JPH0649964Y2 - Lead screw - Google Patents

Lead screw

Info

Publication number
JPH0649964Y2
JPH0649964Y2 JP1986066721U JP6672186U JPH0649964Y2 JP H0649964 Y2 JPH0649964 Y2 JP H0649964Y2 JP 1986066721 U JP1986066721 U JP 1986066721U JP 6672186 U JP6672186 U JP 6672186U JP H0649964 Y2 JPH0649964 Y2 JP H0649964Y2
Authority
JP
Japan
Prior art keywords
screw
nut
screw shaft
positioning accuracy
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986066721U
Other languages
Japanese (ja)
Other versions
JPS62177955U (en
Inventor
高之 加藤
洋司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP1986066721U priority Critical patent/JPH0649964Y2/en
Publication of JPS62177955U publication Critical patent/JPS62177955U/ja
Application granted granted Critical
Publication of JPH0649964Y2 publication Critical patent/JPH0649964Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transmission Devices (AREA)

Description

【考案の詳細な説明】 「産業上の利用分野」 本考案は、超精密位置決めが要求される半導体製造装置
のうちの露光装置や、磁気ディスク装置における検査装
置その他の測定機器における送りねじに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION "Industrial application field" The present invention relates to a lead screw in an exposure apparatus of a semiconductor manufacturing apparatus requiring ultra-precision positioning, an inspection apparatus in a magnetic disk apparatus, and other measuring instruments. Is.

「従来の技術」 送り機構として三角ねじや台形ねじを用いた送りねじ
は、従来より工作機械の刃物台用などに広く用いられ、
送りねじの材料は、金属が用いられている。近年、半導
体製造装置のうちでも露光装置などや、磁気ディスク装
置における検査装置、その他の測定機器において、1μ
mからこれ以下の超精密位置決めが要求されている。こ
の送り機構として、送りねじやボールねじをはじめとし
てリニアパルスモータなど多くのものがこの精度に応ず
るために工夫されてそれぞれの分野で用いられている。
ボールねじは、ねじ溝を転動するボールがナット内を移
動する機構となっているが、ねじ溝から離れてナット内
を転動するようになる時に、微小な振動の発生が避けら
れず、超精密位置決め用としては好ましくないといわ
れ、各種の工夫がされている。
"Conventional technology" Feed screws that use triangular screws or trapezoidal screws as the feed mechanism have been widely used for tool post of machine tools, etc.
The feed screw is made of metal. In recent years, in semiconductor manufacturing equipment, exposure equipment and the like, inspection equipment in magnetic disk equipment, and other measuring equipment have
Ultra-precision positioning below this is required from m. As this feed mechanism, many such as a feed screw and a ball screw as well as a linear pulse motor have been devised in order to respond to this precision and are used in each field.
A ball screw has a mechanism in which a ball rolling in a screw groove moves in the nut, but when it comes to roll in the nut away from the screw groove, the occurrence of minute vibration is unavoidable. It is said that it is not preferable for ultra-precision positioning, and various measures have been taken.

また、従来から用いられている送りねじをこの分野に適
用するための改良が行なわれている。
Further, improvements have been made to apply the conventionally used feed screw to this field.

「考案が解決しようとする問題点」 従来からある金属製の送りねじにおいては、ねじ面にお
ける微小な摩耗が避けられず、これが送り精度を悪くす
る原因となり、このために精密な位置決めもできない。
[Problems to be Solved by the Invention] In the conventional metal feed screw, minute wear on the screw surface is unavoidable, which causes deterioration of feed accuracy, and therefore precise positioning is also impossible.

このほかに送りねじ面における潤滑剤の発熱によりねじ
軸およびナットが熱変形を起し同様に精度低下の原因と
なる。
In addition, heat generation of the lubricant on the feed screw surface causes thermal deformation of the screw shaft and the nut, which also causes a decrease in accuracy.

