JPH0648731B2 - Photovoltaic Infrared Detector Manufacturing Method - Google Patents

Photovoltaic Infrared Detector Manufacturing Method

Info

Publication number
JPH0648731B2
JPH0648731B2 JP62188722A JP18872287A JPH0648731B2 JP H0648731 B2 JPH0648731 B2 JP H0648731B2 JP 62188722 A JP62188722 A JP 62188722A JP 18872287 A JP18872287 A JP 18872287A JP H0648731 B2 JPH0648731 B2 JP H0648731B2
Authority
JP
Japan
Prior art keywords
crystal
compound semiconductor
manufacturing
signal input
adhesive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62188722A
Other languages
Japanese (ja)
Other versions
JPS6433931A (en
Inventor
敏男 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62188722A priority Critical patent/JPH0648731B2/en
Publication of JPS6433931A publication Critical patent/JPS6433931A/en
Publication of JPH0648731B2 publication Critical patent/JPH0648731B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Drying Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光電変換を行う化合物半導体と、信号処理を行
う半導体素子とを組合わせた光起電力型の赤外線検出素
子の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a photovoltaic infrared detection element, which is a combination of a compound semiconductor that performs photoelectric conversion and a semiconductor element that performs signal processing.

[従来の技術] HgCdTeやInSb等の化合物半導体のpnダイオードは光起
電力型の赤外線検出素子であり、これを複数個用いて1
次元ないし2次元的に配列し、赤外線画像を得る検出器
として用いられている。こうした赤外線検出器を動作さ
せる場合、さらに信号処理回路、具体的には個々のpn
ダイオードの信号出力を時系列的に読み出すためのCC
DやMOSスイッチアレー等のマルチプレクサや、微弱
な信号出力を増幅するプリアンプや、より高度の種々の
信号処理回路等が必要である。しかし、こうした信号処
理機能を赤外線検出素子材料であるHgCdTeやInSbで実現
することは困難であり、このため信号処理回路はSi基板
上に形成し、検出素子の個々のダイオードと電気的に接
続させている。この接続の方法としては、例えばプロシ
ーディングズ・オブ・SPIE(Procedigs of SPIE),510
巻,121頁に発表されたループホール法が知られてい
る。この方法の概略を第2図にに示す。まず、第2図
(a) に示すように化合物半導体結晶、例えばHgCdTe結晶
22を、信号処理回路が形成された半導体素子、例えばSi
IC21上に接着剤層23を介して接着し、次いで第2図
(b) に示すように信号入力部25上のHgCdTe結晶22を除去
してスルーホール24を設ける。さらに、第2図(c) に示
すようにスルーホール周辺部をn形領域26としてpnダ
イオード27を形成した後、このn形領域26と信号入力部
25を接続する導電体電極28を形成する。以上のようにし
て、化合物半導体結晶の個々のpnダイオードは半導体
素子の信号処理回路に接続される。
[Prior Art] A pn diode made of a compound semiconductor such as HgCdTe or InSb is a photovoltaic infrared detection element.
It is used as a detector for arranging two-dimensionally or two-dimensionally to obtain an infrared image. When operating such an infrared detector, further signal processing circuits, specifically individual pn
CC for reading the signal output of the diode in time series
A multiplexer such as a D or MOS switch array, a preamplifier for amplifying a weak signal output, and various higher-level signal processing circuits are required. However, it is difficult to realize such a signal processing function with HgCdTe or InSb, which are infrared detection element materials.Therefore, the signal processing circuit is formed on a Si substrate and electrically connected to each diode of the detection element. ing. As a method of this connection, for example, Proceeds of SPIE, 510
The loophole method, published on page 121, is known. The outline of this method is shown in FIG. First, Fig. 2
As shown in (a), compound semiconductor crystals, such as HgCdTe crystals
22 is a semiconductor element on which a signal processing circuit is formed, for example, Si
Bonded onto the IC 21 via the adhesive layer 23, and then shown in FIG.
As shown in (b), the HgCdTe crystal 22 on the signal input section 25 is removed and a through hole 24 is provided. Further, as shown in FIG. 2 (c), after the pn diode 27 is formed with the peripheral portion of the through hole as the n-type region 26, the n-type region 26 and the signal input part are formed.
A conductor electrode 28 connecting 25 is formed. As described above, each pn diode of the compound semiconductor crystal is connected to the signal processing circuit of the semiconductor element.

