JPH0620720B2 - Machine Tools - Google Patents

Machine Tools

Info

Publication number
JPH0620720B2
JPH0620720B2 JP59209921A JP20992184A JPH0620720B2 JP H0620720 B2 JPH0620720 B2 JP H0620720B2 JP 59209921 A JP59209921 A JP 59209921A JP 20992184 A JP20992184 A JP 20992184A JP H0620720 B2 JPH0620720 B2 JP H0620720B2
Authority
JP
Japan
Prior art keywords
spindle
reference frame
spindle head
displacement
position detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59209921A
Other languages
Japanese (ja)
Other versions
JPS6190804A (en
Inventor
道夫 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Seiko Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiko Ltd filed Critical Hitachi Seiko Ltd
Priority to JP59209921A priority Critical patent/JPH0620720B2/en
Publication of JPS6190804A publication Critical patent/JPS6190804A/en
Publication of JPH0620720B2 publication Critical patent/JPH0620720B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/70Stationary or movable members for carrying working-spindles for attachment of tools or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/38Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members using fluid bearings or fluid cushion supports
    • B23Q1/385Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members using fluid bearings or fluid cushion supports in which the thickness of the fluid-layer is adjustable

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Turning (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はNC装置により制御される工作機械に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a machine tool controlled by an NC device.

〔発明の背景〕[Background of the Invention]

従来、工作機械の主軸頭の熱変位(位置ずれ)対策とし
ては、主軸頭内の潤滑油を常に室温と同一温度になるよ
うに冷却し、かつ主軸の軸受部で発生した熱を前記潤滑
油に吸収させるようにし、主軸頭の温度上昇を防ぐ方法
が採られている。この方法では、発生した熱の約50%が
主軸頭本体を介して冷却油に吸収されているため、主軸
頭は局部的に冷却油より高い温度になつている。従つ
て、このような潤滑油を冷却する方法では主軸頭の熱変
位を根本的に無くすことはできなかった。また、特開昭
50−130081号公報には主軸頭の熱変位を補正す
る技術が記載されているが、主軸頭の熱変位は補正でき
るものの、主軸の熱変位を補正することはできない。さ
らに、工作機械においては、ベツドを主軸頭が摺動する
摺動面には、最少限(約0.01mm程度)の隙間があり、主
軸頭が送りねじからの推力を受けると、その隙間に相当
した平行精度の低下を生じる。すなわち、前記推力の掛
かる方向により主軸につけたテストバーの先端が先上り
になつたり、先下りになつたりする。従来、この問題に
対しては、摺動面に設けられるベアリングにリニアボー
ルベアリングを用い、予圧をかけることにより対処して
いる。
Conventionally, as a measure against thermal displacement (displacement) of the spindle head of a machine tool, the lubricating oil in the spindle head is always cooled to the same temperature as room temperature, and the heat generated in the bearing portion of the spindle is Is used to prevent the temperature rise of the spindle head. In this method, about 50% of the generated heat is absorbed by the cooling oil through the main spindle head body, so that the main spindle head is locally at a higher temperature than the cooling oil. Therefore, the thermal displacement of the spindle head cannot be basically eliminated by such a method of cooling the lubricating oil. Also, Japanese Patent Laid-Open No. 50-130081 describes a technique for correcting thermal displacement of the spindle head. However, although thermal displacement of the spindle head can be corrected, thermal displacement of the spindle cannot be corrected. Furthermore, in machine tools, there is a minimum clearance (about 0.01 mm) on the sliding surface where the spindle head slides on the bed, and when the spindle head receives thrust from the feed screw, it is equivalent to that clearance. As a result, the parallel accuracy decreases. That is, depending on the direction in which the thrust is applied, the tip of the test bar attached to the main shaft moves up or down. Conventionally, this problem has been dealt with by using a linear ball bearing as the bearing provided on the sliding surface and applying a preload.

以上のように従来は、主軸頭の熱変位や平行精度につい
て、ある程度の対策をしているが、静的に出した精度が
運転開始後どの程度に保たれているか検出することがで
きず、従つて高精度加工が要求される場合は、得られた
製品の精度を1つ1つ確認し、それに基づき再対策を施
す方法が採られていた。
As described above, conventionally, although some measures have been taken for thermal displacement and parallel accuracy of the spindle head, it is not possible to detect to what extent static accuracy has been maintained since the start of operation. Therefore, when high-precision processing is required, a method has been adopted in which the accuracy of each product obtained is checked one by one and remeasurement is performed based on that.

しかし、このように加工後に製品精度を確認することは
消極的な防御策であり非効率的であるため、従来、工作
機械の運転中の主軸の変位を自動的に検出して誤差を修
正し、その後に加工して高精度の製品を効率よく得られ
る方法が要望されていた。
However, checking the product accuracy after machining in this way is a passive protective measure and is inefficient, so conventionally, the displacement of the spindle during machine tool operation was automatically detected to correct the error. However, there has been a demand for a method that can be processed thereafter to efficiently obtain a high-precision product.

〔発明の目的〕[Object of the Invention]

本発明は上記のような要望に鑑みてなされたもので、工
作機械の運転中の主軸の位置ずれや平行精度の低下が自
動的に防止でき、高精度の製品を効率よく得られるよう
にした工作機械を提供することを目的とする。
The present invention has been made in view of the above demands, and it is possible to automatically prevent a displacement of a spindle and a decrease in parallel accuracy during operation of a machine tool, and efficiently obtain a high-precision product. The purpose is to provide a machine tool.

〔発明の概要〕[Outline of Invention]

本発明では、主軸を回転自在に支持する主軸頭をNC装
置によりベッドに対して主軸の軸方向に移動させながら
位置決めして加工をする工作機械において、熱膨張係数
の小さい材料で形成した基準フレームと、指示器とスケ
ールとからなる第1の位置検出器と、第2の位置検出器
とを備え、基準フレームを主軸頭に接続し、スケールが
主軸の軸方向と平行になるようにして指示器またはスケ
ールのうちの一方を基準フレームに他方をベッドに載置
し、第2の位置検出器を主軸のフランジと対向させて基
準フレームの工具側に配置し、第2の位置検出器の出力
の変化分すなわち基準フレームと主軸のフランジとの距
離の変化分だけ主軸頭の送り量を補正することにより、
加工の高精度、高効率化をはかったものである。
According to the present invention, in a machine tool that positions and processes a spindle head that rotatably supports a spindle with respect to a bed by an NC device in the axial direction of the spindle, a reference frame formed of a material having a small thermal expansion coefficient. A first position detector including a pointer and a scale, and a second position detector. The reference frame is connected to the spindle head so that the scale is parallel to the axial direction of the spindle. Place one of the tool or scale on the reference frame and the other on the bed, place the second position detector on the tool side of the reference frame facing the flange of the main shaft, and output the second position detector. By correcting the feed amount of the spindle head by the change in distance, that is, the change in the distance between the reference frame and the flange of the spindle,
High precision and high efficiency of processing.

〔発明の実施例〕Example of Invention

以下第1図〜第3図を参照して本発明の実施例を説明す
る。第1図は本発明による工作機械の主軸の姿勢制御方
法が適用された工作機械主軸頭部分の一例を一部切断し
て示す側面図、第2図は第1図中のII−II線断面図で、
両図において1はベツド、2は主軸頭、3は主軸であ
る。4はベツドの摺動面1a,1bに沿つてスライドする基
準フレームで、主軸頭2とは分離独立して設けられてい
る。この基準フレーム4とベツド1の間のスライド部に
はリニアボールベアリング(平面軌道上を無限直線運動
する形式の軸受)5〜8が設けられている。9〜11は基
準フレームに対し、主軸3の回転中心を原点として直交
するX,Y方向に予圧を与えるコイルスプリングであ
る。なお、これらベアリング5〜8及びスプリング9〜
11は、主軸頭2の前後側に各々設けられている。
An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a side view showing a part of an example of a machine tool spindle head portion to which the attitude control method for a spindle of a machine tool according to the present invention is applied, and FIG. 2 is a sectional view taken along line II-II in FIG. In the figure,
In both figures, 1 is a bed, 2 is a spindle head, and 3 is a spindle. Reference numeral 4 is a reference frame that slides along the sliding surfaces 1a and 1b of the bed, and is provided separately from the spindle head 2. Linear ball bearings (bearings of a type that performs infinite linear motion on a plane orbit) 5 to 8 are provided in the sliding portion between the reference frame 4 and the bed 1. Reference numerals 9 to 11 are coil springs that apply a preload to the reference frame in the X and Y directions orthogonal to each other with the center of rotation of the main shaft 3 as the origin. In addition, these bearings 5-8 and springs 9-
11 are provided on the front and rear sides of the spindle head 2, respectively.

前記基準フレーム4は、主軸3の軸方向(以下、Z方向
という)に主軸3と一体に駆動させるために、ボルト12
を用いてピース13を介し、Z方向に隙間が生じないよう
主軸頭2に連結されている。この連結に際しては、主軸
頭2の前記X,Y方向の微少変位に対して拘束力が生じ
ないようにすることが望ましく、また、基準フレーム4
は熱膨張係数が極小のアンバーで形成し、熱変形を受け
ないようにしてある。これらによれば、基準フレーム4
は切削力など外力や熱変位を受けず、また主軸頭2との
連結も第1図に示すように摺動面1a,1b近くでされて
いるため、ほぼ純料な推力だけが作用することになる。
従つて、基準フレーム4は摺動面1a,1bに沿つて精度よ
く移動することになる。
In order to drive the reference frame 4 integrally with the spindle 3 in the axial direction of the spindle 3 (hereinafter referred to as Z direction), the bolt 12
Is connected to the spindle head 2 through a piece 13 so that no gap is generated in the Z direction. At the time of this connection, it is desirable that no restraint force is generated with respect to the minute displacements of the spindle head 2 in the X and Y directions.
Is made of amber, which has a minimum coefficient of thermal expansion, so that it does not undergo thermal deformation. According to these, the reference frame 4
Is not subjected to external force such as cutting force or thermal displacement, and the connection with the spindle head 2 is made near the sliding surfaces 1a, 1b as shown in Fig. 1, so almost pure thrust is applied. become.
Therefore, the reference frame 4 moves accurately along the sliding surfaces 1a and 1b.

上記基準フレーム4には、主軸3のツール、例えばドリ
ル(図示せず)が取着される前側及び駆動源(図示せ
ず)と連結する後側に対応する個所A,Bに各々4つの
非接触変位計、ここではエアーマイクロメータ(ノズル
14〜17のみ図示)が内蔵されている。この4つのマイク
ロメータを前後各側に設けたのは、主軸3の回転中心の
変位を検出するためで、各側について、主軸3のX,Y
各方向に2つ、対向配置されている。主軸3の回転中心
の変位検出は、上記の合計8つのエアーマイクロメータ
により、主軸3の前後各側について、基準フレーム4に
対する主軸3のX,Y方向の隙間18〜21を測定すること
によつて行われる。
The reference frame 4 has four non-contact points A and B corresponding to the front side to which a tool (for example, a drill (not shown)) of the main shaft 3 is attached and the rear side connected to a drive source (not shown). Contact displacement meter, here air micrometer (nozzle
Only 14 to 17 are shown). The four micrometers are provided on the front and rear sides in order to detect the displacement of the rotation center of the spindle 3, and for each side, X and Y of the spindle 3 are arranged.
Two are arranged facing each other. The displacement of the rotation center of the main shaft 3 is detected by measuring the gaps 18 to 21 in the X and Y directions of the main shaft 3 with respect to the reference frame 4 on each of the front and rear sides of the main shaft 3 by the above eight air micrometers. Is done.

22は主軸3の前側の軸受、23は同じく後側の軸受で、後
側の軸受23は軸受筒24に収納されており、またこの軸受
筒24と主軸頭2の間には微少隙間と4つの油圧パツト25
〜28とが設けられている。この場合、油圧パツト25〜28
は、第3図に示すようにエアーマイクロメータのノズル
14〜17に対応した主軸3のX,Y方向に設けられてお
り、各油圧源29〜32により印加圧力P1〜P4を制御するこ
とにより軸受筒24を前記X,Y方向に微少変位させる
ことができる。33は環状の弾性材、例えばゴムよりなる
Oリングで、軸受筒24を弾性的に支持している。
22 is a front bearing of the main shaft 3, 23 is also a rear bearing, the rear bearing 23 is housed in a bearing cylinder 24, and there is a small gap between the bearing cylinder 24 and the spindle head 2. 25 hydraulic pads
~ 28 and are provided. In this case, the hydraulic pads 25-28
Is the nozzle of the air micrometer as shown in FIG.
The bearing cylinders 24 are provided in the X and Y directions of the main shaft 3 corresponding to 14 to 17, and the hydraulic pressure sources 29 to 32 control the applied pressures P 1 to P 4 to slightly displace the bearing cylinder 24 in the X and Y directions. Can be made. Reference numeral 33 is an annular elastic material, for example, an O-ring made of rubber, and elastically supports the bearing cylinder 24.

34は主軸3のZ方向の変位を検出するためのエアーマイ
クロメータ(図示せず)のノズルで、主軸3の前端近傍
部分外周に設けられたフランジ35との隙間36を測定す
る。
Reference numeral 34 is a nozzle of an air micrometer (not shown) for detecting the displacement of the main shaft 3 in the Z direction, and measures a gap 36 between the main shaft 3 and a flange 35 provided on the outer periphery of a portion near the front end of the main shaft 3.

37は主軸頭2に設けられたボールナツトで、ボールねじ
38に螺合し、ボールねじ38の回転により主軸頭2をベツ
ド1の摺動面1a,1bに沿つてZ方向にスライドさせる。
37 is a ball nut provided on the spindle head 2, which is a ball screw.
The main spindle head 2 is slid in the Z direction along the sliding surfaces 1a, 1b of the bed 1 by screwing with the ball screw 38 and rotating the ball screw 38.

39は駆動側の基準フレーム4と静止側のベース1との間
に構成された主軸頭2のZ方向の位置検出器(例えば磁
気スケールなど)で、主軸頭2の位置決めなどに用いら
れる。
Reference numeral 39 denotes a Z-direction position detector (for example, a magnetic scale) of the spindle head 2 formed between the drive-side reference frame 4 and the stationary-side base 1 and is used for positioning the spindle head 2.

なお、ここでの工作機械はNC装置(図示せず)により
制御され、また、前記エアーマイクロメータにより検出
された隙間18〜21,36の測定値から主軸3の回転中心,
平行度及びZ方向の各変位を検出し、補正する機能を備
えている。ここで、主軸3の回転中心の変位、ここでは
第1図中A,B点におけるX,Y方向の変位Δx1,Δ
x2,Δy1,Δy2は下記第1表に示す算式により求められ
る。式中、とは隙間18の測定値を指す。〜につい
ても同様である。
The machine tool here is controlled by an NC device (not shown), and the center of rotation of the spindle 3 is determined from the measured values of the clearances 18 to 21, 36 detected by the air micrometer.
It has a function of detecting and correcting the parallelism and each displacement in the Z direction. Here, the displacement of the rotation center of the main shaft 3, here, the displacements Δx 1 , Δ in the X and Y directions at points A and B in FIG.
x 2 , Δy 1 , and Δy 2 are obtained by the formula shown in Table 1 below. In the formula, represents the measured value of the gap 18. The same applies to.

また、主軸3の平行度の変位は、前,後エアーマイクロ
メータのノズル14〜17相互間距離をL1とすると、 X方向については、 (Δx1−Δx2)/L1 ………(1) により、 Y方向については、 (Δy1−Δy2)/L1 ………(2) により、各々求められる。
Further, the displacement of the parallelism of the main shaft 3 is (Δx 1 −Δx 2 ) / L 1 ……… (when the distance between the nozzles 14 to 17 of the front and rear air micrometers is L 1 , in the X direction. According to 1), in the Y direction, (Δy 1 −Δy 2 ) / L 1 ……… (2) can be obtained.

次に上述工作機械における主軸3の姿勢制御について説
明する。まず、主軸3のX,Y方向の変位補正について
述べる。工作機械運転開始前の静的精度を出した時点で
Δx1−Δx2=δxが或る値をもつている場合、運転後も
そのδxが同じ値であればX方向の平行は維持している
とみなせる。Y方向についても同様で、運転前後におけ
るδx(=Δx1−Δx2),δy(=Δy1−Δy2)の値を
一定に保つことが平行を維持させることになる。
Next, the attitude control of the spindle 3 in the above machine tool will be described. First, the displacement correction of the spindle 3 in the X and Y directions will be described. If Δx 1 −Δx 2 = δx has a certain value at the time when the static accuracy is obtained before starting the machine tool operation, if the δx is the same value even after the operation, keep parallel in the X direction. Can be regarded as The same applies to the Y direction, and keeping the values of δx (= Δx 1 −Δx 2 ) and δy (= Δy 1 −Δy 2 ) constant before and after the operation maintains parallelism.

上述工作機械主軸頭2の後側軸受23の外周側のX,Y方
向には油圧パツト25〜28が設けられている。いま、油圧
パツト27,28に加えられる圧力P3,P4を変化させると、
軸受筒24はX方向に微少変位する。従つて、Δx1に対し
てΔx2が相対的に変化した場合は、その差を0にするよ
うに、すなわち、Δx1−Δx2=δx=一定となるように
圧力P3,P4を調整する。Y方向についても同様に、Δy1
−Δy2=δy=一定となるように圧力P1,P2を調整する
もので、以上により主軸3は平行に補正される。
Hydraulic pads 25 to 28 are provided on the outer peripheral side of the rear bearing 23 of the machine tool spindle head 2 in the X and Y directions. Now, when the pressures P 3 and P 4 applied to the hydraulic pads 27 and 28 are changed,
The bearing tube 24 is slightly displaced in the X direction. Slave connexion, if [Delta] x 2 with respect to [Delta] x 1 is relatively changed, the difference to zero, i.e., Δx 1 -Δx 2 = δx = constant become so that the pressure P 3, the P 4 adjust. Similarly for the Y direction, Δy 1
The pressures P 1 and P 2 are adjusted so that −Δy 2 = δy = constant, and the main axis 3 is corrected in parallel.

工作機械運転後、Δx1≒0,Δy1≒0、すなわち、運転
前の静的な原点であるPA(X1,Y1)の位置に変位が生じ
たときは、その変位量だけX,Yの原点補正をする。N
C装置は原点シフト機能を備えており、NCテープによ
り任意に原点シフトを行い得るもので、前記原点補正は
この原点シフトによつて行われる。
After the machine tool is operated, Δx 1 ≈ 0, Δy 1 ≈ 0, that is, when displacement occurs at the position of P A (X 1 , Y 1 ), which is the static origin before operation, X is the displacement amount. , Y origin correction. N
The C device is provided with an origin shift function, and the origin can be arbitrarily shifted by an NC tape. The origin correction is performed by this origin shift.

次に、主軸3のZ方向の変位補正について述べる。い
ま、主軸3が回転して軸受22,23部分が発熱すると、そ
の熱の約50%は主軸3に伝わり、主軸3の温度を上昇さ
せて主軸3の前側(ツール側)端部を軸方向(Z方向)
に伸ばす。この伸び量はZ方向変位検出用のエアーマイ
クロメータ(図示せず)で検出される。ここで、Z方向
の位置決めは位置検出器39によるZ方向の位置測定で行
うが、基準フレーム4の位置検出器39取付個所Cとエア
ーマイクロメータノズル39の開口端位置Dとの間の距離
L2が変わらない限り、前記主軸3の伸び量は全て隙間36
の変化量として現われる。一方、前記距離L2は、基準フ
レーム4には外力が加わらず、かつその材質がアンバー
であつて温度の影響は受けないことから実質的には不変
である。従つて、前記Z方向変位検出用のエアーマイク
ロメータで隙間36を工作機械の運転前後に亘り、又は運
転後一定時間間隔置いて測定し、隙間36の変化量を求め
ればZ方向の変位が求められる。例えば、隙間36が運転
前の静的精度を出した時点でΔZ0であり、運転後、それ
がΔZtに変化したとすれば、 ΔZt−ΔZ0=δZ ………(3) により変位δZが求められる。
Next, the displacement correction of the spindle 3 in the Z direction will be described. Now, when the main shaft 3 rotates and the bearings 22 and 23 generate heat, about 50% of the heat is transferred to the main shaft 3 to raise the temperature of the main shaft 3 and to move the front (tool side) end of the main shaft 3 in the axial direction. (Z direction)
Extend to. This amount of extension is detected by an air micrometer (not shown) for detecting Z-direction displacement. Here, the positioning in the Z direction is performed by measuring the position in the Z direction by the position detector 39, but the distance between the position C of the reference frame 4 where the position detector 39 is attached and the opening end position D of the air micrometer nozzle 39.
As long as L 2 does not change, the amount of elongation of the main shaft 3 is the gap 36
Appears as the change amount of. On the other hand, the distance L 2 is substantially unchanged because no external force is applied to the reference frame 4 and the material is amber and is not affected by temperature. Therefore, the Z-direction displacement can be obtained by measuring the gap 36 with the air micrometer for detecting the Z-direction displacement before and after the operation of the machine tool or at a certain time interval after the operation and obtaining the change amount of the gap 36. To be For example, if the gap 36 is ΔZ 0 at the time when the static accuracy is obtained before the operation, and it changes to ΔZ t after the operation, the displacement is given by ΔZ t −ΔZ 0 = δZ ……… (3). δZ is required.

このZ方向の変位δZが生じた時は、その量だけZ方向
の原点補正をする。この補正もNC装置によつて可能
で、NCテープにより変位δZに応じた量だけZ方向の
原点シフトを行い、補正される。
When the displacement δZ in the Z direction occurs, the origin correction in the Z direction is performed by that amount. This correction is also possible by the NC device, and is corrected by shifting the origin in the Z direction by an amount according to the displacement δZ by the NC tape.

以上によりX,Y,Z方向の全ての原点補正が行われ、
工作機械の運転前後、又は運転中において、主軸3の加
工に当たつての位置が高精度に保持されるべく姿勢制御
されることになる。
By the above, all origin corrections in the X, Y, and Z directions are performed,
Before and after the operation of the machine tool, or during operation, the attitude of the spindle 3 is controlled so as to maintain the position for machining with high accuracy.

〔発明の効果〕〔The invention's effect〕

以上述べたように本発明は、主軸を回転自在に支持する
主軸頭をNC装置によりベッドに対して主軸の軸方向に
移動させながら位置決めして加工をする工作機械におい
て、熱膨張係数の小さい材料で形成した基準フレーム
と、指示器とスケールとからなる第1の位置検出器と、
第2の位置検出器とを備え、基準フレームを主軸頭に接
続し、スケールが主軸の軸方向と平行になるようにして
指示器またはスケールのうちの一方を基準フレームに他
方をベッドに載置し、第2の位置検出器を主軸のフラン
ジと対向させて基準フレームの工具側に配置し、第2の
位置検出器の出力の変化分すなわち基準フレームと主軸
のフランジとの距離の変化分を検出し、その検出値に応
じて前記NC装置でZ方向の原点補正を行うようにした
ので、工作機械の運転中の主軸の位置ずれや平行精度の
低下が自動的に防止でき、高精度の製品を効率よく得る
ことができるという効果がある。
As described above, the present invention is a machine tool in which a spindle head that rotatably supports a spindle is positioned and machined by an NC device while moving in the axial direction of the spindle with respect to a bed. A reference frame formed by, a first position detector including an indicator and a scale,
A second position detector, the reference frame is connected to the spindle head, and one of the indicator or the scale is placed on the bed and the other is placed on the bed so that the scale is parallel to the axial direction of the spindle. Then, the second position detector is arranged on the tool side of the reference frame so as to face the flange of the spindle, and the change in the output of the second position detector, that is, the change in the distance between the reference frame and the flange of the spindle is measured. Since the origin is corrected in the Z direction by the NC device according to the detected value, it is possible to automatically prevent the displacement of the spindle and the deterioration of the parallel accuracy during the operation of the machine tool, and it is possible to achieve high accuracy. The effect is that the product can be obtained efficiently.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法が適用された工作機械主軸頭部分の
一例を一部切断して示す側面図、第2図は第1図中のII
−II線断面図、第3図は同じくIII−III線断面図であ
る。 1……ベツド、2……主軸頭、3……主軸、4……基準
フレーム、14〜17,34……エアーマイクロメータノズ
ル、24……軸受筒、25〜28……油圧パツト、29〜32……
油圧源、33……ゴム製Oリング、35……フランジ。
FIG. 1 is a side view showing an example of a machine tool spindle head portion to which the method of the present invention has been applied by partially cutting it, and FIG. 2 is II in FIG.
-II sectional drawing and FIG. 3 are III-III sectional drawing similarly. 1 ... Bed, 2 ... Spindle head, 3 ... Spindle, 4 ... Reference frame, 14-17, 34 ... Air micrometer nozzle, 24 ... Bearing tube, 25-28 ... Hydraulic pad, 29- 32 ……
Hydraulic pressure source, 33 …… Rubber O-ring, 35 …… Flange.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】主軸を回転自在に支持する主軸頭を主軸の
軸方向に移動させNC装置によりベッドに対して位置決
めしながら加工をする工作機械において、熱膨張係数の
小さい材料で形成した基準フレームと、指示器とスケー
ルとからなる第1の位置検出器と、第2の位置検出器と
を備え、基準フレームを主軸頭に接続し、指示器または
主軸の軸方向と平行に配置するスケールのうちの一方を
基準フレームに載置し、第2の位置検出器を基準フレー
ムの工具側に配置して主軸のフランジと対向させ、指示
器または主軸の軸方向と平行に配置するスケールのうち
の他方をベッドに載置し、ベッドに対する主軸頭の位置
を第1の位置検出器で管理するとともに第2の位置検出
器で検出した位置の変化分だけ主軸頭の位置を補正する
ことを特徴とする工作機械。
1. A reference frame made of a material having a small coefficient of thermal expansion in a machine tool for moving a spindle head that rotatably supports a spindle in the axial direction of the spindle while positioning it with respect to a bed by an NC device. A first position detector consisting of an indicator and a scale, and a second position detector, the reference frame being connected to the spindle head, and the scale being arranged parallel to the axial direction of the indicator or the spindle. One of the scales is placed on the reference frame, the second position detector is arranged on the tool side of the reference frame to face the flange of the spindle, and is arranged parallel to the indicator or the axial direction of the spindle. The other is placed on the bed, and the position of the spindle head with respect to the bed is managed by the first position detector, and the position of the spindle head is corrected by the amount of change in the position detected by the second position detector. Do Work machine.
JP59209921A 1984-10-08 1984-10-08 Machine Tools Expired - Lifetime JPH0620720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59209921A JPH0620720B2 (en) 1984-10-08 1984-10-08 Machine Tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59209921A JPH0620720B2 (en) 1984-10-08 1984-10-08 Machine Tools

Publications (2)

Publication Number Publication Date
JPS6190804A JPS6190804A (en) 1986-05-09
JPH0620720B2 true JPH0620720B2 (en) 1994-03-23

Family

ID=16580869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59209921A Expired - Lifetime JPH0620720B2 (en) 1984-10-08 1984-10-08 Machine Tools

Country Status (1)

Country Link
JP (1) JPH0620720B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241050A (en) * 1985-04-16 1986-10-27 Citizen Watch Co Ltd Grinding machine
JPS6423341U (en) * 1987-08-04 1989-02-07
JPH01295743A (en) * 1988-05-20 1989-11-29 Toyoda Mach Works Ltd Main spindle thermal displacement correcting device for machine tool
CN101270533B (en) * 2007-03-19 2012-10-03 兄弟工业株式会社 Round headed buttonhole sewing machine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50130081A (en) * 1974-03-30 1975-10-14
JPS5467278A (en) * 1977-11-07 1979-05-30 Toshiba Corp Device for finely controlling the angle of a spindle
JPS57178625A (en) * 1981-04-27 1982-11-02 Mitsubishi Heavy Ind Ltd Correcting method of thermal deformation in machine tool
JPS6240751Y2 (en) * 1981-06-11 1987-10-19
JPS5818180A (en) * 1981-07-24 1983-02-02 Akitomo Kobayashi Multi-pin hole collimator

Also Published As

Publication number Publication date
JPS6190804A (en) 1986-05-09

Similar Documents

Publication Publication Date Title
US4808048A (en) Method and apparatus for error compensation
JP5113086B2 (en) Method and apparatus for correcting displacement of machine tool
EP1749247B1 (en) A measurement configuration based on linear scales able to measure to a target also moving perpendicular to the measurement axis
Donaldson et al. Design and performance of a small precision CNC turning machine
US4551950A (en) Truing apparatus for a grinding wheel with rounded corners
US6732009B2 (en) Machining error correction method adapted for numerically controlled machine tool and grinding machine using the same
JPH1158179A (en) Heat displacement correcting method of machine tool and device therefor
CN106736863B (en) It is a kind of measure boring and milling machine space thermal deformation errors rapid survey rule and its method
JPH0620720B2 (en) Machine Tools
US5005452A (en) High production machining device
EP3334562B1 (en) Grinding error compensation
US5782674A (en) Sensors for internal grinding machines
JP2019104082A (en) Nc grinding device and method of grinding workpiece
JPH07237088A (en) Machining device and machining
US3561120A (en) Distance measurement with friction wheel devices
JPS59192457A (en) Positioner
JPH08229774A (en) Deformation correcting machining method for machine tool
De Meter et al. The application of tool path compensation for the reduction of clampinginduced geometric errors
JPH03111148A (en) Machine tool
US20230128675A1 (en) Grinding machine centering gauge
RU2538884C1 (en) Method of compensation for strain of nc metal cutting machine actuators
JPH0584628A (en) Thermal displacement compensator for machine tool
JPH0310746A (en) Precisely-working device
JP2000052194A (en) Metal machining method and metal finishing machine
JPH10118925A (en) Condition detecting device of machine tool