition

Also Published As

Publication number Publication date
JPS6273622A (en) 1987-04-04

Similar Documents

Publication Publication Date Title
US4818560A (en) Method for preparation of multi-layer structure film
US4371587A (en) Low temperature process for depositing oxide layers by photochemical vapor deposition
US4619729A (en) Microwave method of making semiconductor members
JPS6324923B2 (en)
JPH0676664B2 (en) Apparatus for forming functional deposited film by microwave plasma CVD method
JPH0514899B2 (en)
JPH0459390B2 (en)
JP2787148B2 (en) Method and apparatus for forming deposited film by microwave plasma CVD
JPH0650729B2 (en) Method for forming amorphous semiconductor film
JP2537175B2 (en) Functional deposition film manufacturing equipment
JPH081895B2 (en) Method for forming amorphous silicon film
GB2176052A (en) Photosensor
JPH0654754B2 (en) Method for forming amorphous semiconductor film
JP2547740B2 (en) Deposited film formation method
JPS6253587B2 (en)
JPH11251248A (en) Manufacture of silicon alloy film
JPS6254083A (en) Formation of film
JPS62151571A (en) Deposited film forming device
JP2554867B2 (en) Functional deposited film forming apparatus by microwave plasma CVD method
JP2553337B2 (en) Functional deposited film forming apparatus by microwave plasma CVD method
JPS62180074A (en) Formation of deposited film by plasma cvd method
JPS6350479A (en) Device for forming functional deposited film by microwave plasma cvd method
JPS6332863B2 (en)
JPS63230880A (en) Device for forming functional deposited film by microwave plasma cvd method
JPS61281872A (en) Formation for amorphous silicon germanium film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term