[発明が解決しようとする問題点] しかし、上記の方法によって素子を実際に製造しようと
した場合、化合物半導体にスルーホールを形成する工程
は容易ではない。すなわち、10μm程度の厚さの化合物
半導体に直径10μm程度以下のスルーホールを形成する
ためにはイオンミリング法が用いられ、化合物半導体と
その直下の接着剤層は一括して除去される。しかし、こ
の時、化合物半導体の厚さや接着剤層の厚さにはばらつ
きがあり、厚い部分ではまだ接着剤層が除去されていな
いにもかかわらず、薄い部分では接着剤のみならずその
下の信号入力部まで除去されてしまい、接続不良となる
場合が多い。このため、スルーホールの形成工程は製造
ばらつきの影響を大きく受け、良品率の低下を引起した
り、より厳密な厚さの制御の必要性等のため、生産性が
劣る等の問題点があった。
[Problems to be Solved by the Invention] However, when actually manufacturing an element by the above method, the step of forming a through hole in a compound semiconductor is not easy. That is, an ion milling method is used to form a through hole having a diameter of about 10 μm or less in a compound semiconductor having a thickness of about 10 μm, and the compound semiconductor and the adhesive layer immediately thereunder are collectively removed. However, at this time, there are variations in the thickness of the compound semiconductor and the thickness of the adhesive layer, and even though the adhesive layer has not been removed in the thick portion, not only the adhesive in the thin portion but In many cases, the signal input section is also removed, resulting in a poor connection. Therefore, the through-hole forming process is greatly affected by manufacturing variations, which causes a decrease in the yield rate, and there is a problem that productivity is inferior due to the need for more strict thickness control. It was

本発明の目的は上述した従来の問題点を解決し、ループ
ホールを容易に形成でき、生産性が向上した光起電力型
赤外線検出素子の製造方法を提供することにある。
An object of the present invention is to solve the above-mentioned conventional problems, and to provide a method for manufacturing a photovoltaic infrared detecting element in which loop holes can be easily formed and productivity is improved.

[問題点を解決するための手段] 本発明は、信号処理回路が形成された半導体素子に化合
物半導体結晶が接着され、この化合物半導体結晶に設け
られたスルーホール周辺部に形成されたpn接合のp形
またはn形領域と前記半導体素子の信号入力部とを接続
する導電体電極が形成されている光起電力型赤外線検出
素子の製造方法において、イオンミリング法によって所
定の箇所の前記化合物半導体結晶を除去し、次いで露呈
した接着剤を酸素ガスプラズマ中でエッチング除去して
前記スルーホールを形成する工程を含むことを特徴とす
る光起電力型赤外線検出素子の製造方法である。
[Means for Solving the Problems] According to the present invention, a compound semiconductor crystal is adhered to a semiconductor element on which a signal processing circuit is formed, and a pn junction formed around a through hole provided in the compound semiconductor crystal. In a method for manufacturing a photovoltaic infrared detecting element in which a conductor electrode connecting a p-type or n-type region and a signal input part of the semiconductor element is formed, the compound semiconductor crystal at a predetermined position by an ion milling method. Is removed, and then the exposed adhesive is removed by etching in oxygen gas plasma to form the through hole, which is a method for manufacturing a photovoltaic infrared detecting element.

