JPH0648126B2 - Freezing / refrigerator cooling operation method - Google Patents

Freezing / refrigerator cooling operation method

Info

Publication number
JPH0648126B2
JPH0648126B2 JP14061188A JP14061188A JPH0648126B2 JP H0648126 B2 JPH0648126 B2 JP H0648126B2 JP 14061188 A JP14061188 A JP 14061188A JP 14061188 A JP14061188 A JP 14061188A JP H0648126 B2 JPH0648126 B2 JP H0648126B2
Authority
JP
Japan
Prior art keywords
temperature
limit value
lower limit
defrosting
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14061188A
Other languages
Japanese (ja)
Other versions
JPH01310278A (en
Inventor
努 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP14061188A priority Critical patent/JPH0648126B2/en
Publication of JPH01310278A publication Critical patent/JPH01310278A/en
Publication of JPH0648126B2 publication Critical patent/JPH0648126B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/28Quick cooling

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Defrosting Systems (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は空気循環式によって庫内を冷却する冷凍・冷蔵
ショーケース、又は、冷凍・冷蔵庫に係る冷却運転方法
に関するものである。
The present invention relates to a refrigerating / refrigerating showcase for cooling the inside of a refrigerator by an air circulation system, or a cooling operation method for a refrigerator / refrigerator.

(ロ)従来の技術 例えば、冷却空気を強制的に循環して庫内に形成される
冷気のエアーカーテンにて庫内を冷却する空気循環式の
冷凍、もしくは冷蔵ショーケースおよび冷凍・冷蔵庫
は、概ね第1図に示すごとき構造となっている。即ち、
ショーケース本体1内に内外二通りの冷気循環路2,3に
循環用ファン4,5を配し、図示しない圧縮機と、凝縮器
と共に冷媒回路を構成する冷却器6を内側の循環路2に
配し、この冷却器6で熱交換が行なわれた冷気を庫内に
循環してショーケース本体1の前方開口7に内外二重の
冷気エアーカーテン8,9を形成して、外気と庫内を遮断
し、庫内を冷却している。
(B) Conventional technology For example, an air-circulation type refrigerating system that cools the inside of the refrigerator with an air curtain of cold air formed by forcibly circulating cooling air, or a refrigerated showcase and a refrigerator / freezer, The structure is roughly as shown in FIG. That is,
Circulation fans 4 and 5 are arranged in two internal and external cold air circulation passages 2 and 3 in the showcase body 1, and a compressor (not shown) and a cooler 6 that constitutes a refrigerant circuit together with a condenser are provided inside the circulation passage 2 The cool air, which has been heat-exchanged by the cooler 6, is circulated in the refrigerator to form double inner and outer cool air curtains 8 and 9 in the front opening 7 of the showcase main body 1 and the outside air and the refrigerator. The inside is shut off and the inside is cooled.

ところで、庫内を所定の温度にほぼ一定に保つために、
冷却器6の運転を予め設定された基準設定温度の上限値
で作動させ、下限値で停止するというサーモサイクル運
転制御が広く行なわれている。この場合、設定温度の上
限値、下限値の間には数度のディファレンシャルがあ
り、設定温度を変化させてもこのディファレンシャルが
変化しない。この制御としては一般的には庫内循環空気
の温度が対象とされ、例えば循環空気の吐出空気温度を
測定して、所定の上限値、下限値と比較して冷却器のO
N,OFFを行なわせる吐出空気温度制御や、同様に吸込空
気温度制御、あるいは吐出と吸込の空気温度により算出
される算出庫内温度制御等の運転制御方法が行なわれて
いる。そして、これらの温度制御にはサーモスタット等
の温度制御器を用い、例えば循環空気の吐出口11付近に
この温度制御器の検温部10を設置し、この吐出空気の温
度を検知し、その温度が設定温度の上限値を超えたら圧
縮機を駆動し冷却が行なわれ、その温度が設定温度の下
限値に至ったら圧縮機の運転を停止するという制御方法
で庫内の温度制御が行なわれる。また、制御する冷凍・
冷蔵庫等が複数台の場合は、冷媒回路において蒸発器
(冷却器)への液冷媒供給の開始、中断を液電磁弁等で
制御することにより成されている。
By the way, in order to keep the inside of the refrigerator at a predetermined temperature almost constant,
Thermocycle operation control is widely performed in which the operation of the cooler 6 is operated at an upper limit value of a preset reference temperature and stopped at a lower limit value. In this case, there is a differential of several degrees between the upper limit value and the lower limit value of the set temperature, and this differential does not change even if the set temperature is changed. For this control, the temperature of the circulating air in the refrigerator is generally targeted, and for example, the discharge air temperature of the circulating air is measured and compared with a predetermined upper limit value and lower limit value of the cooler O.
Operation control methods such as discharge air temperature control for performing N, OFF, suction air temperature control similarly, or calculation inside temperature control calculated by the discharge and suction air temperatures are performed. Then, a temperature controller such as a thermostat is used for these temperature controls, and for example, the temperature detecting unit 10 of this temperature controller is installed in the vicinity of the discharge port 11 of the circulating air, and the temperature of this discharge air is detected. When the temperature exceeds the upper limit of the set temperature, the compressor is driven to cool it, and when the temperature reaches the lower limit of the set temperature, the operation of the compressor is stopped to control the temperature inside the refrigerator. Also, control refrigeration
When there are a plurality of refrigerators and the like, the start and interruption of the liquid refrigerant supply to the evaporator (cooler) in the refrigerant circuit is controlled by a liquid solenoid valve or the like.

