JPH0648738A - Superconducting laminated thin film and its production - Google Patents

Superconducting laminated thin film and its production

Info

Publication number
JPH0648738A
JPH0648738A JP4201651A JP20165192A JPH0648738A JP H0648738 A JPH0648738 A JP H0648738A JP 4201651 A JP4201651 A JP 4201651A JP 20165192 A JP20165192 A JP 20165192A JP H0648738 A JPH0648738 A JP H0648738A
Authority
JP
Japan
Prior art keywords
thin film
superconducting
superconductor
layer
laminated thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4201651A
Other languages
Japanese (ja)
Other versions
JP2959290B2 (en
Inventor
Tsutomu Yoshitake
務 吉武
Junichi Fujita
淳一 藤田
Tetsuro Sato
哲朗 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4201651A priority Critical patent/JP2959290B2/en
Publication of JPH0648738A publication Critical patent/JPH0648738A/en
Application granted granted Critical
Publication of JP2959290B2 publication Critical patent/JP2959290B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To reduce mutual diffusion or disturbance, etc., of orientation causing deterioration of supeconducting characteristics of a Bi based oxide superconductor and simultaneously facilitate formation of Josephson junction. CONSTITUTION:A buffer layer 2 obtained by subjecting Bi2Sr2CuO2 based oxide to heteroepitaxial growth is formed on a substrate 1 forming a step in <1-10> direction by polishing inclined in (111) direction from normal line to SrTiO3 (100) single crystal substrate face and Bi2(Sr1-XCaX)3Cu2Oy based superconductor layers 3 and 5 sandwiching the both sides of an intermediate layer of Bi2Sr2CuO2 based oxide layer 4 therebetween are formed on the buffer layer 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高い臨界温度(TC
を有するBi系超伝導積層薄膜およびその製造方法に関
するものである。
FIELD OF THE INVENTION The present invention has a high critical temperature (T C ).
The present invention relates to a Bi-based superconducting layered thin film having the above and a manufacturing method thereof.

【0002】[0002]

【従来の技術】高いTC を持つBi系酸化物超伝導体の
発見以来、その高いTC をもたらす超伝導機構の解明の
ための基礎研究や電子素子等への応用研究が活発に行わ
れている。Bi系酸化物超伝導体は、85Kという高い
C を持つため、その使用に際しては、77Kの沸点を
持つ安価な液体窒素を冷媒として使用でき、また、その
低温の維持のための設備も簡単なものですむという長所
を持っている。このため、従来の低いTC を持つ物質を
用いて実現した超伝導磁石や超伝導電子素子等を、高い
C を持つBi系酸化物超伝導体を用いて実現すること
は産業上大きな貢献となる。
Since the discovery of the Related Art Bi-based oxide having high T C superconductor, its high results in T C applied research in basic research and electronic devices such as for elucidating the superconductivity mechanism is actively conducted ing. Since the Bi-based oxide superconductor has a high T C of 85K, inexpensive liquid nitrogen with a boiling point of 77K can be used as a refrigerant when using it, and the facility for maintaining its low temperature is simple. It has the advantage that it can be used. For this reason, it is a great industrial contribution to realize superconducting magnets and superconducting electronic devices that have been realized using conventional low T C materials using Bi-based oxide superconductors with high T C. Becomes

【0003】このBi系酸化物超伝導体を用いて超伝導
電子素子を製造する際、この素子の重要な構成部分であ
るジョセフソントンネル接合やジョセフソン弱接合を制
御性よく作製する必要がある。このための方法として、
非超伝導体中間層を超伝導体ではさんだ積層構造を作製
する技術が一般的である。
When manufacturing a superconducting electronic device using this Bi-based oxide superconductor, it is necessary to control the Josephson tunnel junction and the Josephson weak junction, which are important components of the device, with good controllability. . As a way to do this,
A general technique is to produce a laminated structure with a non-superconductor intermediate layer sandwiched between superconductors.

【0004】[0004]

【発明が解決しようとする課題】上述した中間層を構成
する非超伝導物質としては、Bi系酸化物超伝導体と結
晶構造が似ていること、Bi系酸化物超伝導体との相互
拡散が小さいこと、低温で比抵抗が充分高いことなどの
条件を満足する必要があるが、Bi系超伝導積層薄膜の
中間層として、従来の低TC 超伝導積層構造で用いられ
ていたAl酸化物等の非超伝導物質をそのまま用いる
と、相互拡散やBi系超伝導積層薄膜の結晶配向性の乱
れ等の問題が発生し、超伝導積層薄膜の作製が不可能と
なる。
As the non-superconducting material constituting the above-mentioned intermediate layer, the crystal structure is similar to that of the Bi-based oxide superconductor, and the interdiffusion with the Bi-based oxide superconductor. it is small, it is necessary to satisfy the conditions such that a sufficiently high specific resistance at a low temperature, an intermediate layer of Bi-based superconducting multilayer thin film, Al oxide used in the conventional low T C superconducting multilayer structure If a non-superconducting substance such as a substance is used as it is, problems such as mutual diffusion and disorder of crystal orientation of the Bi-based superconducting laminated thin film occur, and it becomes impossible to manufacture the superconducting laminated thin film.