[実施例] 次に、本発明の実施例について図面を参照して詳細に説
明する。
[Embodiment] Next, an embodiment of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例の光起電力型赤外線検出素子
の製造方法を示し、特にスルーホール形成工程を工程順
に示した縦断面図である。この実施例では化合物半導体
結晶としてp形HgCdTe結晶を用い、半導体素子としてSi
ICを用いた。まず、第1図(a) に示すように、SiIC
1上に接着剤層3を介して接着されたp形HgCdTe結晶2
つの上にフォトレジストパターン4を形成する。このフ
ォトレジストパターン4はSiIC1上の信号入力部5の
直上にあたる部分に孔が形成されたパターンである。こ
こで、HgCdTe結晶2の厚さは10μm程度とし、またSiI
C1には図示していないが、後の工程で形成されるHgCd
Te結晶の配列状のpnダイオードからの信号を時系列的
に取出すためのCCDやMOSスイッチアレー等のマル
チプレクサ回路、プリアンプ積分アンプ等の増幅回路等
の信号処理回路が形成されており、また、導電体材料か
らなる信号入力部5は個々のpnダイオードに対応して
設けられている。次に、第1図(b) に示すようにフォト
レジストパターン4をマスクとしてイオンミリングを行
い、p形HgCdTe結晶の露呈部を除去し、接着剤層3を露
呈させる。HgCdTe結晶2の厚さにばらつきがあった場合
には、厚い結晶部分を完全に除去するようにし、このた
め薄い結晶部分ではさらに接着剤層3の直下の信号入力
部5まで一部除去されている。次いで、第1図(c) に示
すように、酸素ガス雰囲気中でプラズマエッチングを行
い、接着剤層3を除去する。酸素ガスプラズマエッチン
グでは接着剤層3やフォトレジスト4等の有機物のみが
選択的に除去され、HgCdTe結晶2等の化合物半導体結晶
やSiIC1等の半導体素子、および信号入力部5の導電
体等は何等影響を受けない。従って、残存している接着
剤層3の厚さは接着の際、およびプラズマエッチング前
に行うイオンミリングによって大きくばらついているの
であるが、それにもかかわらず、HgCdTe結晶の2の孔の
部分に露呈した接着剤層3のみ除去され、かつ信号入力
部5が露呈した時点でエッチングは停止するので従来の
ように信号入力部まで除去されることがない。こうして
スルーホールの形成工程が終了する。この後は従来の製
造方法と同様に、イオン注入法あるいは不純物拡散法に
より、第1図(d) に示すようにスルーホールの周辺部を
n形領域6としてpnダイオード7を形成し、さらに導
電体電極8を形成してn形領域6と信号入力部5を接続
する。また、図示していないが、HgCdTe結晶2のp形の
部分も上記と同様にしてSiIC1と接続することによ
り、光電変換を行うHgCdTe結晶と信号処理を行うSiIC
とが結合され、光起電力型赤外線検出素子の製造が完了
する。
FIG. 1 is a vertical cross-sectional view showing a method of manufacturing a photovoltaic infrared detecting element according to an embodiment of the present invention, and particularly showing through-hole forming steps in the order of steps. In this example, a p-type HgCdTe crystal is used as the compound semiconductor crystal, and Si is used as the semiconductor element.
IC was used. First, as shown in Fig. 1 (a), SiIC
P-type HgCdTe crystal 2 adhered onto 1 via an adhesive layer 3
A photoresist pattern 4 is formed on the upper surface. The photoresist pattern 4 is a pattern in which a hole is formed in a portion directly above the signal input portion 5 on the SiIC 1. Here, the thickness of the HgCdTe crystal 2 is set to about 10 μm, and
Although not shown in C1, HgCd formed in a later step
A signal processing circuit such as a multiplexer circuit such as a CCD or a MOS switch array for extracting signals from a pn diode arranged in a Te crystal array in a time series, an amplification circuit such as a preamplifier integration amplifier, etc. is formed. The signal input section 5 made of a body material is provided corresponding to each pn diode. Next, as shown in FIG. 1B, ion milling is performed using the photoresist pattern 4 as a mask to remove the exposed portion of the p-type HgCdTe crystal and expose the adhesive layer 3. If the thickness of the HgCdTe crystal 2 varies, the thick crystal portion should be completely removed. Therefore, in the thin crystal portion, the signal input portion 5 directly below the adhesive layer 3 is partially removed. There is. Next, as shown in FIG. 1 (c), plasma etching is performed in an oxygen gas atmosphere to remove the adhesive layer 3. In the oxygen gas plasma etching, only organic substances such as the adhesive layer 3 and the photoresist 4 are selectively removed, and the compound semiconductor crystal such as the HgCdTe crystal 2 and the semiconductor element such as the SiIC 1 and the conductor of the signal input unit 5 are not required. Not affected. Therefore, the thickness of the remaining adhesive layer 3 is largely varied during the bonding and by the ion milling performed before the plasma etching, but nevertheless, it is exposed at the hole 2 of the HgCdTe crystal. Since only the adhesive layer 3 is removed and the etching is stopped when the signal input portion 5 is exposed, the signal input portion is not removed unlike the conventional case. Thus, the through hole forming process is completed. After this, as in the conventional manufacturing method, the pn diode 7 is formed by the ion implantation method or the impurity diffusion method with the peripheral portion of the through hole as the n-type region 6 as shown in FIG. The body electrode 8 is formed to connect the n-type region 6 and the signal input unit 5. Although not shown, the p-type portion of the HgCdTe crystal 2 is also connected to the SiIC 1 in the same manner as above, so that the HgCdTe crystal for photoelectric conversion and the SiIC for signal processing are connected.
Are combined with each other, and the manufacturing of the photovoltaic infrared detecting element is completed.

次に本発明の製造方法と従来の方法とを比較する。HgCd
Te結晶の厚さの通常10μm程度であり、そのばらつきは
1μm程度である。このばらつき量はイオンミリング時
間として6分程度に相当する。さらに、接着剤層の厚さ
は通常1μm以下であるが、そのばらつきは数千Å程度
であり、イオンミリング時間としては十数分程度の差と
なり、従って従来の方法によれば両者の合計として20分
程度のばらつきが生じる。一方、信号入力部の導電体と
してはこのイオンミリング時間は材料にもよるが0.5〜
2μmの厚さに相当する。一般に信号入力部の導電体の
厚さは大きくても1μm程度であり、従って上記のばら
つきのため、ある部分ではまだ接着剤層が残っているの
に他の部分では信号入力部が除去されてしまうことにな
り、当然ながらHgCdTe結晶とSiICとは接続不良とな
る。これに対し、本発明の製造方法ではイオンミリング
はHgCdTe結晶の除去にのみ使用しており、HgCdTe結晶の
厚さのばらつきは、接着剤層が一部分だけエッチングさ
れることで十分に吸収され、続いて選択的に接着剤層の
みを除去するので、従来例のような問題は解決される。
Next, the manufacturing method of the present invention will be compared with the conventional method. HgCd
The thickness of the Te crystal is usually about 10 μm, and its variation is about 1 μm. This variation corresponds to about 6 minutes as the ion milling time. Furthermore, the thickness of the adhesive layer is usually 1 μm or less, but the variation is about several thousand Å, and the difference in ion milling time is about tens of minutes. Therefore, according to the conventional method, the total of the two is Variation of about 20 minutes occurs. On the other hand, as a conductor of the signal input section, this ion milling time is 0.5 ~ depending on the material.
This corresponds to a thickness of 2 μm. Generally, the thickness of the conductor of the signal input portion is about 1 μm at the maximum, and therefore, due to the above variation, the adhesive layer still remains in some portions, but the signal input portion is removed in other portions. As a matter of course, the connection between the HgCdTe crystal and the SiIC becomes poor. On the other hand, in the manufacturing method of the present invention, ion milling is used only to remove the HgCdTe crystal, and the variation in the thickness of the HgCdTe crystal is sufficiently absorbed by partially etching the adhesive layer. By selectively removing only the adhesive layer, the problems of the conventional example can be solved.

なお、以上の実施例では化合物半導体結晶としてHgCdTe
結晶を用いた例を示しているが、InSb等を使用する場合
も全く同様である。さらに、上記のスルーホール形成工
程において、酸素ガスプラズマエッチングの後に短時間
イオンミリングを行うことによって信号入力部の導電体
材料によってはわずかに存在する表面酸化層を除去する
ことができ、工程は繁雑になるが、電気接続をより確実
とすることができる。
In the above examples, HgCdTe was used as the compound semiconductor crystal.
An example using a crystal is shown, but the same applies when InSb or the like is used. Furthermore, in the above-described through-hole forming process, a small amount of surface oxide layer depending on the conductive material of the signal input portion can be removed by performing ion milling for a short time after oxygen gas plasma etching, and the process is complicated. However, the electrical connection can be made more reliable.

[発明の効果] 以上説明したように、本発明によれば光電変換を行う化
合物半導体結晶と信号処理を行う半導体素子との結合部
における接続不良が大幅に改善でき、さらに化合物半導
体結晶や接着剤の厚さの厳密な制御も必要としないた
め、生産性を向上させることができる。
[Effects of the Invention] As described above, according to the present invention, it is possible to significantly improve the connection failure in the joint portion between the compound semiconductor crystal that performs photoelectric conversion and the semiconductor element that performs signal processing, and further, the compound semiconductor crystal and the adhesive agent. Since it is not necessary to strictly control the thickness of the, the productivity can be improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例におけるスルーホール形成工
程を示す縦断面図、第2図は従来のスルーホール形成工
程を示す縦断面図である。 1,21……SiIC、2,22……p形HgCdTe結晶 3,23……接着剤層 4……フォトレジストパターン 5,25……信号入力部、6,26……n形領域 7,27……pnダイオード 8,28……導電体電極、24……スルーホール
FIG. 1 is a vertical sectional view showing a through hole forming step in one embodiment of the present invention, and FIG. 2 is a vertical sectional view showing a conventional through hole forming step. 1,21 …… SiIC, 2,22 …… p-type HgCdTe crystal 3,23 …… Adhesive layer 4 …… Photoresist pattern 5,25 …… Signal input part 6,26 …… N-type area 7,27 ...... pn diode 8,28 ...... conductor electrode, 24 ...... through hole