このような制御方法により庫内は循環空気により冷却さ
れるが、冷却にともない、冷却器6が着霜し、冷却能力
が低下するため除霜が必要である。除霜はヒーター、ホ
ットガス等適宜な方法で行なわれ、除霜後再び庫内循環
空気の温度に基づく冷却運転のON,OFF制御、即ちサーモ
サイクル運転が行なわれ庫内を温度制御する。
Although the inside of the refrigerator is cooled by the circulating air by such a control method, defrosting is necessary because the cooler 6 is frosted with cooling and the cooling capacity is lowered. Defrosting is performed by an appropriate method such as a heater or hot gas. After defrosting, the cooling operation is turned on and off again based on the temperature of the circulating air in the refrigerator, that is, the thermocycle operation is performed to control the temperature in the refrigerator.

(ハ)発明が解決しようとする課題 しかるに、除霜時には冷却器の運転が停止され循環用フ
ァンによる強制循環空気が形成されているだけなので、
庫内および貯蔵品の温度も上昇する。そして、除霜後、
冷却器の運転が再開され上昇した庫内および貯蔵品の冷
却は再び循環空気によるエアーカーテンで成される。そ
のときこの循環空気によるエアーカーテンは比較的短時
間で温度低下し循環するが、庫内および貯蔵品の温度は
まだ十分に低下していない。しかし、冷却の制御はこの
循環空気の温度に基づき行なわれるので、庫内および貯
蔵品が目標温度に到達しない時点で冷却装置のON,OFFサ
イクル運転を行なうことになり、安定した所定の温度状
態になるのに時間を多く要し、貯蔵品の品温の冷却が遅
れ品質の低下を生じる。
(C) Problems to be solved by the invention However, since the operation of the cooler is stopped and the forced circulation air is formed by the circulation fan during defrosting,
The temperature of the inside and the stored goods also rises. And after defrosting,
The operation of the cooler is restarted, and the raised interior and stored items are cooled again by the air curtain by the circulating air. At that time, the temperature of the air curtain by the circulating air is lowered and circulates in a relatively short time, but the temperature of the inside and the stored goods is not yet lowered sufficiently. However, since the cooling control is performed based on the temperature of this circulating air, the ON / OFF cycle operation of the cooling device is performed at the time when the inside of the refrigerator and stored products do not reach the target temperature, and a stable predetermined temperature condition is maintained. It takes a long time to reach the end, and the cooling of the temperature of the stored product is delayed, resulting in deterioration of quality.