「考案が解決しようとする手段」 そこで、本考案は上記の事情に鑑み、ねじ軸およびナッ
トを熱膨張係数が小さくヤング率が高く、高精度に加工
でき耐摩耗性に優れたセラミック材にて構成し、問題点
を解決するものである。
"Means to be solved by the invention" In view of the above circumstances, the present invention uses a ceramic material that has a small coefficient of thermal expansion, a high Young's modulus, and can be processed with high precision and is excellent in wear resistance. It configures and solves the problems.

「実施例」 第1図は、送りねじの概要を示す。すなわち、ねじ軸1
は一定形状のねじ山を一定ピッチにて形成し、これにナ
ット2が螺合している。ねじ軸1は必要により両端付近
または少なくとも一端にはボールベアリング3などの軸
受を設ける。ねじ軸1には、カップリングを介してパル
スモータなど(図示せず)の駆動源と接続する。駆動源
によるねじ軸1の回転によりナット2が軸方向に移動す
る。一方、ナット2の位置を測定するために、レーザ測
定器などを使用し、制御系を介してねじ軸1を回転さ
せ、所定の位置に停止するように構成する。ナット2に
は回転防止のために、別途直線案内(図示せず)を設け
る。
[Example] Fig. 1 shows an outline of a feed screw. That is, the screw shaft 1
Has a thread of a constant shape formed at a constant pitch, and a nut 2 is screwed into the thread. If necessary, the screw shaft 1 is provided with bearings such as ball bearings 3 near both ends or at least at one end. The screw shaft 1 is connected to a drive source such as a pulse motor (not shown) via a coupling. Rotation of the screw shaft 1 by the drive source moves the nut 2 in the axial direction. On the other hand, in order to measure the position of the nut 2, a laser measuring device or the like is used, and the screw shaft 1 is rotated through a control system and is stopped at a predetermined position. The nut 2 is provided with a separate linear guide (not shown) to prevent rotation.

従来技術では、ねじ軸、ナットの材質は炭素鋼の焼入れ
したものを精密にラップ仕上げしたものを使用してい
た。
In the prior art, the material of the screw shaft and the nut was made by quenching carbon steel and precisely lapping.

これに対し、本考案はねじ軸1、ナット2を窒化珪素で
構成した。ねじ軸1長さを400mm(ねじ有効部長さを300
mm)、ねじ径20mm、ねじピッチ5mmの台形ねじとし、ま
たナット2は長さ50mmとした。ねじ軸1の形成にあたっ
ては、セラミック材の外周を研削加工し、その後、ねじ
ピッチをレーザ干渉計で測定しながらねじピッチごとの
ピッチ誤差、ねじ部全体にわたる累積されるピッチ誤差
を調整するために、ラップ仕上げをしている。ピッチ誤
差は最大0.5μm、累積の誤差を2μmになるように仕
上げた。ここで、本考案の送りねじの精度を評価するた
めに、位置決め精度を測定した。なお、位置決め精度と
は、ナット2をねじ軸1上の任意の一点に同じ方向から
7回位置決めを行い、それぞれの停止位置を測定した時
の最大差の1/2で表すものであり(JIS B 6330参照)、
組立直後の摩耗していない状態での位置決め精度を初期
位置決め精度とした。
On the other hand, in the present invention, the screw shaft 1 and the nut 2 are made of silicon nitride. Screw shaft 1 length is 400 mm (screw effective part length is 300
mm), a screw diameter of 20 mm, a screw pitch of 5 mm, and a nut 2 having a length of 50 mm. In forming the screw shaft 1, the outer periphery of the ceramic material is ground, and then the pitch error for each screw pitch and the accumulated pitch error over the entire screw portion are adjusted while measuring the screw pitch with a laser interferometer. , Lap finish. The maximum pitch error was 0.5 μm, and the cumulative error was 2 μm. Here, the positioning accuracy was measured in order to evaluate the accuracy of the feed screw of the present invention. The positioning accuracy is represented by 1/2 of the maximum difference when the nut 2 is positioned at any one point on the screw shaft 1 from the same direction seven times and the respective stop positions are measured (JIS B6330),
The initial positioning accuracy was the positioning accuracy immediately after assembly without wear.