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】信号処理回路が形成された半導体素子に化
合物半導体結晶が接着され、この化合物半導体結晶に設
けられたスルーホール周辺部に形成されたpn接合のp
形またはn形領域と前記半導体素子の信号入力部とを接
続する導電体電極が形成されている光起電力型赤外線検
出素子の製造方法において、イオンミリング法によって
所定の箇所の前記化合物半導体結晶を除去し、次いで露
呈した接着剤を酸素ガスプラズマ中でエッチング除去し
て前記スルーホールを形成する工程を含むことを特徴と
する光起電力型赤外線検出素子の製造方法。
1. A compound semiconductor crystal is adhered to a semiconductor element having a signal processing circuit formed therein, and a p-type pn junction is formed around a through hole provided in the compound semiconductor crystal.
In a method of manufacturing a photovoltaic infrared detecting element in which a conductor electrode for connecting a p-type or n-type region to a signal input part of the semiconductor element is formed, the compound semiconductor crystal at a predetermined position is formed by an ion milling method. A method of manufacturing a photovoltaic infrared detecting element, comprising the steps of removing and then exposing the exposed adhesive in an oxygen gas plasma to remove the through hole.
JP62188722A 1987-07-30 1987-07-30 Photovoltaic Infrared Detector Manufacturing Method Expired - Lifetime JPH0648731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62188722A JPH0648731B2 (en) 1987-07-30 1987-07-30 Photovoltaic Infrared Detector Manufacturing Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62188722A JPH0648731B2 (en) 1987-07-30 1987-07-30 Photovoltaic Infrared Detector Manufacturing Method

Publications (2)

Publication Number Publication Date
JPS6433931A JPS6433931A (en) 1989-02-03
JPH0648731B2 true JPH0648731B2 (en) 1994-06-22

Family

ID=16228636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62188722A Expired - Lifetime JPH0648731B2 (en) 1987-07-30 1987-07-30 Photovoltaic Infrared Detector Manufacturing Method

Country Status (1)

Country Link
JP (1) JPH0648731B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2705594B2 (en) * 1994-11-21 1998-01-28 日本電気株式会社 Infrared detector
CN105914250B (en) * 2016-06-12 2017-05-03 中国科学院上海技术物理研究所 Indium gallium arsenic short-wave infrared detector

Also Published As

Publication number Publication date
JPS6433931A (en) 1989-02-03

Similar Documents

Publication Publication Date Title
US6168965B1 (en) Method for making backside illuminated image sensor
US6809769B1 (en) Designs of digital pixel sensors
JPH027417B2 (en)
JP4534634B2 (en) Solid-state imaging device
JP4165129B2 (en) Back-illuminated solid-state image sensor
JPH07122719A (en) Semiconductor substrate and its manufacture
US4286278A (en) Hybrid mosaic IR/CCD focal plane
US4206470A (en) Thin film interconnect for multicolor IR/CCD
JPH06253214A (en) Infrared image pickup device
US5904495A (en) Interconnection technique for hybrid integrated devices
JPH0289368A (en) Solid-state image sensing device
JPH0691228B2 (en) Semiconductor device
US5561295A (en) Infrared-responsive photoconductive array and method of making
JPH0648731B2 (en) Photovoltaic Infrared Detector Manufacturing Method
US4137625A (en) Thin film interconnect for multicolor IR/CCD
US4918505A (en) Method of treating an integrated circuit to provide a temperature sensor that is integral therewith
JPH10289994A (en) Optical sensor integrated circuit device
JP2508579B2 (en) Method of manufacturing array type infrared detector
JPH03280567A (en) Infrared sensor
US6232589B1 (en) Single polysilicon CMOS pixel with extended dynamic range
JP3426872B2 (en) Optical semiconductor integrated circuit device and method of manufacturing the same
JPS6145862B2 (en)
JP2688609B2 (en) Method for manufacturing semiconductor device
JP2558967B2 (en) Infrared detector
JPH0645575A (en) Method of manufacturing semiconductor energy detector