今、上述の温度変化の模様は第3図のグラフ図でより理
解されると思う。即ち第3図は第1図の構造で示された
内層吐出空気を制御することで庫内温度を一定に保つシ
ョーケースの内層吐出空気温度A1、内層吸込空気温度B
1、庫内温度C1、貯蔵品の品温D1の変化をグラフで示し
てある。同図で除霜に伴い各温度は上昇する。除霜後の
庫内温度C1と品温D1の温度降下は、内層吐出空気温度A1
の降下に比べ遅いため、サーモサイクル運転を除霜前と
同じ下限値で制御すると庫内温度C1と品温D1が目標温度
に到達しないうちにサーモサイクル運転を行なう。この
ため冷却が安定するまでに60分という長い時間を要して
しまう。
Now, I think that the above-mentioned pattern of temperature change can be better understood from the graph of FIG. That is, FIG. 3 shows the inner layer discharge air temperature A1 and the inner layer suction air temperature B of the showcase which keeps the inside temperature constant by controlling the inner layer discharge air shown in the structure of FIG.
1, changes in the internal temperature C1 and the stored product temperature D1 are shown in a graph. In the figure, each temperature rises with defrosting. The temperature drop between the internal temperature C1 and the product temperature D1 after defrosting is the inner layer discharge air temperature A1.
Since it is slower than the descent of No. 1, if the thermocycle operation is controlled with the same lower limit value as that before defrosting, the thermocycle operation is performed before the internal temperature C1 and the product temperature D1 reach the target temperatures. Therefore, it takes a long time of 60 minutes for the cooling to stabilize.

また、実公昭58-3029号公報に示すごとく、タイマーに
よる冷却装置のオン時間、オフ時間を交互に繰り返す運
転、即ちデューティサイクル運転を採用した冷却方法に
おいて、除霜終了後、庫内温度が下限値に達するまでの
プルダウン運転時にはデューティサイクルの駆動を停止
して温度制御器で冷却運転をON,OFF制御することが提案
されているが、この場合の温度制御器の目的とするとこ
ろは、デューティサイクル運転を始める時点をこの温度
制御器が検知する所定の低い温度に至ったときからとす
るもので、この所定の低い温度は庫内温であるから、実
際の商品温度は未だその温度に達しておらず、そのよう
な時期からデューティサイクル運転が始動してしまうの
で、同様に貯蔵品の冷却遅れが起こる。
Further, as shown in Japanese Utility Model Publication No. 58-3029, in a cooling method that employs a duty cycle operation, in which the on / off time of the cooling device is alternately repeated by a timer, after the defrosting, the temperature inside the refrigerator is at the lower limit. It has been proposed to stop driving the duty cycle and turn the cooling operation on and off with the temperature controller during pull-down operation until the temperature reaches the specified value.In this case, the purpose of the temperature controller is to control the duty cycle. The cycle operation is started from when the temperature reaches a predetermined low temperature detected by the temperature controller. Since the predetermined low temperature is the inside temperature, the actual product temperature has not yet reached that temperature. However, since the duty cycle operation is started from such a time, the cooling delay of the stored product similarly occurs.

本発明は上記の従来技術で生じる欠点を完全に除去し、
除霜時に上昇した貯蔵品の温度を速やかに目標温度に冷
却することを可能として貯蔵品の冷却の遅れを解決でき
た冷凍・冷蔵庫の冷却運転方法を提供することを目的と
する。
The present invention completely eliminates the above-mentioned drawbacks of the prior art,
An object of the present invention is to provide a refrigerating / refrigerating cooling operation method capable of promptly cooling the temperature of a stored item that has risen during defrosting to a target temperature and solving a delay in cooling the stored item.