そして、上記本考案の送りねじを、ねじ軸1とナット2
間には潤滑油を供給し、ねじ軸1の回転数は500rpmで、
直径50mmのナット2の外周での温度上昇は3℃の条件で
使用したところ、初期位置決め精度および1000時間の使
用後の位置決め精度がいずれも0.1μmと極めて高精度
となることが確認された。
Then, the feed screw of the present invention is provided with a screw shaft 1 and a nut 2.
Lubricating oil is supplied in the meantime, the rotation speed of the screw shaft 1 is 500 rpm,
When the temperature rise on the outer circumference of the nut 2 having a diameter of 50 mm was used under the condition of 3 ° C., it was confirmed that both the initial positioning accuracy and the positioning accuracy after 1000 hours of use were as high as 0.1 μm.

これは、窒化珪素質セラミックスの熱膨張率(0〜50
℃)が、1.8×10-6/℃と非常に小さいため、ナット2
の温度上昇に伴う寸法変化が極めて小さくなること、窒
化珪素質セラミックスのヤング率が3.2×104kg/mm2と大
きいため、加工時の変形が少なく高精度に加工できるこ
とにより、初期位置決め精度を高精度とできるのであ
る。また、窒化珪素質セラミックスはロックウェル硬度
(HRA)91と高硬度であるから、使用時の摩耗も少な
く、長時間使用後も初期値と変わらない精度を保つこと
ができるのである。
This is the coefficient of thermal expansion of silicon nitride ceramics (0 to 50
(° C) is as very small as 1.8 × 10 -6 / ° C.
The dimensional change with temperature rise is extremely small, and the Young's modulus of silicon nitride ceramics is as large as 3.2 × 10 4 kg / mm 2 , so there is little deformation during processing and high-precision processing is possible. It can be highly accurate. Further, since the silicon nitride ceramics has a high Rockwell hardness (HRA) of 91, there is little wear at the time of use, and it is possible to maintain the same accuracy as the initial value even after long-term use.

これに対し、炭素鋼としてS45C(機械構造用炭素鋼)焼
入れ材にて同一形状のねじ軸、ナットを作り同一駆動系
にて比較評価した。1ピッチにおけるピッチ誤差、また
累積誤差はセラミック材と同レベルであった。この時、
運転開始後100時間の間は、位置決め精度が0.5μmであ
った。その後、時間とともにこの精度が悪化し500時間
においては、1.0μmであった。この時にねじ軸面を検
査したところ、ねじ面に沿って0.5μm深さの摩耗傷が
みられた。
In contrast, S45C (carbon steel for machine structure) hardened material of carbon steel was used to make a screw shaft and nut of the same shape, and comparative evaluation was performed using the same drive system. The pitch error at 1 pitch and the cumulative error were at the same level as the ceramic material. At this time,
The positioning accuracy was 0.5 μm for 100 hours after the start of operation. After that, this accuracy deteriorated with time, and it was 1.0 μm at 500 hours. When the screw shaft surface was inspected at this time, abrasion scratches having a depth of 0.5 μm were found along the screw surface.

このように、本考案の送りねじは、熱膨張係数が小さ
く、かつ高ヤング率のセラミックスを用いることによ
り、位置決め精度を極めて優れたものとできるのであ
る。
As described above, the feed screw of the present invention can have extremely excellent positioning accuracy by using ceramics having a small coefficient of thermal expansion and a high Young's modulus.

その中でも特に0〜50℃の熱膨張率が3×10-6/℃以下
のセラミック材を用いる点が重要である。これは、送り
ねじの位置決め誤差は、使用時のナット2の温度上昇に
伴う寸法変化によって生じるため、ナット2の熱膨張率
を小さくするほど位置決め精度を高められるからであ
る。そして、ナット2の熱膨張率を3×10-6/℃以下と
することで、初めて位置決め精度を0.2μm以下と極め
て高精度にできるのである。
Among them, it is particularly important to use a ceramic material having a coefficient of thermal expansion of 0 to 50 ° C. of 3 × 10 −6 / ° C. or less. This is because the positioning error of the feed screw is caused by a dimensional change accompanying the temperature rise of the nut 2 during use, and thus the positioning accuracy can be improved as the coefficient of thermal expansion of the nut 2 is reduced. By setting the coefficient of thermal expansion of the nut 2 to 3 × 10 −6 / ° C. or less, the positioning accuracy can be made extremely high to 0.2 μm or less for the first time.