【0005】このような問題を解決するために、Bi系
酸化物超伝導体に適した中間層として、Bi系酸化物超
伝導体と同族の半導体酸化物であるBi2 Sr2 CuO
x が選択された。この酸化物は、Bi系酸化物超伝導体
とc軸長以外は同じ構造をしており、ヘテロエピタキシ
ャル成長すること、および、相互の反応がない等の理由
から、Bi系酸化物超伝導体の中間層として有望である
と期待された。実際に、MgO(100)単結晶基板上
において、Bi系酸化物超伝導体とBi2 Sr2 CuO
x 中間層からなるc軸配向した積層薄膜が非常に良好な
界面を持って製造できることが既に報告されている。
In order to solve such a problem, an intermediate layer suitable for a Bi-based oxide superconductor is Bi 2 Sr 2 CuO, which is a semiconductor oxide of the same family as the Bi-based oxide superconductor.
x is selected. This oxide has the same structure as the Bi-based oxide superconductor except for the c-axis length, and because of the heteroepitaxial growth and no mutual reaction, the oxide of the Bi-based oxide superconductor is It was expected to be a promising middle class. Actually, on the MgO (100) single crystal substrate, the Bi-based oxide superconductor and the Bi 2 Sr 2 CuO were formed.
It has already been reported that a c-axis oriented laminated thin film composed of an x intermediate layer can be produced with a very good interface.

【0006】しかしながら、Bi系酸化物超伝導体に
は、その結晶構造から由来する大きな異方性が存在し、
c軸方向ではコヒーレンス長が短くジョセフソン接合が
作りにくいのに対して、CuO2 面内方向ではコヒーレ
ンス長が長くジョセフソン接合を作り易いという特徴が
あるため、このようにMgO(100)基板上に作製さ
れたc軸配向性を示すBi系超伝導積層薄膜は、ジョセ
フソン接合形成に不利であるという問題点を抱えてい
た。
However, the Bi-based oxide superconductor has a large anisotropy derived from its crystal structure.
Since the coherence length is short in the c-axis direction and a Josephson junction is difficult to form, the coherence length is long in the CuO 2 in- plane direction and a Josephson junction is easily formed. The Bi-based superconducting laminated thin film having the c-axis orientation prepared in 1) has a problem that it is disadvantageous in forming a Josephson junction.

【0007】一方、この問題点を解決することを目的と
して、SrTiO3 (110)単結晶基板上にBi系超
伝導積層薄膜を形成することにより、c軸を基板面から
45°傾けてCuO2 面に基板垂直成分を持たせるよう
な試みも行われている。実際に、このような試みにおい
ては、目的とする構造形成には成功しているものの、B
i系酸化物超伝導体を直接にSrTiO3 単結晶基板上
に成長させているため、薄膜と基板間に反応が起こっ
て、超伝導特性が劣化していること、および、(11
0)面基板上の特徴である薄膜表面の平滑性が著しく悪
い等のためデバイス形成の目的には問題があった。
On the other hand, for the purpose of solving this problem, by forming a Bi-based superconducting laminated thin film on a SrTiO 3 (110) single crystal substrate, the c-axis is inclined 45 ° from the substrate surface, and CuO 2 is formed. Attempts have also been made to give the surface a vertical component of the substrate. In fact, in such an attempt, although the desired structure formation was successful, B
Since the i-based oxide superconductor is directly grown on the SrTiO 3 single crystal substrate, a reaction occurs between the thin film and the substrate, and the superconducting property is deteriorated.
There was a problem in the purpose of device formation because the smoothness of the thin film surface, which is a feature of the 0) plane substrate, was extremely poor.

【0008】本発明の目的は、相互拡散および結晶配向
性の乱れ等を生じさせない中間層を持ち、ジョセフソン
接合形成に有利な超伝導積層薄膜およびその製造方法を
提供することにある。
An object of the present invention is to provide a superconducting laminated thin film which has an intermediate layer that does not cause mutual diffusion and disorder of crystal orientation, and is advantageous for forming Josephson junctions, and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】第1の発明の超伝導積層
薄膜は、SrTiO3 (100)単結晶基板面の法線か
ら(111)方向に傾けて研磨することにより<1−1
0>方向にステップを形成した単結晶基板と、単結晶基
板上に形成されたBi2 Sr2 CuOz 系酸化物よりな
るバッファー層と、バッファー層の上面に形成されたB
2 (Sr1-x Cax 3 Cu2 y 系超伝導体よりな
る第1の超伝導体層と、第1の超伝導体層の上面に形成
されたBi2 Sr2 CuOz 系酸化物よりなる中間層
と、中間層の上面に形成されたBi2 (Sr1-x
1 3 Cu2 y 系超伝導体よりなる第2の超伝導体
層を有することを特徴としている。
The superconducting laminated thin film according to the first aspect of the present invention is <1-1 when polished by tilting in the (111) direction from the normal line of the SrTiO 3 (100) single crystal substrate surface.
A single crystal substrate having steps formed in the 0> direction, a buffer layer made of Bi 2 Sr 2 CuO z based oxide formed on the single crystal substrate, and B formed on the upper surface of the buffer layer.
i 2 (Sr 1-x Ca x ) 3 Cu 2 O y- based superconductor first superconductor layer and Bi 2 Sr 2 CuO z- based system formed on the upper surface of the first superconductor layer An intermediate layer made of an oxide and Bi 2 (Sr 1-x C formed on the upper surface of the intermediate layer
It is characterized by having a second superconductor layer made of a 1 ) 3 Cu 2 O y based superconductor.

【0010】第2の発明は、第1の発明において、中間
層が、Bi2 Sr2 (Cu1-a a)Oz なる式で表さ
れ、MがAl、Fe、Zn、Ni、Ptの中の少なくと
も1つであり、aが0<a≦0.1である組成の非超伝
導酸化物よりなることを特徴としている。
A second invention, in the first aspect, the intermediate layer is represented by Bi 2 Sr 2 (Cu 1- a M a) O z consisting formula, M is Al, Fe, Zn, Ni, Pt And a is composed of a non-superconducting oxide having a composition of 0 <a ≦ 0.1.