(ニ)課題を解決するための手段 本発明にかかる冷凍・冷蔵庫の冷却運転方法は、庫内の
循環空気の温度に基づく冷却装置のON,OFFサイクル運転
制御、即ち、基準となる設定温度を予め設定し、この設
定温度の上限値で圧縮機又は液電磁弁をONして蒸発器
(冷却器)への液冷媒供給を開始し、下限値で圧縮機又
は液電磁弁をOFFして蒸発器への液冷媒供給を中断する
ことにより庫内の温度制御を行なうようにしたものにお
いて、除霜後、この下限値温度を除霜時の庫内温度上昇
巾に合わせてより低く下げて設定して、新たな補正設定
温度に基づく冷却運転制御を行ない、設定変更前の下限
値で制御すると生じていた庫内温度及び品温が目標温度
に到達しないうちに始動するサーモサイクル運転による
貯蔵品の冷却の遅れを防ぎ、また、補正設定温度の下限
値を漸次元に戻すよう変化させ、その下限値と循環空気
の温度と比較して冷却運転の続行を判定し元の下限値以
上となった後、あるいは或る一定時間内に下限値を上回
らない場合は、その時点以降通常の下限値で制御するよ
うにしたものである。
(D) Means for solving the problem The cooling operation method of the freezer / refrigerator according to the present invention is ON / OFF cycle operation control of the cooling device based on the temperature of the circulating air in the refrigerator, that is, a reference set temperature. Set in advance, turn on the compressor or liquid solenoid valve at the upper limit of this set temperature to start supplying liquid refrigerant to the evaporator (cooler), and turn off the compressor or liquid solenoid valve at the lower limit to evaporate In the system that controls the temperature inside the refrigerator by interrupting the supply of liquid refrigerant to the vessel, after defrosting, set this lower limit temperature to a lower level according to the rise in temperature inside the refrigerator during defrosting. Then, the cooling operation control based on the new corrected set temperature is performed, and the stored goods by the thermocycle operation that starts before the internal temperature and the product temperature that have occurred when the lower limit value before changing the setting is reached do not reach the target temperature. Prevents delay in cooling of the The lower limit value is changed so as to return to the gradual dimension, and the lower limit value is compared with the temperature of the circulating air to determine whether to continue the cooling operation, and after the lower limit value has been exceeded, the lower limit value is set within a certain period of time. If it does not exceed the limit, the control is performed at the normal lower limit value after that point.

(ホ)作用 除霜後の冷却装置のサーモサイクル運転を決定する設定
温度の下限の設定値が下げられるので、庫内を急速に冷
却することができ、且つ目的の庫内温度になった時点で
通常の制御に戻すことができる。
(E) Action The lower limit setting value of the set temperature that determines the thermocycle operation of the cooling device after defrosting can be lowered, so that the inside of the refrigerator can be cooled rapidly, and at the time when the target inside temperature is reached. You can return to normal control with.

(ヘ)実施例 以下、本発明の実施例を説明する。(F) Examples Examples of the present invention will be described below.

第1図に示すような前面開放型のオープン冷蔵ショーケ
ース1において、開放部7は内外二重のエアーカーテン
8,9で外気と庫内とが遮断されている。ここで、圧縮機
の駆動、停止、又は液電磁弁の開閉により冷却器6への
液冷媒供給の開始と中断の制御が行われ、これにより内
層吐出空気8の温度制御を行なうこととなって庫内温度
は一定に保たれる。即ち、内層吐出空気温度は予め設定
された制御基準値となる設定温度の上限値と下限値との
間に入るように制御され、この温度範囲内を維持するよ
うに冷却装置の運転制御を行なう。ここで、除霜後の下
限温度値を次の式にて算出し、除霜後はその算出値を新
しい下限値として庫内運転制御を行なう。
In the open front refrigerated showcase 1 as shown in FIG. 1, the opening portion 7 has an inner and outer double air curtain.
At 8 and 9, the outside air is shut off from the inside. Here, the start and interruption of the supply of the liquid refrigerant to the cooler 6 is controlled by driving or stopping the compressor or opening and closing the liquid solenoid valve, thereby controlling the temperature of the inner layer discharge air 8. The internal temperature is kept constant. That is, the inner layer discharge air temperature is controlled so as to fall between the upper limit value and the lower limit value of the set temperature which is a preset control reference value, and the operation control of the cooling device is performed so as to maintain this temperature range. . Here, the lower limit temperature value after defrosting is calculated by the following formula, and after defrosting, the internal operation control is performed with the calculated value as a new lower limit value.