なお、本考案における熱膨張率は、通常送りねじを使用
する温度域である0〜50℃の間で測定した値で表現す
る。
The coefficient of thermal expansion in the present invention is usually expressed as a value measured in a temperature range of 0 to 50 ° C., which is a temperature range in which a feed screw is used.

また、本考案の送りねじを構成する材質としては、ヤン
グ率2.5×104kg/mm2以上のセラミック材を用いる点も重
要である。これはヤング率の高い高剛性材でねじ軸1や
ナット2を加工すれば、加工時の変形が少ないことから
高精度の加工を行うことができるためである。そして、
ヤング率2.5×104kg/mm2以上のセラミック材を用いれ
ば、位置決め精度に対してほとんど影響を及ぼすことが
なくなるのである。
It is also important to use a ceramic material having a Young's modulus of 2.5 × 10 4 kg / mm 2 or more as a material forming the feed screw of the present invention. This is because if the screw shaft 1 and the nut 2 are processed with a high-rigidity material having a high Young's modulus, the deformation during processing is small, and therefore high-precision processing can be performed. And
If a ceramic material with a Young's modulus of 2.5 × 10 4 kg / mm 2 or more is used, it has almost no effect on the positioning accuracy.

さらに、本考案の送りねじはセラミック材で形成するた
め、硬度が高く、摩耗が少ないことから、長期間使用し
ても優れた位置決め精度を保つことができる。
Furthermore, since the feed screw of the present invention is made of a ceramic material, it has high hardness and little wear, so that it can maintain excellent positioning accuracy even when it is used for a long period of time.

ここで、熱膨張係数、ヤング率の異なる各種材料を用い
て送りねじを構成し、それぞれの位置決め精度を測定し
た。本考案実施例として炭化珪素(SiC)、窒化珪素(S
i3N4)を、比較例として炭素鋼(S45C)、アルミナ(99
% Al2O3)、ジルコニア(ZrO2)を用意した。結果は
以下に示す通りである。
Here, the feed screw was formed using various materials having different coefficients of thermal expansion and Young's modulus, and the positioning accuracy of each was measured. As an example of the present invention, silicon carbide (SiC), silicon nitride (S
i 3 N 4 ) as a comparative example, carbon steel (S45C), alumina (99
% Al 2 O 3 ) and zirconia (ZrO 2 ) were prepared. The results are shown below.

熱膨張係数 ヤング率 表面粗さ (0〜50℃) S45C 12×10-61/℃ 2.0×104kg/mm2 0.6S以下 99%Al2O3 5.8 3.5 〃 Si3N4 1.8 3.2 〃 SiC 2.8 4.4 〃 ZrO2 6.8 2.1 〃 初期位置決め精度は次のとおりであった。Thermal expansion coefficient Young's modulus Surface roughness (0 to 50 ℃) S45C 12 × 10 -6 1 / ℃ 2.0 × 10 4 kg / mm 2 0.6S or less 99% Al 2 O 3 5.8 3.5 〃 Si 3 N 4 1.8 3.2 〃 SiC 2.8 4.4 〃 ZrO 2 6.8 2.1 〃 The initial positioning accuracy was as follows.

S45C 0.5μm 99%Al2O3 0.3 Si3N4 0.1(精度達成) SiC 0.15(精度達成) ZrO2 0.4 この結果より明らかに、本考案実施例である、熱膨張率
3×10-6/℃以下の炭化珪素(SiC)、窒化珪素(Si
3N4)を用いた送りねじは、それぞれ位置決め精度が0.1
μm、0.15μmとなり、初期位置決め精度が0.2μm以
下と極て優れた精度にすることができた。
S45C 0.5 μm 99% Al 2 O 3 0.3 Si 3 N 4 0.1 (Accuracy achieved) SiC 0.15 (Accuracy achieved) ZrO 2 0.4 From these results, it is clear that the coefficient of thermal expansion is 3 × 10 −6 / ℃ or below silicon carbide (SiC), silicon nitride (Si
3 N 4 ) lead screws have positioning accuracy of 0.1
The initial positioning accuracy was 0.2 μm or less, which was extremely excellent.

これは、前記したように、熱膨張率が3×10-6/℃以下
と小さいことから、使用時の温度上昇に伴う寸法変化を
極めて小さくできるためである。
This is because, as described above, the coefficient of thermal expansion is as low as 3 × 10 −6 / ° C. or less, so that the dimensional change due to the temperature rise during use can be made extremely small.

次に500時間後の位置決め精度についてみる。Next, let us look at the positioning accuracy after 500 hours.

摩耗傷 S45C 1μm 0.5μm深さ 99%Al2O3 0.6 0.3 Si3N4 0.1(精度達成) 0.1(耐摩耗性) SiC 0.15(精度達成) 0.1(耐摩耗性) ZrO2 0.7 0.4 このように、本考案実施例である炭化珪素(SiC)、窒
化珪素(Si3N4)を用いた送りねじは、ヤング率が高く
かつ硬度も大きいため、共に摩耗傷の深さが0.1μmと
小さく、耐摩耗性が高いことがわかる。そのために、50
0時間使用後も初期値と同じ位置決め精度を保ってお
り、長期間高精度の使用が可能であることがわかる。
Wear S45C 1μm 0.5μm Depth 99% Al 2 O 3 0.6 0.3 Si 3 N 4 0.1 (Accuracy achieved) 0.1 (Abrasion resistance) SiC 0.15 (Accuracy achieved) 0.1 (Abrasion resistance) ZrO 2 0.7 0.4 Since the lead screw using silicon carbide (SiC) and silicon nitride (Si 3 N 4 ) according to the present invention has a high Young's modulus and a large hardness, the depth of wear scratches is as small as 0.1 μm. It can be seen that the wear resistance is high. For that, 50
It can be seen that the same positioning accuracy as the initial value is maintained even after 0 hour use, and high-precision use is possible for a long time.

「考案の効果」 本考案は、上述したように、ねじ軸、および該ねじ軸に
螺合するナットを、0〜50℃における熱膨張係数が3.0
×10-6/℃以下、ヤング率が2.5×104kg/mm2以上の炭化
珪素質または窒化珪素質セラミックで構成し、初期位置
決め精度が0.2μm以下である送りねじであるので、熱
膨張が小さく摩耗しにくいことにより、高精度の位置決
め精度が保たれる。
[Advantage of the Invention] As described above, the present invention has a screw shaft and a nut screwed to the screw shaft, and has a thermal expansion coefficient of 3.0 at 0 to 50 ° C.
× 10 -6 / ° C. or less, the Young's modulus is composed of 2.5 × 10 4 kg / mm 2 or more silicon carbide or silicon nitride ceramic, since the initial positioning accuracy is feed screw is 0.2μm or less, the thermal expansion Since it is small and does not easily wear, high positioning accuracy is maintained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の具体的一実施例の送りねじの縦断面図
である。 1……ねじ軸 2……ナット
FIG. 1 is a vertical sectional view of a feed screw according to a specific embodiment of the present invention. 1 ... Screw shaft 2 ... Nut

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−110953(JP,A) 無機質材料研究所「ファインセラミック ス新素材」(昭60−6−28)日刊工業新聞 社 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP 59-110953 (JP, A) Inorganic Materials Research Laboratories “Fine Ceramics New Material” (SHO 60-6-28) Nikkan Kogyo Shimbun

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】ねじ軸の回転により、該ねじ軸に螺合され
たナットを直線方向に移動させ、このナットに連結され
た被移動物体を超精密位置決めするための送りねじにお
いて、上記ねじ軸、および該ねじ軸に螺合するナット
を、0〜50℃における熱膨張係数が3×10-6/℃以下、
ヤング率が2.5×104kg/mm2以上の炭化珪素質または窒化
珪素質セラミックで構成し、初期位置決め精度が0.2μ
m以下であることを特徴とする送りねじ。
Claim: What is claimed is: 1. A feed screw for moving a nut screwed to the screw shaft in a linear direction by rotating the screw shaft, and for ultra-precision positioning of a moving object connected to the nut. , And a nut screwed to the screw shaft, having a coefficient of thermal expansion at 0 to 50 ° C. of 3 × 10 −6 / ° C. or less,
The Young's modulus is 2.5 × 10 4 kg / mm 2 or more, and it is made of silicon carbide or silicon nitride ceramic, and the initial positioning accuracy is 0.2μ.
A feed screw characterized by being m or less.
JP1986066721U 1986-04-30 1986-04-30 Lead screw Expired - Lifetime JPH0649964Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986066721U JPH0649964Y2 (en) 1986-04-30 1986-04-30 Lead screw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986066721U JPH0649964Y2 (en) 1986-04-30 1986-04-30 Lead screw

Publications (2)

Publication Number Publication Date
JPS62177955U JPS62177955U (en) 1987-11-12
JPH0649964Y2 true JPH0649964Y2 (en) 1994-12-14

Family

ID=30904990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986066721U Expired - Lifetime JPH0649964Y2 (en) 1986-04-30 1986-04-30 Lead screw

Country Status (1)

Country Link
JP (1) JPH0649964Y2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11270649A (en) * 1998-03-25 1999-10-05 Nippon Seiko Kk Ball screw device
KR20170046568A (en) * 2015-10-21 2017-05-02 더 보잉 컴파니 Whisker reinforced high fracture toughness ceramic threaded fasteners

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021025592A (en) * 2019-08-06 2021-02-22 日本電産コパル株式会社 Driving device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59110953A (en) * 1982-12-15 1984-06-27 Mitsutoyo Mfg Co Ltd Screw structure and manufacture thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
無機質材料研究所「ファインセラミックス新素材」(昭60−6−28)日刊工業新聞社

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11270649A (en) * 1998-03-25 1999-10-05 Nippon Seiko Kk Ball screw device
KR20170046568A (en) * 2015-10-21 2017-05-02 더 보잉 컴파니 Whisker reinforced high fracture toughness ceramic threaded fasteners

Also Published As

Publication number Publication date
JPS62177955U (en) 1987-11-12

Similar Documents

Publication Publication Date Title
JP5113086B2 (en) Method and apparatus for correcting displacement of machine tool
Namba et al. Ultra-precision surface grinder having a glass-ceramic spindle of zero-thermal expansion
CN1283415C (en) Machine equipped with temp. compensated work spindle
JPH0649964Y2 (en) Lead screw
JPS59161202A (en) Structure of bearing opposing surface and slide guide surface of machine tool
JP2001030141A (en) Thin pipe machining method and its device
CN1850443A (en) Granite step gauge measuring device
US5782674A (en) Sensors for internal grinding machines
JPH04372349A (en) Grinding method and grinding device
JPH10296631A (en) Super precise trueing device for grinding wheel
US5038746A (en) Precision grinding wheel dresser with molded bearing and method of making same
JPH09323218A (en) Screw shaft grinding method and expansion and shrinkage compensation grinding device of screw shaft
Gee et al. Single-point diamond form-finishing of glasses and other macroscopically brittle materials
Kami et al. Research and development of an ultraprecision positioning system
JPS63237866A (en) Highly precision grinding machine
JPH03131442A (en) X-y stage
JPH01188214A (en) Method and device for machining groove
JPS63212426A (en) Structure of slide guide surface of machine tool
JPS59110953A (en) Screw structure and manufacture thereof
US3100348A (en) Compensated micrometer head
JPS63163016A (en) Ceramic rotary shaft
JPH0442570Y2 (en)
Schajer et al. Strain Gauge Technique: Method Description
JPH0620720B2 (en) Machine Tools
Chen et al. Development of an ultra-precision grinding system for machining optical aspheric components with a large depth—diameter ratio