【0011】第3の発明は、第1の発明において、中間
層が、Bi2 (Sr1-b b 2 CuOz なる式で表さ
れ、LがPr、Nd、Sm、Eu、Gd、Dy、Ho、
Er、Yの中の少なくとも1つであり、bが0<b≦
0.5である組成の非超伝導酸化物よりなることを特徴
としている。
According to a third invention, in the first invention, the intermediate layer is represented by the formula Bi 2 (Sr 1-b L b ) 2 CuO z , and L is Pr, Nd, Sm, Eu, Gd, Dy, Ho,
At least one of Er and Y, and b is 0 <b ≦
It is characterized by being composed of a non-superconducting oxide having a composition of 0.5.

【0012】第4の発明は、第1〜第3の発明の超伝導
積層薄膜の製造方法であって、膜成長温度を550〜6
50℃に設定して、バッファー層としてのBi2 Sr2
CuOz を単結晶基板上にヘテロエピタキシャル成長さ
せ、バッファー層の形成後に、基板温度を超伝導薄膜合
成温度である680〜750℃まで上げて、第1の超伝
導体層としてのBi2 (Sr1-x Cax 3 Cu2 y
と、中間層としてのBiSr2 CuOy と、第2の超伝
導層としてのBi2 (Sr1-x Cax 3 Cu2 y
を順にヘテロエピタキシャル成長させることを特徴とし
ている。
A fourth invention is a method for manufacturing a superconducting laminated thin film according to the first to third inventions, wherein the film growth temperature is 550 to 6
Bi 2 Sr 2 as a buffer layer was set at 50 ° C.
After CuO z was heteroepitaxially grown on the single crystal substrate and the buffer layer was formed, the substrate temperature was raised to 680 to 750 ° C., which is the superconducting thin film synthesis temperature, and Bi 2 (Sr 1) as the first superconductor layer was formed. -x Ca x ) 3 Cu 2 O y
And BiSr 2 CuO y as an intermediate layer and Bi 2 (Sr 1-x Ca x ) 3 Cu 2 O y as a second superconducting layer are successively heteroepitaxially grown.

【0013】[0013]

【作用】Bi系酸化物超伝導体の積層薄膜の構造におい
て、基板として通常のSrTiO3 (100)単結晶基
板ではなく、SrTiO3 (100)単結晶基板面に対
し、その法線から(111)方向に傾けて研磨すること
により<1−10>方向にステップを形成した傾斜単結
晶基板を用いたのは、Bi系酸化物超伝導体やBi2
2 CuOz 系酸化物がSrTiO3 単結晶基板の(1
00)面にエピタキシャル成長するため、傾斜基板上に
おいては、Bi系酸化物超伝導体のc軸が基板表面の法
線方向から基板の傾斜角度だけ傾き、コヒーレンス長の
長いCuO2 面が法線方向成分を持つようになるので、
ジョセフソン接合作製上有利となるからである。
In the structure of the laminated thin film of the Bi-based oxide superconductor, not the usual SrTiO 3 (100) single crystal substrate but the normal to the SrTiO 3 (100) single crystal substrate surface (111) The tilted single crystal substrate in which the steps are formed in the <1-10> direction by polishing while tilting in the (1) direction is used for the Bi-based oxide superconductor and Bi 2 S.
The r 2 CuO z- based oxide is (1) of the SrTiO 3 single crystal substrate.
On the inclined substrate, the c-axis of the Bi-based oxide superconductor is inclined from the normal direction of the substrate surface by the inclination angle of the substrate and the CuO 2 surface having a long coherence length is the normal direction on the inclined substrate. Since it will have ingredients,
This is because it is advantageous in manufacturing the Josephson junction.

【0014】また、通常、Bi系酸化物超伝導体をSr
TiO3 (100)単結晶基板上に形成すると、基板の
<110>および<1−10>両方向にBi系酸化物超
伝導体のb軸が観察され、膜は互いに直行する2種類の
ドメイン構造からなっており、厳密には単結晶薄膜には
ならない。これに対して、前記の傾斜SrTiO3 単結
晶基板上にBi系超伝導積層薄膜を形成した場合には、
基板表面にできるステップに垂直方向にb軸が、また、
ステップと平行方向にa軸がそろうため、薄膜は完全な
単結晶となる。このような単結晶薄膜を用いてジョセフ
ソン接合等を作ると、結晶粒界の影響を受けることがな
いのでデバイス作成上有利となる。
In addition, a Bi-based oxide superconductor is usually used as Sr.
When formed on a TiO 3 (100) single crystal substrate, the b-axis of the Bi-based oxide superconductor is observed in both <110> and <1-10> directions of the substrate, and the film has two types of domain structures orthogonal to each other. Strictly speaking, it does not become a single crystal thin film. On the other hand, when a Bi-based superconducting laminated thin film is formed on the above-mentioned graded SrTiO 3 single crystal substrate,
The b-axis is perpendicular to the step on the substrate surface,
Since the a-axis is aligned in the direction parallel to the step, the thin film becomes a perfect single crystal. When a Josephson junction or the like is formed using such a single crystal thin film, it is not affected by crystal grain boundaries, which is advantageous in device fabrication.

【0015】傾斜SrTiO3 単結晶基板上にバッファ
ー層として、Bi2 Sr2 CuOz系酸化物を用いたの
は、このバッファー層が基板とBi系超伝導積層薄膜の
反応を防ぐとともに、両者の格子のミスフィットを緩和
することにより、Bi系超伝導積層薄膜のエピタキシャ
ル性を高め、結晶の不完全さを低減することができ、薄
膜表面の平滑性を高めることができるからである。
The Bi 2 Sr 2 CuO z type oxide was used as a buffer layer on the tilted SrTiO 3 single crystal substrate because the buffer layer prevents the reaction between the substrate and the Bi type superconducting laminated thin film, and By relaxing the lattice misfit, the epitaxial property of the Bi-based superconducting laminated thin film can be enhanced, the imperfections of the crystal can be reduced, and the smoothness of the thin film surface can be enhanced.

【0016】次に、Bi2 Sr2 CuOz 系酸化物を中
間層として用いたのは、本物質がBi系酸化物超伝導体
とc軸の格子定数のみが異なる同族の物質で、CuO2
面の格子の整合性もよいため、Bi2 (Sr1-x
x 3 Cu2 y 系超伝導体層の上にBi2 Sr2
uOz 系酸化物層をエピタキシャル成長させること、お
よび、逆にBi2 Sr2 CuOz 系酸化物層の上にBi
2 (Sr1-x Cax 3 Cu2 y 系超伝導体層をエピ
タキシャル成長させることが可能であることが理由であ
る。また、Bi2 (Sr1-x Cax 3 Cu2 y 系超
伝導体層との間の相互拡散が小さいことが理由である。
この中間層物質のCuをAl等で、またはSrをPr等
で一部置換すれば、Bi2 Sr2 CuOz 系酸化物の比
抵抗を高めることができ、ジョセフソントンネル接合へ
の応用を考えると、より好ましい。
Next, was used Bi 2 Sr 2 CuO z based oxide as an intermediate layer, in this material is only different cognate lattice constant of the Bi-based oxide superconductor and a c-axis material, CuO 2
Bi 2 (Sr 1-x C
a x ) 3 Cu 2 O y based superconductor layer on top of Bi 2 Sr 2 C
Epitaxially growing a uO z -based oxide layer, and conversely Bi on a Bi 2 Sr 2 CuO z -based oxide layer
The reason is that it is possible to epitaxially grow the 2 (Sr 1-x Ca x ) 3 Cu 2 O y based superconductor layer. Another reason is that the mutual diffusion with the Bi 2 (Sr 1-x Ca x ) 3 Cu 2 O y based superconductor layer is small.
If Cu of the intermediate layer material is partially replaced by Al or the like or Sr is partially replaced by Pr or the like, the specific resistance of the Bi 2 Sr 2 CuO z based oxide can be increased, and its application to the Josephson tunnel junction is considered. And more preferable.

【0017】良好な超伝導特性を有するBi系超伝導積
層薄膜を合成するためには680〜750℃の基板温度
で成膜することが望ましい。しかし、この良好な超伝導
特性の得られる基板温度で、いきなりSrTiO3 単結
晶基板上に成膜を開始した場合、成膜初期にSrTiO
3 単結晶基板と薄膜が反応して異相の発生や島状成長が
起こり、これが原因となって最終的に薄膜の表面平滑性
がかなり悪くなってしまうという問題がある。これに対
して、成膜初期にバッファー層としてBi2 Sr2 Cu
z 系酸化物を基板温度550〜650℃で24オング
ストローム以上、例えば72オングストローム程度形成
すると、この層が基板界面において緩衝層となり、基板
と薄膜との反応を防ぐことが可能となる。そして、この
バッファー層形成後に、基板温度をBi系超伝導積層薄
膜の成長温度680〜750℃に上げて成膜することに
より、表面平滑性に優れ、かつ、超伝導特性の良好なB
i系酸化物超伝導体の積層薄膜を得ることができる。
In order to synthesize a Bi-based superconducting laminated thin film having good superconducting properties, it is desirable to form the film at a substrate temperature of 680 to 750 ° C. However, when film formation is suddenly started on the SrTiO 3 single crystal substrate at the substrate temperature at which this excellent superconducting property is obtained, SrTiO 3 is formed at the initial stage of film formation.
3 The single crystal substrate and the thin film react with each other to cause heterogeneous phases and island-shaped growth, which causes a problem that the surface smoothness of the thin film is considerably deteriorated in the end. On the other hand, Bi 2 Sr 2 Cu was used as a buffer layer at the initial stage of film formation.
When the O z -based oxide is formed at a substrate temperature of 550 to 650 ° C. for 24 Å or more, for example, about 72 Å, this layer serves as a buffer layer at the substrate interface, and it becomes possible to prevent the reaction between the substrate and the thin film. After the formation of the buffer layer, the substrate temperature is increased to a growth temperature of the Bi-based superconducting laminated thin film of 680 to 750 ° C. to form a film, so that B has excellent surface smoothness and good superconducting properties.
It is possible to obtain a laminated thin film of an i-based oxide superconductor.

【0018】[0018]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0019】図1は、本発明のBi系超伝導積層薄膜の
斜視断面図である。本実施例は、基板1と、バッファー
層2と、非超伝導体中間層であるBi2 Sr2 CuOz
系酸化物層4と、Bi2 Sr2 CuOz 系酸化物層4の
両側を挟んだBi2 (Sr1-x Cax 3 Cu2 y
超伝導体層3,5とにより構成されている。
FIG. 1 is a perspective sectional view of a Bi type superconducting laminated thin film of the present invention. In this example, the substrate 1, the buffer layer 2, and the non-superconductor intermediate layer Bi 2 Sr 2 CuO z were used.
And a Bi 2 (Sr 1-x Ca x ) 3 Cu 2 O y -based superconductor layer 3 and 5 sandwiching both sides of the Bi 2 Sr 2 CuO z -based oxide layer 4. ing.

【0020】本実施例においては、Bi系超伝導積層薄
膜を製造するためにイオンビームスパッタ装置を用い
た。この装置では、マイクロ波励起による原子状酸素を
薄膜の酸化源として利用しており、基板1付近の酸素分
圧は約10-3Torrであった。薄膜成長温度は約40
0オングストローム/Hである。薄膜製造においては、
チャンバー中にBi2 3 、Bi2 Sr2 CuOz 、お
よび、Sr2 CaCu2x'のターゲットを設けて、3
つのスパッタソースを独立に制御することにより、積層
薄膜形成時のバッファー層2、Bi2 (Sr1-x
x 3 Cu2 y 系超伝導体層3,5、Bi2 Sr2
CuOz 系酸化物層4の作り分けを行っている。
In this example, an ion beam sputtering apparatus was used to manufacture a Bi type superconducting laminated thin film. In this apparatus, atomic oxygen excited by microwaves is used as an oxidation source of the thin film, and the oxygen partial pressure near the substrate 1 was about 10 −3 Torr. Thin film growth temperature is about 40
It is 0 angstrom / H. In thin film manufacturing,
Bi 2 O 3 in the chamber, Bi 2 Sr 2 CuO z, and provided with a target of Sr 2 CaCu 2 O x ', 3
By controlling the two sputter sources independently, the buffer layer 2, Bi 2 (Sr 1-x C
a x) 3 Cu 2 O y based superconductor layers 3,5, Bi 2 Sr 2
The CuO z based oxide layer 4 is separately formed.

【0021】基板1には、SrTiO3 (100)単結
晶基板面に対し、その法線から(111)方向に8°傾
けて研磨することにより<1−10>方向にステップを
形成した傾斜単結晶基板を用いた。基板1の大きさは1
5mm角で、厚さは0.5mmである。基板1上に、ま
ずバッファー層2として、Bi2 Sr2 CuOz 系酸化
物を2〜3ユニット層(約48〜72オングストロー
ム)成長させる。バッファー層2の厚さは1ユニット層
以上あればさしつかえない。このバッファー層2を形成
する場合には、基板温度を550℃〜650℃とやや低
い温度で形成する。これは、基板1と薄膜との反応を押
さえることが目的である。このバッファー層2がない場
合には、その後に形成するBi2 (Sr1-x Cax 3
Cu2 y系超伝導体層3,5が基板1と反応して、結
晶性、薄膜表面平滑性、超伝導特性が悪くなるのに対し
て、バッファー層2を形成することにより、結晶性、表
面平滑性ともに優れ、かつ、超伝導特性の優れた薄膜を
得ることができる。
The substrate 1 is an SrTiO 3 (100) single crystal substrate surface which is inclined by 8 ° in the (111) direction from its normal line and polished to form steps in the <1-10> direction. A crystal substrate was used. The size of the substrate 1 is 1
It is 5 mm square and has a thickness of 0.5 mm. First, as the buffer layer 2, a Bi 2 Sr 2 CuO z- based oxide is grown on the substrate 1 for 2 to 3 unit layers (about 48 to 72 Å). The buffer layer 2 may have a thickness of 1 unit layer or more. When the buffer layer 2 is formed, the substrate temperature is formed at a temperature as low as 550 ° C to 650 ° C. This is intended to suppress the reaction between the substrate 1 and the thin film. If this buffer layer 2 does not exist, Bi 2 (Sr 1-x Ca x ) 3 formed thereafter is formed.
The Cu 2 O y -based superconductor layers 3 and 5 react with the substrate 1 to deteriorate crystallinity, thin film surface smoothness, and superconducting properties, while forming the buffer layer 2 results in crystallinity. A thin film having excellent surface smoothness and excellent superconducting properties can be obtained.

【0022】バッファー層2の形成後、基板温度を約7
00℃まで上昇させてBi2 (Sr1-x Cax 3 Cu
2 y 系超伝導体層3を堆積させ、その上にBi2 Sr
2 CuOz 系酸化物層4を堆積させ、最後に、その上に
Bi2 (Sr1-x Cax 3Cu2 y 系超伝導体層5
を堆積させて積層薄膜を作製する。
After forming the buffer layer 2, the substrate temperature is set to about 7
Bi 2 (Sr 1-x Ca x ) 3 Cu by raising the temperature to 00 ° C
2 O y- based superconductor layer 3 is deposited, and Bi 2 Sr is deposited thereon.
2 CuO z based oxide layer 4 is deposited, and finally, Bi 2 (Sr 1-x Ca x ) 3 Cu 2 O y based superconductor layer 5 is deposited thereon.
Are deposited to form a laminated thin film.

【0023】こうして作製したBi系超伝導積層薄膜を
2次イオン質量分析装置(SIMS)で分析すると、各
層は相互拡散せず堆積されており、良質の積層薄膜が作
製されていることが確認された。
When the Bi-based superconducting laminated thin film thus produced was analyzed by a secondary ion mass spectrometer (SIMS), it was confirmed that each layer was deposited without mutual diffusion, and a good laminated thin film was produced. It was

【0024】また、この積層薄膜の構造をX線回折法に
よって評価すると、Bi2 (Sr1-x Cax 3 Cu2
y 系酸化物相およびBi2 Sr2 CuOz 系酸化物相
のみの回折のピークが観察され、異相はまったく見られ
なかった。
When the structure of this laminated thin film was evaluated by an X-ray diffraction method, Bi 2 (Sr 1-x Ca x ) 3 Cu 2 was obtained.
Peaks of diffraction O y-bearing oxide and Bi 2 Sr 2 CuO z based oxide phase alone is observed, heterogeneous phase was observed at all.

【0025】さらに、この積層薄膜の表面および同条件
で作製した各単層薄膜の表面を走査型電子顕微鏡で観察
したところ、表面は50A以下の精度で平坦であり、非
常に良好な積層薄膜が形成されていることが確認され
た。
Furthermore, when the surface of this laminated thin film and the surface of each single-layer thin film produced under the same conditions were observed with a scanning electron microscope, the surface was flat with an accuracy of 50 A or less, and a very good laminated thin film was obtained. It was confirmed that it was formed.

【0026】この積層薄膜と傾斜SrTiO3 単結晶基
板の結晶方位関係をRHEED(reflection
high energy electron dif
fraction)および透過型電子顕微鏡によって調
べると、図2の積層薄膜の断面構造の詳細図に示すよう
に、各層のc軸はSrTiO3 単結晶基板の(001)
面に垂直に成長しており、このため、基板表面の法線方
向とは基板の傾斜角度である8°だけずれているのが確
認された。従って、Bi系酸化物超伝導体においてコヒ
ーレンス長の長いCuO2 面も基板表面と8°の角度を
持つようになる。この結果、図2にみられるごとく、B
2 (Sr1-x Cax 3 Cu2 y 系超伝導体層5と
Bi2 (Sr1-x Cax 3 Cu2 y 系超伝導体層3
のCuO2 面は、中間層であるBi2 Sr2 CuOz
酸化物層4を挟んで連続的につながるようになる。従来
のBi系超伝導積層薄膜がコヒーレンス長の短いc軸方
向でしかつながらなかったのに比べると、本発明による
積層薄膜は、上部超伝導体と下部超伝導体がコヒーレン
ス長の長いCuO2 面でつながっており、ジョセフソン
接合作製の目的のためには非常に有利な構造になってい
るのがわかった。
The crystal orientation relationship between this laminated thin film and the tilted SrTiO 3 single crystal substrate is shown by RHEED (reflection).
high energy electron dif
Fraction) and a transmission electron microscope, the c-axis of each layer is (001) of the SrTiO 3 single crystal substrate as shown in the detailed view of the cross-sectional structure of the laminated thin film in FIG.
It has been confirmed that the growth is perpendicular to the surface, and for this reason, it deviates from the normal direction of the substrate surface by 8 ° which is the inclination angle of the substrate. Therefore, the CuO 2 surface having a long coherence length in the Bi-based oxide superconductor also has an angle of 8 ° with the substrate surface. As a result, as shown in FIG. 2, B
i 2 (Sr 1-x Ca x ) 3 Cu 2 O y- based superconductor layer 5 and Bi 2 (Sr 1-x Ca x ) 3 Cu 2 O y- based superconductor layer 3
The CuO 2 surface of is continuously connected with the Bi 2 Sr 2 CuO z based oxide layer 4, which is an intermediate layer, interposed therebetween. In contrast to the conventional Bi-based superconducting laminated thin film having a short coherence length in the c-axis direction, the laminated thin film according to the present invention has a CuO 2 surface with a long coherence length in the upper superconductor and the lower superconductor. It was found that the structure is very advantageous for the purpose of making the Josephson junction.

【0027】さらに、基板面内のエピタキシャル関係に
おいては、Bi系酸化物超伝導体に特有のb軸方向の変
調構造が、基板上に形成されたステップと常に垂直にな
っており、このため、a軸は必然的にステップと平行に
そろうようになる。従って、本発明による積層薄膜は、
ドメイン構造のない、完全な単結晶薄膜になっており、
結晶粒界の影響等がない良質の積層薄膜になっているの
が確認された。
Further, in the in-plane epitaxial relationship, the modulation structure in the b-axis direction peculiar to the Bi-based oxide superconductor is always perpendicular to the steps formed on the substrate. The a-axis inevitably becomes parallel to the step. Therefore, the laminated thin film according to the present invention is
It is a complete single crystal thin film without domain structure,
It was confirmed that the film was a good quality thin film without the influence of grain boundaries.

【0028】4端子電気抵抗測定法でBi2 (Sr1-x
Cax 3 Cu2 y 系超伝導体層3,5の電気抵抗の
温度変化を測定したところ、いずれの層も85K程度の
Cを持つことが確認され、超伝導特性の優れた良質の
Bi2 (Sr1-x Cax 3Cu2 y 系超伝導体層
3,5が作製されていることがわかった。また、Bi2
Sr2 CuOz 系酸化物層4の上下Bi2 (Sr1-x
x 3 Cu2 y 系超伝導体層間の抵抗値は充分に高
く、c軸方向の抵抗値から予想される値に近いことか
ら、Bi2 Sr2 CuOz 系酸化物層4がBi2 (Sr
1-x Cax 3 Cu2 y 系超伝導体層間に均一に形成
されていることが確認された。さらに、Bi2 Sr2
uOz 系酸化物4のc軸方向の比抵抗を、Al等による
Cuの一部置換およびPr等によるSrの一部置換によ
り、置換なしの場合に比べて2倍以上高くすることがで
きた。
Bi 2 (Sr 1-x
Ca x) 3 Cu 2 O y system was measured temperature change of the electric resistance of the superconductor layers 3 and 5, was confirmed to have a T C of about any of the layers 85K, excellent quality superconducting properties of Bi 2 (Sr 1-x Ca x) 3 Cu 2 O y based superconductor layers 3 and 5 were found to be produced. Also, Bi 2
Sr 2 CuO z based oxide layer 4 upper and lower Bi 2 (Sr 1-x C
Since the resistance value between the a x ) 3 Cu 2 O y based superconductor layers is sufficiently high and is close to the value expected from the resistance value in the c-axis direction, the Bi 2 Sr 2 CuO z based oxide layer 4 is Bi 2 (Sr
It was confirmed that 1-x Ca x ) 3 Cu 2 O y- based superconductor layers were uniformly formed. Furthermore, Bi 2 Sr 2 C
The specific resistance in the c-axis direction of the uO z -based oxide 4 could be increased by a factor of two or more as compared with the case without no replacement, by partially substituting Cu with Al or the like and partially substituting Sr with Pr or the like. .