Sd=So-k(K1-K0)+D・T ・・・(1) Sd:除霜後の下限値(℃) So:通常の下限値(℃) k:除霜時の庫内温度上昇が品温におよぼす度合で決定
される係数 K1:除霜後の庫内温度(℃)又は除霜後の算出庫内温度 K0:除霜前の庫内温度(℃)又は除霜前の算出庫内温度 K1-K0:除霜での庫内温度上昇(℃) D:除霜後の下限値で冷却した場合、品温に影響される
度合で決定される吐出設定上昇率(℃/分) T:除霜後の経過時間(分) 上記式(1)で示される除霜後の下限値Sdは、除霜後の経
過時間に伴って徐々に小さく変化していく。そして、時
々刻々と変化する下限値Sdと、その各時点での吐出空気
の温度A2とを比較し、吐出空気温度A2が下限値Sdより高
い場合は冷却運転を続行し、A2=Sdとなった時点で冷却
運転を停止する。その後、下限値Sdに一定の温度巾を加
えた温度値を上限値としてサーモサイクル運転を始め
る。そして、通常の下限値Soに基づくサーモサイクル運
転に復帰するのは下記に示す二通りの条件の判断結果に
より行なわれ、それまでサーモサイクルの下限値設定変
更区間が形成される。
Sd = So-k (K 1 -K 0 ) + D ・ T ・ ・ ・ (1) Sd: Lower limit value after defrosting (℃) So: Normal lower limit value (℃) k: Inside of defrosting room A coefficient that is determined by the degree to which the temperature rise affects the product temperature K 1 : Temperature inside the chamber after defrosting (° C) or calculated temperature after defrosting K 0 : Temperature inside the chamber before defrosting (° C) or removal Calculated chamber temperature before frost K 1 -K 0 : Temperature rise in chamber during defrost (° C) D: Discharge setting determined by the degree of being affected by product temperature when cooled at the lower limit after defrost Rate of increase (° C / min) T: Elapsed time after defrosting (min) The lower limit value Sd after defrosting expressed by the above formula (1) gradually changes with the elapsed time after defrosting. Go. Then, the lower limit value Sd, which changes from moment to moment, is compared with the discharge air temperature A2 at each time point.If the discharge air temperature A2 is higher than the lower limit value Sd, the cooling operation is continued, and A2 = Sd. At that point, the cooling operation is stopped. Then, the thermocycle operation is started with the temperature value obtained by adding a certain temperature range to the lower limit value Sd as the upper limit value. Then, the return to the thermocycle operation based on the normal lower limit value So is performed by the judgment result of the following two conditions, and the lower limit value setting change section of the thermocycle is formed until then.

ところで、その判断の条件は、 (1)Sd≧Soとなった後、通常の下限値Soで制御する。By the way, the conditions for the determination are: (1) After Sd ≧ So, the normal lower limit value So is controlled.

(2)(1)を行なうと共に、或る一定時間(1)で復帰しなか
った場合、その後通常の下限値Soで制御する。というも
のである。
(2) When (1) is performed and the recovery is not made within a certain period of time (1), the normal lower limit value So is controlled thereafter. That is.

以上、一連の下限値Sdの算出、吐出空気温度A1との比
較、および通常の下限値Soとの比較判断はマイクロプロ
セッサーによる制御で成すことができる。ここで、例え
ばSo=-5℃,k=0.5,K0=-3℃,K1=5℃,D=0.125
℃/分とすると、 Sd=-3℃-0.5(5-(-3))℃+0.125℃/分×T=-7℃+0.125℃/分×T ・・・(2) となる。
As described above, the series of calculation of the lower limit value Sd, the comparison with the discharge air temperature A1, and the comparison judgment with the normal lower limit value So can be performed by the control of the microprocessor. Here, for example, So = −5 ° C., k = 0.5, K 0 = −3 ° C., K 1 = 5 ° C., D = 0.125
When the temperature is ° C / min, Sd = -3 ° C-0.5 (5-(-3)) ° C + 0.125 ° C / min × T = -7 ° C + 0.125 ° C / min × T (2)

この式(2)に基づき、除霜後の下限値温度を変更した場
合の温度を第2図に示してある。同図で理解されるよう
に、内層吐出空気温度A2、内層吸込空気温度B2、庫内温
度C3、品温D2の温度降下は速くなり、庫内が目標とする
温度-3℃に到達する時間は40分となり、第3図で示した
設定値が変わらない従来の制御方法で60分掛っていたの
を大巾に短縮でき、著しく改善されている。
FIG. 2 shows the temperature when the lower limit temperature after defrosting is changed based on this equation (2). As can be seen in the figure, the temperature drop of the inner layer discharge air temperature A2, the inner layer intake air temperature B2, the chamber temperature C3, and the product temperature D2 becomes faster, and the time for the chamber to reach the target temperature -3 ° C. Is 40 minutes, which is significantly improved from the time required for 60 minutes in the conventional control method in which the set value shown in FIG. 3 does not change, to be greatly shortened.

なお、上限値で温度制御する場合、除霜後の上限温度値
は、次の式にて算出し、除霜後はその算出値を新しい上
限値として庫内運転制御を行なう。
When the temperature is controlled by the upper limit value, the upper limit temperature value after defrosting is calculated by the following formula, and after defrosting, the internal operation control is performed with the calculated value as a new upper limit value.

Sd=So-k(K1-K0)+D・T ・・・(1) Sd:除霜後の上限値(℃) So:通常の上限値(℃) k:除霜時の庫内温度上昇が品温におよぼす度合で決定
される係数 K1:除霜後の庫内温度(℃)又は除霜後の算出庫内温度 K0:除霜前の庫内温度(℃)又は除霜前の算出庫内温度 K1-K0:除霜での庫内温度上昇(℃) D:除霜後の上限値で冷却した場合、品温に影響される
度合で決定される吐出設定上昇率(℃/分) T:除霜後の経過時間(分) そして、上限値と下限値の帯を変化させない場合は、上
式のD及びKが同じ値になり、帯を変化させる場合はD,
Kは異なる値となる。
Sd = So-k (K 1 -K 0 ) + D ・ T ・ ・ ・ (1) Sd: Upper limit after defrosting (℃) So: Normal upper limit (℃) k: Inside of defrosting room A coefficient that is determined by the degree to which the temperature rise affects the product temperature K 1 : Temperature inside the chamber after defrosting (° C) or calculated temperature after defrosting K 0 : Temperature inside the chamber before defrosting (° C) or removal Calculated chamber temperature before frost K 1 -K 0 : Temperature rise in chamber during defrosting (℃) D: When cooled at the upper limit after defrosting, discharge setting determined by the degree to which the product temperature is affected Rate of rise (° C / min) T: Elapsed time after defrosting (min) Then, if the upper and lower limit bands are not changed, D and K in the above equation will be the same value and the band will be changed Is D,
K has different values.

(ト)発明の効果 本発明の運転方法は、冷却装置のON,OFFサイクル運転制
御において、そのOFF作動の条件となる予め設定された
設定温度の下限値を、除霜後その除霜時の庫内温度上昇
巾に合わせて一段と低く設定させた補正設定温度の下限
値で運転するようにしたので、除霜後の冷却が十分に行
なわれ、除霜時に上昇した貯蔵品の温度を速やかに目標
温度に冷却することが可能である。
(G) Effect of the invention The operating method of the present invention, in the ON, OFF cycle operation control of the cooling device, the lower limit value of the preset temperature that is the condition of the OFF operation, after defrosting, during the defrosting Since the operation is performed at the lower limit value of the correction set temperature, which has been set to a lower value according to the rise in temperature inside the refrigerator, cooling is sufficiently performed after defrosting, and the temperature of stored goods that rises during defrosting can be promptly increased. It is possible to cool to the target temperature.

依って、例えば生鮮食品を貯蔵している場合、除霜時の
温度上昇による鮮度低下を最小限に抑えることができ
る。また、目的の庫内温度になった時点で最初の下限値
に基づくサーモサイクル制御に移行し、通常の運転に戻
すことが自動的に行なわれる。
Therefore, for example, when fresh food is stored, a decrease in freshness due to a temperature rise during defrosting can be minimized. Further, when the target internal temperature is reached, the thermocycle control based on the first lower limit value is entered, and the normal operation is automatically returned.

【図面の簡単な説明】[Brief description of drawings]

第1図は冷凍・冷蔵庫の一種である前面開放型オープン
ショーケースの断面図、第2図は本運転方法によるショ
ーケース内各温度を示すグラフ図、第3図は従来運転方
法によるショーケース内各温度を示すグラフ図である。 1……ショーケース本体、2,3……冷気循環路、6……
冷却器、10……温度制御器の検温部、A1,A2……内層吐
出空気温度、B1,B2……内層吸込空気温度、C1,C2……庫
内温度、D1,D2……品温。
Fig. 1 is a cross-sectional view of a front open type open showcase, which is a type of freezer / refrigerator, Fig. 2 is a graph showing each temperature in the showcase by this operating method, and Fig. 3 is the showcase by the conventional operating method. It is a graph which shows each temperature. 1 ... Showcase body, 2, 3 ... Cold air circulation path, 6 ...
Cooler, 10 …… Temperature detector of temperature controller, A1, A2 …… Inner layer discharge air temperature, B1, B2 …… Inner layer intake air temperature, C1, C2 …… Inside temperature, D1, D2 …… Product temperature.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】庫内の循環空気の温度を検知して、その温
度が予め設定された基準となる設定温度の下限値に達す
ると冷却装置の運転を停止し、前記設定温度の上限値に
なると冷却装置を再駆動するサイクル運転を行い、庫内
を所定の温度に保つ冷凍・冷蔵庫の冷却運転方法におい
て、除霜終了後、前記下限値を除霜時の庫内温度上昇巾
に合わせてより低く設定する補正設定温度にて冷却装置
を駆動し、駆動後、漸次元の下限値に復帰変化する設定
値に基づく運転制御を行ない、下限値に復帰後、また
は、一定時間内の非復帰の場合、その時点以降通常のサ
イクル運転を行なうことを特徴とする冷凍・冷蔵庫の冷
却運転方法。
1. The temperature of the circulating air in the refrigerator is detected, and when the temperature reaches a lower limit value of a preset reference temperature, the operation of the cooling device is stopped and the upper limit value of the preset temperature is reached. In that case, in the cooling operation method of the freezer / refrigerator that performs the cycle operation of re-driving the cooling device and keeps the inside of the refrigerator at a predetermined temperature, after defrosting, the lower limit value is adjusted according to the temperature rise width during the defrosting. The cooling device is driven at the correction setting temperature that is set lower, and after driving, the operation control is performed based on the set value that changes gradually to the lower limit value of the dimension, after returning to the lower limit value, or after no return within a certain time In the case of, the cooling operation method of the freezer / refrigerator is characterized by performing a normal cycle operation after that point.
JP14061188A 1988-06-09 1988-06-09 Freezing / refrigerator cooling operation method Expired - Fee Related JPH0648126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14061188A JPH0648126B2 (en) 1988-06-09 1988-06-09 Freezing / refrigerator cooling operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14061188A JPH0648126B2 (en) 1988-06-09 1988-06-09 Freezing / refrigerator cooling operation method

Publications (2)

Publication Number Publication Date
JPH01310278A JPH01310278A (en) 1989-12-14
JPH0648126B2 true JPH0648126B2 (en) 1994-06-22

Family

ID=15272734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14061188A Expired - Fee Related JPH0648126B2 (en) 1988-06-09 1988-06-09 Freezing / refrigerator cooling operation method

Country Status (1)

Country Link
JP (1) JPH0648126B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042133A (en) * 2010-08-19 2012-03-01 Toshiba Corp Refrigerator
EP4367451A1 (en) * 2021-07-09 2024-05-15 Phononic, Inc. Control scheme for beverage coolers optimized for beverage quality and fast pulldown time

Also Published As

Publication number Publication date
JPH01310278A (en) 1989-12-14

Similar Documents

Publication Publication Date Title
CN106091566B (en) A kind of control method for wind cooling refrigerator
JPH10141830A (en) Method and apparatus for controlling cooking/chilling system of refrigerator
KR870001533B1 (en) Refrigerator
JPH0240950B2 (en)
JP3455058B2 (en) refrigerator
JP4076804B2 (en) refrigerator
KR101804629B1 (en) Refrigerator and control method thereof
JPH0648126B2 (en) Freezing / refrigerator cooling operation method
KR100229145B1 (en) A method for controlling the interior temperature of a refrigerator
CN105466115B (en) Refrigerator and control method thereof
JPH03217775A (en) Refrigerator and control thereof
KR0154441B1 (en) Defrosting control method of a refrigerator
JPH05240547A (en) Device for controlling temperature in cold-storage chamber in refrigerator
JP6383454B2 (en) refrigerator
KR100229488B1 (en) Independent cooling type refrigerator and defrost control method thereof
KR20190091986A (en) Refrigerator
EP3732413B1 (en) A cooler comprising a heat controlled special compartment
US20240044568A1 (en) Refrigerator and control method thereof
JP3903237B2 (en) Cold storage
KR20180039831A (en) Refrigerator and Controlling method for the same
KR20180039832A (en) Refrigerator and Controlling method for the same
KR102182089B1 (en) control method of refrigerator
JP6993247B2 (en) Cool box
JP2639975B2 (en) Refrigeration, refrigerator cooling operation method
KR20220084715A (en) refrigerator and operating method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees