JPH0649505A - Method for improving dimensional accuracy in sintering - Google Patents

Method for improving dimensional accuracy in sintering

Info

Publication number
JPH0649505A
JPH0649505A JP22202792A JP22202792A JPH0649505A JP H0649505 A JPH0649505 A JP H0649505A JP 22202792 A JP22202792 A JP 22202792A JP 22202792 A JP22202792 A JP 22202792A JP H0649505 A JPH0649505 A JP H0649505A
Authority
JP
Japan
Prior art keywords
sintering
jig
powder compact
shape
compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22202792A
Other languages
Japanese (ja)
Inventor
Koji Ueda
廣司 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP22202792A priority Critical patent/JPH0649505A/en
Publication of JPH0649505A publication Critical patent/JPH0649505A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a sintered compact with the dimensional accuracy remarkably improved by incorporating a specified jig for preventing the contraction of a green compact into the recess of the green compact to be contracted in sintering and then sintering the green compact. CONSTITUTION:A jig with the outer-diameter shape almost similar to the inner shape of the bored or recessed part of the green compact except locally different, with the size smaller than the inner size of the green compact and with the size equal to or smaller than the dimensional contraction amt. of the green compact in sintering is incorporated into the green compact consisting of a metal (e.g. SUS 430 atomized alloy powder), and the green compact is sintered. At this time, the thermal expansion coefficient of the jig is made equal to or larger than that of the green compact, and the difference is controlled to <=5X10<-6>/ deg.C. Consequently, the green compact is solid-phase-sintered with good dimensional accuracy, and sizing, etc., are not needed for correction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属粉末を固めた内部
に凹部を持つ粉末成形体であって、焼結のときに収縮又
は膨張する粉末成形体を寸法精度よく固相焼結する方法
に関するものである。種々の形状の金属物品を製作する
ために焼結法が用いられる。これは金属粉末を型に入れ
圧力を掛けて粉末成形体にし、これを炉の内部で加熱す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for solid-phase sintering a powder compact, which is obtained by solidifying a metal powder and has a recess inside, which shrinks or expands during sintering with high dimensional accuracy. It is about. Sintering methods are used to fabricate metal articles of various shapes. In this method, metal powder is put into a mold and pressure is applied to form a powder compact, which is heated in a furnace.

【0002】粉末成形体は中間的なものであり、金属粉
末が単に固められただけのものである。焼結によって金
属粉末を相互に結合する。本発明で対象にするものは内
部に凹部を有するものである。つまり中ぐり、中窪みな
どのある形状のものである。外形については任意であ
る。
Powder compacts are intermediate, in that metal powders are simply solidified. The metal powders are bonded to each other by sintering. The object of the present invention is one having a recess inside. That is, it has a shape such as a boring or a hollow. The outer shape is arbitrary.

【0003】[0003]

【従来の技術】従来は内部に凹部があるものであっても
粉末成形体に拘束を加えず自由状態で炉に入れて加熱焼
結していた。金属粉末の材料によっては焼結により膨張
収縮するものがある。このような材料を使う場合、自由
膨張自由収縮を許すので、焼結によって寸法が違ってく
る。つまり粉末成形体と焼結体で内外の径が異なってく
る。しかも寸法の変化には異方性がある。
2. Description of the Related Art Conventionally, a powder compact, even if it has a recess therein, was placed in a furnace in a free state and restrained by heating without restraining the powder compact. Depending on the material of the metal powder, there are those that expand and contract due to sintering. When such a material is used, since it allows free expansion and contraction, the dimensions will change due to sintering. That is, the inner and outer diameters of the powder compact and the sintered body differ. Moreover, the dimensional change is anisotropic.

【0004】従来の類似焼結法として、図9に示すよう
に、ブロンズ又はステンレス粉等の金属フィルターの製
造法で、外型、中型、底型に、粉末を充填して焼結する
例がある。これは金属粉末から一挙に焼結体を作る(粉
末充填法)ものである。一旦粉末成形体を作りこれを焼
結するという工程を踏まない。これは粉末が結合するま
でに粉末が流出して形が崩れないようにするためであ
る。一旦粉末成形体をつくるという事をしないので粉末
が流出する可能性があり、これを防ぐために中型を入れ
ている。本発明とは異なる目的のものである。
As a conventional similar sintering method, as shown in FIG. 9, there is an example of a method of manufacturing a metal filter such as bronze or stainless powder, in which an outer die, a middle die and a bottom die are filled with powder and sintered. is there. This is a method in which a sintered body is made from metal powder all at once (powder filling method). The step of once forming a powder compact and sintering this is not taken. This is to prevent the powder from flowing out and losing its shape before the powder is combined. There is a possibility that the powder will flow out because we do not make a powder compact once, and a medium-sized mold is put in to prevent this. The purpose is different from the present invention.

【0005】従来法は、中ぐりのあるものでも粉末成形
体を作った後、焼結する場合は自由状態で行う。粉末成
形体になんらの拘束を加えるものではない。
In the conventional method, a powder compact, even if it has a boring, is formed in a free state and then sintered. It does not add any restraint to the powder compact.

【0006】[0006]

【発明が解決しようとする課題】従来この種の焼結製品
は粉末成形体と焼結体とが形状寸法的に全く同じになら
ないので後加工が必須であった。粉末成形体と焼結体と
の形状寸法上の相違の発生する原因は、 粉末成形時に部分的に粉末の密度差を生じる。これを
焼結すると、粉末密度差に応じて収縮、膨張差が生じ
る。 焼結炉内で粉末成形体を加熱し焼結体を冷却するが、
粉末成形体、焼結体とこれらが接触する耐火板等の物体
との間の熱膨張係数が違う。このため粉末成形体や焼結
体に接触物体から不均等な応力が加わり、ために焼結体
の内周、外周での寸法のばらつきが発生する。
Conventionally, in this type of sintered product, the powder compact and the sintered compact are not completely the same in shape and dimension, so post-processing has been essential. The cause of the difference in shape and size between the powder compact and the sintered compact is that the powder density partially differs during powder compaction. When this is sintered, contraction and expansion will occur depending on the difference in powder density. The powder compact is heated in the sintering furnace and the sintered compact is cooled,
The coefficient of thermal expansion between the powder compact, the sintered compact and the object with which they come into contact, such as a refractory plate, is different. For this reason, uneven stress is applied to the powder compact or the sintered body from the contacting body, which causes variations in the dimensions of the inner and outer peripheries of the sintered body.

【0007】このような原因で、焼結体と粉末成形体と
は相似形とならない。しかもこの形状寸法的な食い違い
が製品によって異なる。最初から変形分を勘案して粉末
成形体の形状寸法を設計してもそれだけでは不十分であ
る。
Due to the above reasons, the sintered body and the powder compact are not similar to each other. Moreover, this difference in shape and size differs depending on the product. It is not enough to design the shape and size of the powder compact by considering the deformation from the beginning.

【0008】このため製品の寸法公差精度を確保するた
めに焼結後に (a)機械加工(切削、研磨等) (b)矯正のためのサイジング 等の工程の追加が必要であった。
Therefore, in order to ensure the dimensional tolerance accuracy of the product, it was necessary to add steps such as (a) machining (cutting, polishing, etc.) (b) sizing for straightening after sintering.

【0009】このような粉末成形体と焼結体が相似形に
ならず形状的に食い違うという現象は、静水圧成形の成
形体ではあまり問題にならない。静水圧成形の場合、
に書いた粉末成形時に部分的に密度差を生じるというこ
とがなく、焼結により収縮、膨張差が生じることがない
からである。
Such a phenomenon that the powder compact and the sintered compact do not have a similar shape but differ from each other in shape is not a serious problem in the hydrostatic compact. In the case of hydrostatic molding,
This is because there is no partial difference in density during powder molding described in 1. and no difference in shrinkage or expansion occurs due to sintering.

【0010】しかし、この粉末成形体と焼結体の非相似
現象は、上下方向に軸方向力を加えて金型成形する成形
体では発生し易い。粉末を固める時の荷重に異方性があ
り、軸方向には強い荷重がかかるが、軸垂直方向(横方
向)には弱い荷重しかかからないからである。一軸性の
力で成形するので、金型面に近い部分と遠い部分では横
方向応力が著しく異なる。
However, the dissimilarity phenomenon between the powder compact and the sintered compact is likely to occur in the compact which is formed by applying an axial force in the vertical direction. This is because the load when the powder is solidified has anisotropy and a strong load is applied in the axial direction, but only a weak load is applied in the axial vertical direction (transverse direction). Since the molding is performed by a uniaxial force, the lateral stress is remarkably different between the part near the mold surface and the part far from the mold surface.

【0011】特に一軸成形の粉末成形体の中でも (イ)肉厚の薄い中ぐりされたリング状のもの、(ロ)
内径、外径に複雑な出入りのあるもの、(ハ)長い中空
体のような形状のもの、などでは必ず起こりうる問題で
ある。これらは横方向の応力のばらつきがとくに著しく
しかも横方向に変形する自由度が高いからである。この
ような形状をここでは、中ぐり、中窪みのある形状と言
っている。または単に内部に凹部のある形状という。
In particular, among the uniaxially molded powder compacts, (a) a thin, hollowed-out ring-shaped product, (b)
This is a problem that can occur with inner and outer diameters that have complicated entrances and exits, and (c) long hollow bodies. This is because the variation of stress in the lateral direction is particularly remarkable and the degree of freedom of deformation in the lateral direction is high. Here, such a shape is referred to as a shape having a hollow or a hollow. Or simply referred to as a shape having a recess inside.

【0012】[0012]

【課題を解決するための手段】本発明は以上の問題点を
解消するためのものである。粉末成形体が焼結により収
縮するものである場合は粉末成形体の内周部に治具を入
れた状態で焼結して内周部の内向きの変形を防止し、粉
末成形体が焼結により膨張するものである場合は、粉末
成形体の外周部に治具を嵌めた状態で焼結して外周部の
外向きの変形を防止する。治具によって粉末成形体の自
由膨張収縮を防ぎ寸法精度よく焼結するようにしたもの
である。
The present invention is to solve the above problems. If the powder compact shrinks due to sintering, sintering is performed with the jig placed inside the powder compact to prevent inward deformation of the inner periphery, and the powder compact is baked. When the powder compact is expanded by binding, the powder compact is sintered with the jig fitted to the outer periphery of the powder compact to prevent outward deformation of the outer periphery. The jig prevents free expansion and contraction of the powder compact and sinters with high dimensional accuracy.

【0013】すなわち本発明の焼結寸法精度向上方法
は、焼結により収縮する材質であって中ぐり又は中窪み
のある形状の粉末成形体に、外径形状が粉末成形体の中
ぐり中窪みの内周形状と局部的形状の相異を除いてほぼ
相似であり、相似形の各部寸法が粉末成形体の内周寸法
より小さく、その寸法差が粉末成形体の焼結時の寸法収
縮量と同等以下である治具を、粉末成形体の内周に組込
み焼結することを特徴とする。
That is, according to the method for improving the dimensional accuracy of sintering of the present invention, a powder compact having a boring or hollow shape, which is made of a material that shrinks by sintering, has an outer diameter shape of the hollow boring middle hollow. It is almost similar except for the difference between the inner peripheral shape and the local shape, and the dimension of each part of the similar shape is smaller than the inner peripheral dimension of the powder compact, and the dimensional difference is the amount of dimensional shrinkage during sintering of the powder compact. A jig which is equal to or less than the above is incorporated into the inner circumference of the powder compact and sintered.

【0014】あるいは、焼結により膨張する材質であっ
て中ぐり又は中窪みのある形状の粉末成形体に、内径形
状が成形体の外周形状と局部的形状の相異を除いてほぼ
相似であり、相似形の各部寸法が成形体の外周寸法より
大きく、その寸法差が成形体の焼結時の寸法膨張量と同
等以下である治具を、成形体の外周に組込み焼結するこ
とを特徴とする。
Alternatively, a powder compact which is a material that expands due to sintering and has a hollow or a hollow is substantially similar in inner diameter except for the difference in the outer peripheral shape and the local shape of the compact. The feature is that each jig of the similar shape is larger than the outer circumference of the compact, and the jig whose difference in size is equal to or less than the dimensional expansion amount at the time of sintering of the compact is incorporated and sintered in the outer periphery of the compact. And

【0015】粉末成形体と治具の熱膨張率の差に関して
は、 (ア)焼結により収縮する材質である場合は、熱膨張率
が粉末成形体材質の熱膨張率と同等以上で且つその差が
5×10-6/℃以内である治具を、粉末成形体の内周に
組込み焼結する。 (イ)焼結により膨張する材質である場合は、熱膨張率
が粉末成形体材質の熱膨張率と同等以下で且つその差が
5×10-6/℃以内である治具を、粉末成形体の外周に
組込み焼結する。
Regarding the difference in the coefficient of thermal expansion between the powder compact and the jig, (a) in the case of a material that contracts due to sintering, the coefficient of thermal expansion is equal to or higher than that of the material of the powder compact, and A jig having a difference of 5 × 10 −6 / ° C. or less is incorporated into the inner circumference of the powder compact and sintered. (A) If the material is one that expands due to sintering, a jig having a coefficient of thermal expansion equal to or less than the coefficient of thermal expansion of the material of the powder compact and having a difference of 5 × 10 −6 / ° C. or less is powder molded. It is built into the outer circumference of the body and sintered.

【0016】分かり難いので次の式により簡明に表現す
る。[焼結により収縮する材質の場合]内周部に治具を
入れる。治具の外周部の外径をA、粉末成形体の内周部
の内径をBとし、焼結による内周部の収縮量をXとし
て、
Since it is difficult to understand, it is simply expressed by the following formula. [In case of material that shrinks by sintering] Insert a jig in the inner circumference. Let A be the outer diameter of the outer periphery of the jig, B be the inner diameter of the inner periphery of the powder compact, and X be the amount of shrinkage of the inner periphery due to sintering.

【0017】 B−X≦A<B (1)BX ≦ A <B (1)

【0018】とするのである。治具、粉末成形体の熱膨
張率をΣa 、Σb とすると、
That is, If the coefficients of thermal expansion of the jig and powder compact are Σ a and Σ b ,

【0019】 0≦Σa −Σb ≦5×10-6/℃ (2)[0019] 0 ≦ Σ a -Σ b ≦ 5 × 10 -6 / ℃ (2)

【0020】ということである。但しここで外径A、内
径Bというのは抽象的なものである。必ずしも内周部が
円形ではないので外径と内径を定義できない場合があ
る。ここでは(B−A)/2が空隙の大きさを意味する
という程度のことである。
That is, However, the outer diameter A and the inner diameter B are abstract here. In some cases, the outer diameter and inner diameter cannot be defined because the inner circumference is not necessarily circular. Here, (BA) / 2 means the size of the void.

【0021】[焼結により膨張する材質の場合]外周部
に治具をはめ込む。治具の内径をC、粉末成形体の外周
部の外径をDとし、焼結による外周部の膨張量をYとし
て、
[In the case of a material that expands by sintering] A jig is fitted on the outer peripheral portion. Let C be the inner diameter of the jig, D be the outer diameter of the outer peripheral portion of the powder compact, and Y be the expansion amount of the outer peripheral portion due to sintering.

【0022】 D+Y≧C>D (3)D + Y ≧ C> D (3)

【0023】とするのである。治具、粉末成形体の熱膨
張率をΣc 、Σd とすると、
That is, If the coefficients of thermal expansion of the jig and powder compact are Σ c and Σ d ,

【0024】 0≦Σd −Σc ≦5×10-6/℃ (4)0 ≦ Σ d −Σ c ≦ 5 × 10 −6 / ° C. (4)

【0025】焼結により収縮する場合に、粉末成形体の
内部に入れる治具の形状を図1〜図4に示す。図1の治
具は上下にストレートな柱状の治具を示す。この治具は
粉末成形体の形状に対応し、円柱状、角柱状等多様であ
る。治具と粉末成形体の間には狭い空隙がある。粉末成
形体は単純なリング状のものを示しているがこれは図を
簡単にするためでありより複雑な粉末成形体にも適用で
きる。
1 to 4 show the shape of a jig to be put inside the powder compact when it shrinks due to sintering. The jig shown in FIG. 1 is a jig having a straight column shape at the top and bottom. This jig has various shapes such as a cylindrical shape and a prismatic shape, corresponding to the shape of the powder compact. There is a narrow gap between the jig and the powder compact. The powder compact is shown as a simple ring, but this is for simplifying the drawing and can be applied to more complicated powder compacts.

【0026】図2に示すものは治具の下端にフランジが
ついている。図3のものは中空の筒状の治具となってい
る。図4は串差し状のものを示す。長い柱状の治具が、
成形体の穴を貫いている。これは複数の同形の粉末成形
体を一度に処理できる。この他にも様々なものが考えら
れる。粉末成形体の材質、形状により適当な治具を組み
合わせる。
The jig shown in FIG. 2 has a flange at the lower end of the jig. The one shown in FIG. 3 is a hollow cylindrical jig. FIG. 4 shows a skewered one. A long pillar jig
It penetrates the hole of the molded body. It is capable of processing several powder compacts of the same shape at one time. There are various other possibilities. An appropriate jig is combined depending on the material and shape of the powder compact.

【0027】治具は当然成形体組成物とは融着または相
互反応をしないもので、焼結温度と室温間でその形が均
等に相似形に変わるものを用いる必要がある。であるか
ら焼結する品物の材質と焼結収縮率に合わせて治具の材
質と寸法を決める必要がある。類似又は同一材質でその
ようなものが選べれば最も好ましい。
Of course, the jig does not cause fusion or mutual reaction with the molded body composition, and it is necessary to use a jig whose shape uniformly changes between the sintering temperature and room temperature. Therefore, it is necessary to determine the material and dimensions of the jig according to the material of the product to be sintered and the sintering shrinkage rate. It is most preferable if similar or identical materials can be selected.

【0028】[0028]

【作用】図5(a)に示すように炉の温度が時間的に変
化する。所定の焼結温度に達するとこの温度で適当な時
間保持をする。焼結が終了すると徐々に冷却する。粉末
成形体が融点以下の加熱によって粒子が拡散、緻密化し
て焼結体となる。
The temperature of the furnace changes with time as shown in FIG. When the predetermined sintering temperature is reached, this temperature is maintained for an appropriate time. When the sintering is completed, it is gradually cooled. When the powder compact is heated below the melting point, the particles are diffused and densified into a sintered compact.

【0029】図5(b)に示すように、自由状態で炉中
に置かれた治具と成形体の寸法が温度とともに変化す
る。始め粉末成形体の方が内径が大きい。この差(イ−
ホ)をグラフ中に示している。治具は可逆的な熱膨張を
するので温度変化と同じ寸法変化(イ−ロ−ハ−ニ)を
示す。成形体は昇温時には単純な熱膨張(ホ−ヘ)をす
る。しかし焼結中に収縮を始める(ヘ−ト)。焼結完了
時に治具の寸法より小さく収縮する(ト)。焼結体はこ
のあと通常の温度低下に伴う収縮をする(ト−チ)。最
終的(リ)には焼結による収縮分だけ、治具より小さく
なる。これは自由状態での熱と焼結に基づく変形であ
る。
As shown in FIG. 5 (b), the dimensions of the jig and the molded body placed in the furnace in a free state change with temperature. Initially, the powder compact has a larger inner diameter. This difference
E) is shown in the graph. Since the jig undergoes reversible thermal expansion, it exhibits the same dimensional change as the temperature change (i.e. The molded body undergoes simple thermal expansion (hohe) when the temperature rises. However, it starts shrinking during sintering (heat). Shrinks smaller than the jig size when sintering is completed (G). Thereafter, the sintered body shrinks (torch) due to the usual temperature decrease. Finally (r), the shrinkage due to sintering becomes smaller than the jig. This is a deformation due to heat and sintering in the free state.

【0030】そこで粉末成形体の凹部に治具を差し入れ
ておくと、焼結体の変形が治具によって制限される。図
6は組み合わせ状態での治具と粉末成形体、焼結体の寸
法変化である。治具の変化は図5と同様である。温度変
化とともに、イ−ロ−ハ−ニと変化する。成形体は始め
治具より大きいので非接触であり、ホ−ヘまで熱膨張す
る。へで焼結が始まるから収縮を開始する。ヌで治具に
接触し、以後これ以上収縮できない。しかし焼結はなお
も進行している。ヌ−ルでは寸法変化が禁止されたまま
焼結される。ここが重要である。
Therefore, if a jig is inserted into the recess of the powder compact, the deformation of the sintered body is limited by the jig. FIG. 6 shows the dimensional changes of the jig, the powder compact, and the sintered compact in the combined state. The jig changes are the same as in FIG. As the temperature changes, it changes from one to another. Since the molded body is larger than the jig at the beginning, it is non-contact and thermally expands to the hole. Since the sintering starts at, the contraction starts. It touches the jig with a tool and cannot shrink any more. However, sintering is still in progress. In the case of Nur, sintering is performed while dimensional change is prohibited. This is important.

【0031】焼結が終了し冷却期間に入る。焼結体の熱
膨張率が治具の熱膨張率より低いので焼結体と治具の間
に空隙が生じてゆく(ル−ヲとハ−ニ)。すなわち収縮
量の差により治具の外周と、焼結体の内周の間にクリア
ランスを生じる。冷却が終了すると、焼結体はヲ−ワと
なり、治具(ニ)よりも大きい。密着してないから、焼
結体を治具から外すのは簡単である。
Sintering is completed and a cooling period begins. Since the coefficient of thermal expansion of the sintered body is lower than the coefficient of thermal expansion of the jig, a void is generated between the sintered body and the jig (row and honey). That is, due to the difference in shrinkage, a clearance is generated between the outer circumference of the jig and the inner circumference of the sintered body. When cooling is completed, the sintered body becomes a work piece, which is larger than the jig (d). It is easy to remove the sintered body from the jig because it is not in close contact.

【0032】拘束ゾーン(ヌ−ル)が長ければ、寸法安
定度が増す。焼結体の収縮が遍く起こるので治具に全面
的に接触し治具によって完全に寸法が規定されるからで
ある。しかし反面、拘束時間(ヌ−ル)が長いと、冷却
時のクリアランス(ヲ−ニ)が狭くなる。治具からの取
り外しを安易にするためには、クリアランスの大きいほ
うがよい。クリアランスには熱膨張率の差が大きく寄与
する。
If the restraint zone (null) is long, the dimensional stability is increased. This is because the shrinkage of the sintered body occurs evenly, so that the entire surface comes into contact with the jig and the dimensions are completely defined by the jig. However, on the other hand, if the restraint time (null) is long, the clearance (one) during cooling becomes narrow. A large clearance is recommended to facilitate removal from the jig. The difference in the coefficient of thermal expansion greatly contributes to the clearance.

【0033】しかし反対に熱膨張率の差が大きいと昇温
時に、治具が粉末成形体に接触しないために始めの空隙
(ホ−イ)を過大に取る必要があり、治具による粉末成
形体の拘束が不完全になる惧れがある。よって、膨張率
差は5×10-6/℃以下が望ましい。
On the contrary, if the difference in the coefficient of thermal expansion is large, it is necessary to take an excessively large initial void (why) because the jig does not come into contact with the powder compact when the temperature is raised. There is a fear that the restraint of the body will be incomplete. Therefore, the difference in expansion coefficient is preferably 5 × 10 −6 / ° C. or less.

【0034】[0034]

【実施例】【Example】

[実施例] 焼結で寸法収縮する材質の場合 金属粉末はSUS430噴霧合金粉で、粉末成形体の形
状はφ60mm×φ80mm×10mmリングとし、成形体密
度は6.5g/cm3 のものを使用した。1130℃真空
焼結炉でこれを焼結した。成形体、治具、焼結前クリア
ランスを下記の条件としてそれぞれ行った。
[Example] In the case of a material that is dimensionally contracted by sintering The metal powder is SUS430 sprayed alloy powder, the shape of the powder compact is φ60 mm × φ80 mm × 10 mm, and the compact density is 6.5 g / cm 3. did. This was sintered in a 1130 ° C. vacuum sintering furnace. The molding, the jig, and the clearance before sintering were performed under the following conditions.

【0035】治具 a.製品単体焼結(治具を用い
ないで、自由状態での焼結) b.図1の形状の治具(単純な円柱状の治具) c.図2の形状の治具(下にフランジの付いている治
具) 成形体と治具の焼結前クリアランスは5種とした イ.0.1mm ロ.0.2mm ハ.0.3mm ニ.1.5mm ホ.2.0mm
Jig a. Single product sintering (sintering in free state without using jig) b. Jig having the shape shown in FIG. 1 (simple cylindrical jig) c. Jig with the shape shown in Fig. 2 (Jig with flange on the bottom) There are 5 types of clearance before sintering between the molded body and the jig. 0.1 mm b. 0.2 mm c. 0.3 mm d. 1.5mm e. 2.0 mm

【0036】粉末成形体 SUS430噴霧合金粉。
粉末成形体形状φ60mm×φ80mm×10mmリン
グ。成形体密度は6.5g/cm3 。 焼結 真空炉で1130℃で焼結。
Powder compact SUS430 atomized alloy powder.
Powder compact shape 60 mm x 80 mm x 10 mm ring. The density of the compact is 6.5 g / cm 3 . Sintering Sintered at 1130 ° C in a vacuum furnace.

【0037】実験は、前記の粉末成形体の単体焼結のも
のと、図1の治具を用いたクリアランスがイ〜ホの5種
類についてのものと、図2の治具を用いクリアランスが
イのものについて行っている。焼結の後冷却して炉から
取り出し、内径外径の歪み量を測定した。その結果を表
1に示す。
Experiments were carried out on the above-mentioned powder-sintered compacts by simple sintering, on five types of clearances (a) to (e) using the jig shown in FIG. 1, and on the clearances using the jig shown in FIG. I am doing about things. After sintering, it was cooled and taken out from the furnace, and the strain amount of the inner diameter and the outer diameter was measured. The results are shown in Table 1.

【0038】[0038]

【表1】 [Table 1]

【0039】表1に示すようにaの単体焼結では、歪み
を拘束するものがないので、歪み量(最大−最小)は大
きい。
As shown in Table 1, in simple sintering of a, there is nothing that restrains the strain, so that the strain amount (maximum-minimum) is large.

【0040】図1の治具を用い、焼結前クリアランスを
0.1mmとしたb−イは成形歪み値で0.010mmと
いう最良の寸法精度を得た。なお、成形体での内径歪み
量は0.037mmであった。b−イの精度の良いのは焼
結のとき治具に強く拘束され修正されたものといえる。
Using the jig shown in FIG. 1, b-i having a clearance before sintering of 0.1 mm has the best dimensional accuracy of 0.010 mm in molding strain value. The inner diameter strain of the molded body was 0.037 mm. It can be said that the high accuracy of b-a was corrected by being strongly restrained by the jig during sintering.

【0041】図1の治具を用いて焼結前クリアランスを
0.2mmにしたb−ロものも内径歪み量は0.012
mmで優れて良好である。クリアランスを0.3mmに
したb−ハも内径歪みが0.027mmであり良い結果
を与える。また図2の治具を用いてクリアランスを0.
1mmにしたc−イも内径歪みが0.011mmで優れ
ている。このようなものは歪みが少ないし、歪みが一定
するので焼結後の後加工等は要らない。
In the case of b-ro having a clearance before sintering of 0.2 mm using the jig shown in FIG. 1, the inner diameter strain amount is 0.012.
mm is excellent and good. In the case of b-ha having a clearance of 0.3 mm, the inner diameter strain is 0.027 mm, which gives good results. In addition, the clearance of 0.
The c-a made 1 mm is also excellent in the inner diameter strain of 0.011 mm. Such a material has little distortion and the distortion is constant, so that post-processing after sintering is not necessary.

【0042】しかし、クリアランスを1.5mmにした
b−ニとクリアランスを2.0mmにしたb−ホは内径
歪みが0.072mm、0.142mmでよくない。こ
れは治具による拘束効果が殆どないからである。
However, the b-d having a clearance of 1.5 mm and the b-e having a clearance of 2.0 mm have inner diameter strains of 0.072 mm and 0.142 mm, which are not preferable. This is because there is almost no restraint effect by the jig.

【0043】[実施例] 焼結で膨張する材質の場合 図7、図8に示すように溝付円筒形の成形体を、円筒形
の治具に入れて、膨張を拘束して焼結し、冷却後、寸法
精度(歪み量)を測定した。 成形体材料 Fe−2Cu(焼結によって膨張) 成形体形状 φ48mm×φ60mm×7mmリング
(4ヶ所溝付品) 成形体密度 6.7g/cm3 焼結前クリアランス 0.1mm 焼結条件 1130℃真空焼結炉
[Example] In the case of a material that expands by sintering As shown in FIGS. 7 and 8, a grooved cylindrical molded body is put into a cylindrical jig and sintered while restraining expansion. After cooling, the dimensional accuracy (strain amount) was measured. Molded material Fe-2Cu (expanded by sintering) Molded shape φ48mm × φ60mm × 7mm Ring (grooved product at 4 places) Molded density 6.7g / cm 3 Clearance before sintering 0.1mm Sintering condition 1130 ° C vacuum Sintering furnace

【0044】単体焼結(治具なし)で歪み量0.128
mmであった。図7、図8に示すように、本発明の治具
を利用した場合歪み量は0.015mmであった。著し
い改善である。当然焼結後の後加工などは不要である。
Strain amount of 0.128 after simple sintering (without jig)
It was mm. As shown in FIGS. 7 and 8, when the jig of the present invention was used, the amount of strain was 0.015 mm. This is a significant improvement. Of course, post-processing after sintering is unnecessary.

【0045】[0045]

【発明の効果】焼結によって収縮する材質においては以
上説明したように、成形体の内周部に治具を組込み焼結
する。焼結体は治具の外周部以上には収縮できないため
に治具に沿った形状、寸法を保持して焼結される。冷却
過程にて熱膨張差により焼結体と治具にクリアランスが
生じ、取り外しが可能となる。形状、材質及び治具の熱
膨張係数の最適値を選ぶことにより、寸法精度が著しく
向上する。即ち、治具との拘束過程が長ければ治具の精
度により近い焼結寸法精度が得られる。
As described above, in the material which shrinks by sintering, a jig is incorporated in the inner peripheral portion of the molded body and sintered. Since the sintered body cannot shrink beyond the outer periphery of the jig, it is sintered while maintaining the shape and dimensions along the jig. Due to the difference in thermal expansion in the cooling process, a clearance is created between the sintered body and the jig, and the jig can be removed. By selecting the optimum shape, material and thermal expansion coefficient of the jig, the dimensional accuracy is significantly improved. That is, if the restraining process with the jig is long, the dimensional accuracy of sintering closer to the accuracy of the jig can be obtained.

【0046】また、図2のように治具にフランジを付け
ると、焼結耐火板との抵抗が除去される、製品の上下で
の寸法差が減少して精度が更に向上する。
When a jig is provided with a flange as shown in FIG. 2, the resistance to the sintered refractory plate is removed, the dimensional difference between the upper and lower parts of the product is reduced, and the accuracy is further improved.

【0047】膨張する材質においては反対に、成形体の
外周部に治具を嵌込み焼結する。焼結体は治具の内周部
以上には膨張できないために治具に沿った形状、寸法を
保持して焼結される。冷却過程にて熱膨張差により焼結
体と治具にクリアランスが生じ、取り外しが可能とな
る。膨張する材質においても、焼結時に製品が治具に拘
束され精度が向上した。
Contrary to the material that expands, a jig is fitted into the outer peripheral portion of the molded body and sintered. Since the sintered body cannot expand beyond the inner circumference of the jig, it is sintered while maintaining the shape and dimensions along the jig. Due to the difference in thermal expansion in the cooling process, a clearance is created between the sintered body and the jig, and the jig can be removed. Even with the material that expands, the accuracy was improved because the product was restrained by the jig during sintering.

【0048】このように焼結の精度が高揚するので、焼
結後に機械加工、矯正のためのサイジングなどの工程を
不要とする。工程が簡略化され生産性に寄与するところ
大である。
As described above, since the accuracy of the sintering is improved, it is possible to eliminate the steps such as machining and sizing for straightening after the sintering. This is a major factor in simplifying the process and contributing to productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で用いる単純柱状の治具と粉末成形体の
組み合わせを示す断面図。
FIG. 1 is a sectional view showing a combination of a simple columnar jig and a powder compact used in the present invention.

【図2】本発明で用いるフランジ付の治具と粉末成形体
の組み合わせを示す断面図。
FIG. 2 is a sectional view showing a combination of a jig with a flange and a powder compact used in the present invention.

【図3】本発明で用いる中空柱状の治具と粉末成形体の
組み合わせを示す断面図。
FIG. 3 is a sectional view showing a combination of a hollow columnar jig and a powder compact used in the present invention.

【図4】本発明で用いる長尺物の治具と複数の粉末成形
体の組み合わせを示す断面図。
FIG. 4 is a cross-sectional view showing a combination of a jig for a long object used in the present invention and a plurality of powder compacts.

【図5】焼結冷却工程における温度、寸法の時間変化を
示すグラフ。(a)は炉の温度の時間変化図。(b)は
自由状態にある粉末成形体焼結体の内径と治具の外径の
時間的変化図。
FIG. 5 is a graph showing changes over time in temperature and dimensions in the sintering and cooling process. (A) is a time change figure of the temperature of a furnace. (B) is a time change diagram of the inner diameter of the powder compact sintered body and the outer diameter of the jig in the free state.

【図6】粉末成形体焼結体に治具を組み合わせた状態で
の粉末成形体焼結体の内径と治具の外径の時間的変化を
示すグラフ。
FIG. 6 is a graph showing changes over time in the inner diameter of the powder compact sintered body and the outer diameter of the jig when the jig is combined with the powder compact sintered body.

【図7】焼結によって膨張する粉末成形体焼結体を治具
に嵌込んで焼結する状態を示す平面図。
FIG. 7 is a plan view showing a state in which a powder compact sintered body that expands due to sintering is fitted into a jig and sintered.

【図8】焼結によって膨張する粉末成形体焼結体を治具
に嵌込んで焼結する状態を示す断面図。
FIG. 8 is a cross-sectional view showing a state in which a powder compact sintered body that expands by sintering is fitted into a jig and sintered.

【図9】公知の金属フィルタ焼結製造方法(粉末充填
法)の断面図。
FIG. 9 is a cross-sectional view of a known metal filter sintering manufacturing method (powder filling method).

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 焼結により収縮する材質であって中ぐり
又は中窪みのある形状の粉末成形体に、外径形状が粉末
成形体の中ぐり中窪みの内周形状と局部的形状の相異を
除いてほぼ相似であり、相似形の各部寸法が粉末成形体
の内周寸法より小さく、その寸法差が粉末成形体の焼結
時の寸法収縮量と同等以下である治具を、粉末成形体の
内周に組込み焼結することを特徴とする焼結寸法精度向
上方法。
1. A powder compact having the shape of a hollow or a hollow, which is made of a material that shrinks due to sintering, and the outer diameter of the powder compact is the phase of the inner peripheral shape of the hollow hollow and the local shape. Except for the differences, the jigs that are similar to each other, each dimension of the similar shape is smaller than the inner peripheral dimension of the powder compact, and the dimension difference is equal to or less than the dimensional shrinkage amount at the time of sintering of the powder compact A method for improving the dimensional accuracy of sintering, characterized by incorporating and sintering the molded body.
【請求項2】 焼結により収縮する材質であって中ぐり
又は中窪みのある形状の粉末成形体に、外径形状が粉末
成形体の中ぐり中窪みの内周形状と局部的形状の相異を
除いてほぼ相似であり、相似形の各部寸法が粉末成形体
の内周寸法より小さく、その寸法差が粉末成形体の焼結
時の寸法収縮量と同等以下であり、その熱膨張率が粉末
成形体材質の熱膨張率と同等以上で且つその差が5×1
-6/℃以内である治具を、粉末成形体の内周に組込み
焼結することを特徴とする焼結寸法精度向上方法。
2. A powder compact having the shape of a hollow or a hollow, which is made of a material that shrinks by sintering, and the outer diameter of the powder compact is a phase of the inner peripheral shape and the local shape of the hollow. Except for the differences, they are almost similar, the size of each part of the similar shape is smaller than the inner circumference of the powder compact, and the difference in size is equal to or less than the amount of dimensional shrinkage during sintering of the powder compact, and its coefficient of thermal expansion. Is equal to or higher than the coefficient of thermal expansion of the powder compact material, and the difference is 5 × 1
A method for improving dimensional accuracy of sintering, which comprises incorporating a jig having a temperature of 0 -6 / ° C or less into an inner circumference of a powder compact and sintering the jig.
【請求項3】 焼結により膨張する材質であって中ぐり
又は中窪みのある形状の粉末成形体に、内径形状が成形
体の外周形状と局部的形状の相異を除いてほぼ相似であ
り、相似形の各部寸法が成形体の外周寸法より大きく、
その寸法差が成形体の焼結時の寸法膨張量と同等以下で
ある治具を、成形体の外周に組込み焼結することを特徴
とする焼結寸法精度向上方法。
3. A powder compact having the shape of a hollow or a hollow, which is made of a material that expands due to sintering, and has an inner diameter that is substantially similar to that of the outer periphery of the compact except a difference in local shape. , Each dimension of the similar shape is larger than the outer peripheral dimension of the molded body,
A method for improving the dimensional accuracy of sintering, comprising incorporating a jig, the size difference of which is equal to or less than the dimensional expansion amount during sintering of the molded body, into the outer periphery of the molded body and sintering the jig.
【請求項4】 焼結により膨張する材質であって中ぐり
又は中窪みのある形状の粉末成形体に、内径形状が成形
体の外周形状と局部的形状の相異を除いてほぼ相似であ
り、相似形の各部寸法が成形体の外周寸法より大きく、
その寸法差が成形体の焼結時の寸法膨張量と同等以下で
ありその熱膨張率が粉末成形体材質の熱膨張率と同等以
下で且つその差が5×10-6/℃以内である治具を、成
形体の外周に組込み焼結することを特徴とする焼結寸法
精度向上方法。
4. A powder compact having a shape that is expandable by sintering and has a hollow or a hollow, and has an inner diameter that is substantially similar to that of the outer periphery of the compact except a difference in local shape. , Each dimension of the similar shape is larger than the outer peripheral dimension of the molded body,
The dimensional difference is equal to or less than the dimensional expansion amount of the compact during sintering, the thermal expansion coefficient is equal to or less than the thermal expansion coefficient of the powder compact material, and the difference is within 5 × 10 −6 / ° C. A method for improving sintering dimension accuracy, which comprises incorporating a jig into the outer periphery of a molded body and sintering the jig.
JP22202792A 1992-07-28 1992-07-28 Method for improving dimensional accuracy in sintering Pending JPH0649505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22202792A JPH0649505A (en) 1992-07-28 1992-07-28 Method for improving dimensional accuracy in sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22202792A JPH0649505A (en) 1992-07-28 1992-07-28 Method for improving dimensional accuracy in sintering

Publications (1)

Publication Number Publication Date
JPH0649505A true JPH0649505A (en) 1994-02-22

Family

ID=16775949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22202792A Pending JPH0649505A (en) 1992-07-28 1992-07-28 Method for improving dimensional accuracy in sintering

Country Status (1)

Country Link
JP (1) JPH0649505A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011018176A1 (en) * 2009-08-11 2011-02-17 Gkn Sinter Metals Holding Gmbh Method for producing a sintered component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011018176A1 (en) * 2009-08-11 2011-02-17 Gkn Sinter Metals Holding Gmbh Method for producing a sintered component

Similar Documents

Publication Publication Date Title
US5963775A (en) Pressure molded powder metal milled tooth rock bit cone
EP0311407B1 (en) Process for fabricating parts for particulate material
CA1163838A (en) Method of hot consolidating powder with a recyclable container
US4137106A (en) Super hard metal roll assembly and production thereof
US20080075619A1 (en) Method for making molybdenum parts using metal injection molding
EP1213072B1 (en) Method to form multi-material sintered articles
US3917782A (en) Method for preparing thin-walled ceramic articles of configuration
JPH0649505A (en) Method for improving dimensional accuracy in sintering
EP1216115B1 (en) Direct metal fabrication of parts
JPH0570809A (en) Method of manufacturing molding by sintering
US2794241A (en) Fabrication of intricate shapes from beryllium
JPH0387302A (en) Metal injection forming method using loose core
EP0639417B1 (en) Process for manufacturing powder injection molded parts
KR19990038618A (en) Powder Injection Molding Method of Molded Body of Hollow Complex Shape
JP6355615B2 (en) Manufacturing method of ceramic sintered body
Tan et al. Powder injection molding of bi-metal components
JP3863591B2 (en) Method for producing sintered metal powder
JP3161629B2 (en) Two-layer component manufacturing method, molded product for two-layer component, and two-layer component obtained by two-layer component manufacturing method
JPH05320711A (en) Production of sintered compact
JPH04259304A (en) Production of sintered body
JPS643921B2 (en)
RU2179499C2 (en) Method for making porous products with predetermined porosity degree and configuration
JPH05319938A (en) Production of sintered material
JP2636315B2 (en) Work cooling prevention method during sintering forging
KR100491033B1 (en) Powder injection molding Method