【0029】[0029]

【発明の効果】以上詳細に説明したように、本発明は、
相互拡散および結晶配向性の乱れ等を生じさせない中間
層を持ち、コヒーレンス長の長いCuO2 面が法線方向
成分を持つようになるためジョセフソン接合作製上有利
となる良質のBi系超伝導積層薄膜を提供するものであ
り、Bi系超伝導体の超伝導電子素子への応用上効果が
大きい。
As described in detail above, the present invention is
A high-quality Bi-based superconducting stack, which has an intermediate layer that does not cause mutual diffusion and disorder of crystal orientation, and has a long coherence length CuO 2 surface that has a normal direction component, which is advantageous in manufacturing Josephson junctions. A thin film is provided, and the effect of applying a Bi-based superconductor to a superconducting electronic device is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のBi系超伝導積層薄膜の斜視断面図で
ある。
FIG. 1 is a perspective sectional view of a Bi-based superconducting laminated thin film of the present invention.

【図2】本発明のBi系超伝導積層薄膜の構造を示す断
面図である。
FIG. 2 is a sectional view showing a structure of a Bi-based superconducting laminated thin film of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 バッファー層 3,5 Bi2 (Sr1-x Cax 3 Cu2 y 系超伝
導体層 4 Bi2 Sr2 CuOz 系酸化物層 6 SrTiO3 単結晶基板表面のステップ b Bi系超伝導積層薄膜のb軸方向 c Bi系超伝導積層薄膜のc軸方向
1 substrate 2 buffer layer 3,5 Bi 2 (Sr 1-x Ca x ) 3 Cu 2 O y based superconductor layer 4 Bi 2 Sr 2 CuO z based oxide layer 6 SrTiO 3 step of single crystal substrate surface b Bi -Axis direction of system-based superconducting laminated thin film c-axis direction of Bi-system superconducting laminated thin film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】SrTiO3 (100)単結晶基板面の法
線から(111)方向に傾けて研磨することにより<1
−10>方向にステップを形成した単結晶基板と、 単結晶基板上に形成されたBi2 Sr2 CuOz 系酸化
物よりなるバッファー層と、 バッファー層の上面に形成されたBi2 (Sr1-x Ca
x 3 Cu2 y 系超伝導体よりなる第1の超伝導体層
と、 第1の超伝導体層の上面に形成されたBi2 Sr2 Cu
z 系酸化物よりなる中間層と、 中間層の上面に形成されたBi2 (Sr1-x Ca1 3
Cu2 y 系超伝導体よりなる第2の超伝導体層を有す
ることを特徴とする超伝導積層薄膜。
1. SrTiO 3 (100) single crystal substrate is tilted in the (111) direction from the normal to the surface and polished to <1.
A single crystal substrate having a step formed in the −10> direction, a buffer layer made of Bi 2 Sr 2 CuO z based oxide formed on the single crystal substrate, and Bi 2 (Sr 1 formed on the upper surface of the buffer layer. -x Ca
x ) 3 Cu 2 O y based superconductor, a first superconductor layer, and Bi 2 Sr 2 Cu formed on the upper surface of the first superconductor layer.
An intermediate layer made of an O z -based oxide and Bi 2 (Sr 1-x Ca 1 ) 3 formed on the upper surface of the intermediate layer
A superconducting laminated thin film having a second superconductor layer made of a Cu 2 O y based superconductor.
【請求項2】請求項1記載の超伝導積層薄膜において、
中間層は、Bi2 Sr2 (Cu1-aa )Oz なる式で
表され、MがAl、Fe、Zn、Ni、Ptの中の少な
くとも1つであり、aが0<a≦0.1である組成の非
超伝導酸化物よりなることを特徴とする超伝導積層薄
膜。
2. The superconducting laminated thin film according to claim 1,
Intermediate layer is represented by Bi 2 Sr 2 (Cu 1- a M a) O z consisting formula, M is Al, Fe, Zn, Ni, and at least one of Pt, a is 0 <a ≦ A superconducting laminated thin film comprising a non-superconducting oxide having a composition of 0.1.
【請求項3】請求項1記載の超伝導積層薄膜において、
中間層は、Bi2 (Sr1-b b 2 CuOz なる式で
表され、LがPr、Nd、Sm、Eu、Gd、Dy、H
o、Er、Yの中の少なくとも1つであり、bが0<b
≦0.5である組成の非超伝導酸化物よりなることを特
徴とする超伝導積層薄膜。
3. The superconducting laminated thin film according to claim 1,
The intermediate layer is represented by the formula Bi 2 (Sr 1-b L b ) 2 CuO z , and L is Pr, Nd, Sm, Eu, Gd, Dy, H.
at least one of o, Er, and Y, and b is 0 <b
A superconducting laminated thin film comprising a non-superconducting oxide having a composition of ≦ 0.5.
【請求項4】請求項1,2または3記載の超伝導積層薄
膜の製造方法であって、膜成長温度を550〜650℃
に設定して、バッファー層としてのBi2 Sr2 CuO
z を単結晶基板上にヘテロエピタキシャル成長させ、バ
ッファー層の形成後に、基板温度を超伝導薄膜合成温度
である680〜750℃まで上げて、第1の超伝導体層
としてのBi2 (Sr1-x Cax 3 Cu2 y と、中
間層としてのBiSr2 CuOy と、第2の超伝導層と
してのBi2 (Sr1-x Cax 3 Cu2 yとを順に
ヘテロエピタキシャル成長させることを特徴とする超伝
導積層薄膜の製造方法。
4. The method for producing a superconducting laminated thin film according to claim 1, 2, or 3, wherein the film growth temperature is 550 to 650 ° C.
And Bi 2 Sr 2 CuO as a buffer layer
After heteroepitaxially growing z on a single crystal substrate and forming a buffer layer, the substrate temperature is raised to 680 to 750 ° C. which is the superconducting thin film synthesis temperature, and Bi 2 (Sr 1- x Ca x ) 3 Cu 2 O y , BiSr 2 CuO y as an intermediate layer, and Bi 2 (Sr 1-x Ca x ) 3 Cu 2 O y as a second superconducting layer are sequentially heteroepitaxially grown. A method of manufacturing a superconducting laminated thin film, comprising:
JP4201651A 1992-07-29 1992-07-29 Superconducting laminated thin film and manufacturing method thereof Expired - Fee Related JP2959290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4201651A JP2959290B2 (en) 1992-07-29 1992-07-29 Superconducting laminated thin film and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4201651A JP2959290B2 (en) 1992-07-29 1992-07-29 Superconducting laminated thin film and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0648738A true JPH0648738A (en) 1994-02-22
JP2959290B2 JP2959290B2 (en) 1999-10-06

Family

ID=16444628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4201651A Expired - Fee Related JP2959290B2 (en) 1992-07-29 1992-07-29 Superconducting laminated thin film and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2959290B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251564A (en) * 2007-03-29 2008-10-16 Kyushu Univ High-temperature superconducting current lead and method for increasing critical current density

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003158766A (en) * 2002-11-07 2003-05-30 Sharp Corp Wireless station
WO2012006446A1 (en) * 2010-07-07 2012-01-12 Qualcomm Incorporated Hybrid modes for peer discovery
JP2014517784A (en) * 2011-05-20 2014-07-24 ザ プロクター アンド ギャンブル カンパニー Apparatus and method for injection molding at low constant pressure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003158766A (en) * 2002-11-07 2003-05-30 Sharp Corp Wireless station
WO2012006446A1 (en) * 2010-07-07 2012-01-12 Qualcomm Incorporated Hybrid modes for peer discovery
JP2014517784A (en) * 2011-05-20 2014-07-24 ザ プロクター アンド ギャンブル カンパニー Apparatus and method for injection molding at low constant pressure

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6016041749; General Dynamics Broadband UK: 'Key issue and proposed solution: Prose Communication out of network coverage[online]' 3GPP TSG-SA WG2#96 S2-130846 , 20130412, インターネット<URL:http://www.3gpp.org/ftp/tsg_sa *
JPN6017019459; LG Electronics: 'Remaining Issues on D2D Evaluation Scenarios[online]' 3GPP TSG-RAN WG1#73 R1-132245 , 20130524, インターネット<URL:http://www.3gpp.org/ftp/tsg_ra *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251564A (en) * 2007-03-29 2008-10-16 Kyushu Univ High-temperature superconducting current lead and method for increasing critical current density

Also Published As

Publication number Publication date
JP2959290B2 (en) 1999-10-06

Similar Documents

Publication Publication Date Title
EP0430737B1 (en) A superconducting thin film
EP0446145B1 (en) Process for preparing high-temperature superconducting thin films
JP3188358B2 (en) Method for producing oxide superconductor thin film
US4983575A (en) Superconducting thin films made of stacked composite oxide layers
US5648321A (en) Process for manufacturing thin films by multi-layer deposition
CN1312332C (en) Oxide high-temperature superconductor and its production method
JP2959290B2 (en) Superconducting laminated thin film and manufacturing method thereof
JP3037514B2 (en) Thin film superconductor and method of manufacturing the same
JP4247867B2 (en) Manufacturing method of oxide superconducting thin film on sapphire substrate
AU655731B2 (en) Process for preparing superconducting junction of oxide superconductor
JPH05279192A (en) Synthesis of oxide superconductor thin film
JPH01101677A (en) Electronic device
Catana et al. Domain growth of Dy2O3 buffer layers on SrTiO3
CA2264724A1 (en) Series of layers and component containing such
JPH0648739A (en) Superconducting laminated thin film
US7981840B2 (en) Method of manufacturing Bi-based oxide superconductor thin films
JP2852753B2 (en) Oxide superconductor element and method for producing oxide superconductor thin film
JP2000502042A (en) Layer arrangement having at least one non-c-axis oriented epitaxial HTSL thin film or a crystallographically comparable layer of HTSL
JPH0715049A (en) Superconducting multilayered thin film
JPH03275504A (en) Oxide superconductor thin film and its production
JP3485601B2 (en) Manufacturing method of superconducting composite thin film
Tonouchi et al. Multiple heteroepitaxy and superlattice formation of LnBaCuO/YBaCuO system
JP2866476B2 (en) Laminated superconductor and manufacturing method thereof
JP3025891B2 (en) Thin film superconductor and method of manufacturing the same
JPH06334228A (en) Superconductive element having multilayer structure and fabrication thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees