JPH01310278A - Cooling operation of freezing refrigerator - Google Patents

Cooling operation of freezing refrigerator

Info

Publication number
JPH01310278A
JPH01310278A JP14061188A JP14061188A JPH01310278A JP H01310278 A JPH01310278 A JP H01310278A JP 14061188 A JP14061188 A JP 14061188A JP 14061188 A JP14061188 A JP 14061188A JP H01310278 A JPH01310278 A JP H01310278A
Authority
JP
Japan
Prior art keywords
temperature
lower limit
defrosting
limit value
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14061188A
Other languages
Japanese (ja)
Other versions
JPH0648126B2 (en
Inventor
Tsutomu Tanaka
努 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP14061188A priority Critical patent/JPH0648126B2/en
Publication of JPH01310278A publication Critical patent/JPH01310278A/en
Publication of JPH0648126B2 publication Critical patent/JPH0648126B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/28Quick cooling

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Defrosting Systems (AREA)

Abstract

PURPOSE:To permit sufficient cooling after defrosting as well as the quick cooling of stored matters, whose temperature is risen upon the defrosting, to an objective temperature by a method wherein the title freezing refrigerator is operated after the defrosting at the lower limit of a corrected set temperature set at a lower setting temperature in accordance with the increasing width of a temperature in the refrigerator upon defrosting. CONSTITUTION:In a front surface opening type open cold storage showcase 1, the chambers of an open space 7 are intercepted from atmosphere by inner and outer double air curtains 8, 9. After defrosting, a lower limit temperature is set at a lower temperature in accordance with the increasing width of a temperature in the showcase upon defrosting to effect cooling operation control based on the newly corrected set temperature and prevent the delay of cooling of stored matters due to thermocycle operation started before arriving at the objective values of a temperature in the showcase and the temperature of stored matters when the operation is controlled based on a lower limit value of temperature before changing the set temperature. The lower limit value of the corrected set temperature is changed so as to be returned to the initial set temperature gradually and the continuation of cooling operation is decided by comparing the lower limit value with the temperature of circulating air and when the temperature of the circulating air has become higher than the initial lower limit value or the same temperature does not become higher than the lower limit value for a given period of time, the operation is controlled by a normal lower limit value after that time.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は空気循環式によって庫内を冷却する冷凍・冷蔵
ショーケース、又は、冷凍・冷蔵庫に係る冷却運転方式
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a freezing/refrigerating showcase that cools the inside of a refrigerator by an air circulation method, or a cooling operation system for a freezing/refrigerator.

(ロ)従来の技術 例えば、冷却空気を強制的に循環して庫内に形成される
冷気のエアーカーテンにて庫内を冷却する空気循環式の
冷凍、もしくは冷源ショーケースおよび冷凍・冷蔵庫は
、概ね第1図に示すごとき構造となっている。即ち、シ
ョーケース本体1内に内外二重りの冷気循環路2,3に
循環用ファン4,5を配し1図示しない圧縮器と、凝縮
器と共に冷媒回路を構成する冷却器6を内側の循環路2
に配し、この冷却器6で熱交換が行なわれた冷気を庫内
に循環してショーケース本体1の前方間ロアに内外二重
の冷気エアーカーテン8.9を形成して、外気と庫内を
遮断し、庫内を冷却している。
(b) Conventional technology For example, air circulation type refrigeration, which cools the inside of the refrigerator with an air curtain of cold air that is formed inside the refrigerator by forcibly circulating cooling air, or cold source showcases and freezers/refrigerators. The structure is roughly as shown in FIG. That is, inside the showcase body 1, circulation fans 4 and 5 are arranged in double internal and external cold air circulation paths 2 and 3. Road 2
The cool air that has undergone heat exchange in the cooler 6 is circulated inside the warehouse to form a double cold air curtain 8.9 inside and outside the front lower part of the showcase main body 1, thereby separating the outside air and the warehouse. The inside of the refrigerator is shut off and cooled.

ところで、庫内を所定の温度にほぼ一定に保つために、
冷却器6の運転を予め設定された基準設定温度の上限値
で作動させ、下限値で停止するというサーモサイクル運
転制御が広く行なわれている。この場合、設定温度の上
限値、下限値の間には数度のディファレンシャルがあり
、設定温度を変化させてもこのディファレンシャルが変
化しない。この制御としては一般的には庫内循環空気の
温度が対象とされ、例えば循環空気の吐出空気温度を測
定して、所定の上限値、下限値と比較して冷却器のON
、OFFを行なわせる吐出空気温度制御や。
By the way, in order to keep the temperature inside the refrigerator almost constant at a predetermined level,
Thermocycle operation control is widely practiced in which the cooler 6 is operated at the upper limit of a preset reference temperature and stopped at the lower limit. In this case, there is a differential of several degrees between the upper limit and lower limit of the set temperature, and this differential does not change even if the set temperature is changed. Generally, this control targets the temperature of the circulating air in the refrigerator.For example, the temperature of the discharged air of the circulating air is measured and compared with predetermined upper and lower limits to turn on the cooler.
, discharge air temperature control that turns it off.

同様に吸込空気温度制御、あるいは吐出と吸込の空気温
度により算出される算出庫内温度制御等の運転制御方式
が行なわれている。そして、これらの温度制御にはサー
モスタット等の温度制御器を用い、例えば循環空気の吐
出口ll付近にこの温度制御器の検温部10を設置し、
この吐出空気の温度を検知し、その温度が設定温度の上
限値を超えたら圧縮器を駆動し冷却が行なわれ、その温
度が設定温度の下限値に至ったら圧縮器の運転を停止す
るという制御方法で庫内の温度制御が行なわれる。
Similarly, operation control methods such as suction air temperature control or calculated warehouse temperature control calculated based on discharge and suction air temperatures are performed. A temperature controller such as a thermostat is used to control these temperatures, and the temperature measuring unit 10 of the temperature controller is installed near the circulating air outlet 11, for example.
The temperature of this discharged air is detected, and when the temperature exceeds the upper limit of the set temperature, the compressor is driven to perform cooling, and when the temperature reaches the lower limit of the set temperature, the compressor operation is stopped. The temperature inside the refrigerator is controlled by this method.

また、制御する冷凍・冷蔵庫等が複数台の場合は、冷媒
回路において蒸発器 (冷却器)への液冷媒供給の開始、中断を液電磁弁等で
制御することにより成されている。
Furthermore, when there are multiple freezers, refrigerators, etc. to be controlled, the start and stop of supply of liquid refrigerant to the evaporator (cooler) in the refrigerant circuit is controlled by a liquid solenoid valve or the like.

このような制御方法により庫内は循環空気により冷却さ
れるが、冷却にともない、冷却器6が着霜し、冷却能力
が低下するため除霜が必要である。
With such a control method, the inside of the refrigerator is cooled by circulating air, but as the refrigerator 6 cools, frost forms on the cooler 6 and the cooling capacity decreases, so defrosting is required.

除霜はヒーター、ホットガス等適宜な方法で行なわれ、
除霜後再び庫内循環空気の温度に基づく冷却運転のON
、OFF制御、即ちサーモサイクル運転が行なわれ庫内
を温度制御する。
Defrosting is carried out using an appropriate method such as a heater or hot gas.
After defrosting, turn on the cooling operation again based on the temperature of the circulating air inside the refrigerator.
, OFF control, that is, thermocycle operation is performed to control the temperature inside the refrigerator.

(ハ)発明が解決しようとする課題 しかるに、除霜時には冷却器の運転が停止され循環用フ
ァンによる強制循環空気が形成されているだけなので、
庫内および貯蔵品の温度も上昇する。そして、除霜後、
冷却器の運転が再開され上昇した庫内および貯蔵品の冷
却は再び循環空気によるエアーカーテンで成される。そ
のときこの循環空気によるエアーカーテンは比較的短時
間で温度低下し循環するが、庫内および貯蔵品の温度は
まだ十分に低下していない。しかし、冷却の制御はこの
循環空気の温度に基づき行なわれるので、庫内および貯
蔵品が目標温度に到達しない時点で冷却装置のON、O
FFサイクル運転を行なうことになり、安定した所定の
温度状態になるのに時間を多く要し、貯蔵品の品温の冷
却が遅れ品質の低下を生じる。
(c) Problems to be solved by the invention However, during defrosting, the operation of the cooler is stopped and only forced circulation air is created by the circulation fan.
The temperature inside the warehouse and of stored items also rises. And after defrosting,
The operation of the cooler is restarted and the elevated interior of the warehouse and the stored items are cooled again by the air curtain using circulating air. At this time, the temperature of the air curtain caused by the circulating air decreases in a relatively short period of time and circulates, but the temperature inside the refrigerator and the stored items has not yet decreased sufficiently. However, since cooling control is performed based on the temperature of this circulating air, the cooling system is turned on and off when the temperature inside the warehouse and stored items does not reach the target temperature.
Since FF cycle operation is performed, it takes a long time to reach a stable predetermined temperature state, and cooling of the stored items is delayed, resulting in a decrease in quality.

今、上述の温度変化の模様は第3図のグラフ図でより理
解されると思う。即ち第3図は第1図の構造で示された
内層吐出空気を制御することで庫内温度を一定に保つシ
ョーケースの内層吐出空気温度A1、内層吸込空気温度
Bl、庫内温度CI、貯蔵品の品温D1の変化をグラフ
で示しである。同図で除霜に伴い各温度は上昇する。除
霜後の庫内温度CIと品温D1の温度降下は、内層吐出
空気温度A1の降下に比べ遅いため、サーモサイクル運
転を除霜前と同じ下限値で制御すると庫内温度CIと品
温D1が目標温度に到達しないうちにサーモサイクル運
転を行なう。このため冷却が安定するまでに60分とい
う長い時間を要してしまう。
I think the above-mentioned pattern of temperature changes can be better understood from the graph in Figure 3. In other words, FIG. 3 shows the inner layer discharge air temperature A1, inner layer suction air temperature Bl, chamber interior temperature CI, and storage temperature of the showcase, which maintains the refrigerator internal temperature constant by controlling the inner layer discharge air shown in the structure of FIG. 1. The graph shows changes in the product temperature D1. In the figure, each temperature increases with defrosting. The temperature drop in the internal temperature CI and the product temperature D1 after defrosting is slower than the drop in the inner layer discharge air temperature A1, so if the thermocycle operation is controlled at the same lower limit value as before defrosting, the internal temperature CI and the product temperature will decrease. Thermocycle operation is performed before D1 reaches the target temperature. For this reason, it takes a long time of 60 minutes until cooling becomes stable.

また、実公昭58−3029号公報に示すごとく、タイ
マーによる冷却装置のオン時間、オフ時間を交互に繰り
返す運転、即ちデユーティサイクル運転を採用した冷却
方式において、除霜終了後、庫内温度が下限値に達する
までのプルダウン運転時にはデユーティサイクルの駆動
を停止して温度制御器で冷却運転をON、OFF制御す
ることが提案されているが、この場合の温度制御器の目
的とするところは、デユーデイサイクル運転を始める時
点をこの温度制御器が検知する所定の低い温度に至った
ときからとするもので、この所定の低い温度は庫内温で
あるから、実際の商品温度は未だその温度に達しておら
ず、そのような時期からデユーデイサイクル運転が始動
してしまうので、同様に貯蔵品の冷却遅れが起こる。
In addition, as shown in Japanese Utility Model Publication No. 58-3029, in a cooling system that uses a timer to alternately repeat on and off times of the cooling device, that is, duty cycle operation, after defrosting is completed, the temperature inside the refrigerator is It has been proposed that during pull-down operation until the lower limit is reached, the duty cycle is stopped and a temperature controller is used to turn on and off the cooling operation, but the purpose of the temperature controller in this case is , the time to start the due-day cycle operation is when the temperature reaches a predetermined low temperature detected by this temperature controller, and since this predetermined low temperature is the internal temperature, the actual product temperature is still not the same. Since the temperature has not yet been reached and the duty cycle operation starts at such a time, a cooling delay of the stored items also occurs.

本発明は上記の従来技術で生じる欠点を完全に除去し、
除霜時に上昇した貯蔵品の温度を速やかに目標温度に冷
却することを可能として貯蔵品の冷却の遅れを解決でき
た冷凍・冷滝庫の冷却運転方式を提供することを目的と
する。
The present invention completely eliminates the drawbacks caused by the above-mentioned prior art,
An object of the present invention is to provide a cooling operation system for a freezer/cold storage that can resolve the delay in cooling stored items by quickly cooling the temperature of stored items that has risen during defrosting to a target temperature.

(ニ)課題を解決するための手段 本発明にかかる冷凍・冷蔵庫の冷却運転方式は、庫内の
循環空気の温度に基づく冷却装置のON、OFFサイク
ル運転制御、即ち、基準となる設定温度を予め設定し、
この設定温度の上限値で圧縮器又は液電磁弁をONシて
蒸発器(冷却器)への液冷媒供給を開始し、下限値で圧
縮器又は液電磁弁をOFF して蒸発器への液冷媒供給
を中断することにより庫内の温度制御を行なうようにし
たものにおいて、除霜後、この下限値温度を除霜時の庫
内温度上昇巾に合わせてより低く下げて設定して、新た
な補正設定温度に基づく冷却運転制御を行ない、設定変
更前の下限値で制御すると生じていた庫内温度及び品温
が目標温度に到達しないうちに始動するサーモサイクル
運転による貯蔵品の冷却の遅れを防ぎ、また、補正設定
温度の下限値を漸次元に戻すよう変化させ、その下限値
と循環空気の温度と比較して冷却運転の続行を判定し元
の下限値以上となった後、あるいは成る一定時間内に下
限値を上回らない場合は、その時点以降通常の下限値で
制御するようにしたものである。
(d) Means for Solving the Problems The cooling operation method for freezers and refrigerators according to the present invention controls the ON/OFF cycle operation of the cooling device based on the temperature of the circulating air inside the refrigerator, that is, the reference set temperature. Set in advance,
At the upper limit of this set temperature, the compressor or liquid solenoid valve is turned on to start supplying liquid refrigerant to the evaporator (cooler), and at the lower limit, the compressor or liquid solenoid valve is turned off and liquid is supplied to the evaporator. In a system that controls the temperature inside the refrigerator by interrupting the refrigerant supply, after defrosting, the lower limit temperature is set lower according to the rise in temperature inside the refrigerator during defrosting, and a new Delay in cooling of stored items due to thermocycle operation that starts before the internal temperature and product temperature reach the target temperature, which occurs when cooling operation is controlled based on the corrected set temperature and controlled at the lower limit value before the setting change. In addition, the lower limit value of the corrected set temperature is changed so as to return to the gradual dimension, and the lower limit value is compared with the temperature of the circulating air to determine whether to continue the cooling operation, and after the lower limit value is equal to or higher than the original lower limit value, or If the lower limit value is not exceeded within a certain period of time, control is performed at the normal lower limit value from that point on.

(ホ)作用 除霜後の冷却装置のサーモサイクル運転を決定する設定
温度の下限の設定値が下げられるので、庫内を急速に冷
却することができ、且つ目的の庫内温度になった時点で
通常の制御に戻すことができる。
(E) Function Since the lower limit of the set temperature that determines the thermocycle operation of the cooling device after defrosting is lowered, the interior of the refrigerator can be rapidly cooled, and the time when the desired interior temperature is reached. You can return to normal control.

(へ)実施例 以下、本発明の詳細な説明する。(f) Example The present invention will be explained in detail below.

第1図に示すような前面開放型のオープン冷蔵ショーケ
ース1において、開放部7は内外二重のエアーカーテン
8,9で外気と庫内とが遮断されている。ここで、圧縮
器の邪動、停止、又液電磁弁の開閉により冷却器6への
液冷媒供給の開始と中断の制御は、内層吐出空気8の温
度制御を行なうことで庫内温度は一定に保たれる。即ち
、内層吐出空気温度は予め設定された制御基準値となる
設定温度の上限値と下限値との間に入るように制御され
、この温度範囲内を維持するように冷却装置の運転制御
を行なう。ここで、除霜後の下限温度値を次の式にて算
出し、除霜後はその算出値を新しい下限値として庫内運
転制御を行なう。
In an open-front refrigerated showcase 1 as shown in FIG. 1, an open section 7 is separated from the outside air and the inside of the refrigerator by double air curtains 8 and 9, both inside and outside. Here, the start and stop of liquid refrigerant supply to the cooler 6 is controlled by starting and stopping the compressor and opening and closing the liquid solenoid valve, and the temperature inside the refrigerator is kept constant by controlling the temperature of the inner layer discharge air 8. is maintained. That is, the inner layer discharge air temperature is controlled to be between the upper and lower limits of the set temperature, which is a preset control reference value, and the operation of the cooling device is controlled to maintain it within this temperature range. . Here, the lower limit temperature value after defrosting is calculated using the following equation, and after defrosting, the internal operation control is performed using the calculated value as the new lower limit value.

Sd = So −k (K□−に、)+D−T   
  ・・・(1)Sd:除霜後の下限値(”C) So:通常の下限値(℃) k :除霜時の庫内温度上昇が品温におよぼす度合で決
定される係数 に工:除霜後の庫内温度(’C)又は除霜後の算出庫内
温度 に0:除霜前の庫内温度(℃)又は除霜前の算出庫内温
度 に□−に0:除霜での庫内温度上昇(’C)D :除霜
後の下限値で冷却した場合、品温に影響される度合で決
定される吐 出設定上昇率(’C/分) T: 除霜後の経過時間(分) 上記式(1)で示される除霜後の下限値Sdは、除霜後
の経過時間に伴って徐々に小さく変化していく。そして
、時々刻々と変化する下限値Sdと、その各時点での吐
出空気の温度A2とを比較し、吐出空気温度A2が下限
値Sdより高い場合は冷却運転を続行し、A 2=Sd
となった時点で冷却運転を停止する。その後、下限値S
dに一定の温度中を加えた温度値を上限値としてサーモ
サイクル運転を始める。
Sd = So −k (K□−, )+D−T
...(1) Sd: Lower limit value after defrosting ("C) So: Normal lower limit value (℃) k: A coefficient determined by the degree to which the rise in internal temperature during defrosting affects the product temperature. : 0 to the internal temperature after defrosting ('C) or the calculated internal temperature after defrosting: 0 to the internal temperature before defrosting (℃) or the calculated internal temperature before defrosting 0: Removed Internal temperature rise due to frost ('C) D: When cooling at the lower limit after defrosting, the discharge setting increase rate ('C/min) determined by the degree of influence on product temperature T: After defrosting Elapsed time (minutes) The lower limit value Sd after defrosting shown by the above formula (1) gradually decreases with the elapsed time after defrosting.Then, the lower limit value Sd that changes from moment to moment and the discharge air temperature A2 at each point in time, and if the discharge air temperature A2 is higher than the lower limit value Sd, the cooling operation is continued, and A2=Sd.
Cooling operation will be stopped when this happens. After that, the lower limit S
Thermocycle operation is started with the upper limit value being the temperature value of d plus a constant temperature.

そして、通常の下限値Soに基づくサーモサイクル運転
に復帰するのは下記に示す二通りの条件の判断結果によ
り行なわれ、それまでサーモサイクルの下限値設定変更
区間が形成される。
Then, the return to the thermocycle operation based on the normal lower limit value So is performed based on the judgment result of the following two conditions, and until then, a lower limit value setting change section of the thermocycle is formed.

ところで、その判断の条件は、 (1) Sd≧Soとなった後1通常の下限値SOで制
御する。
By the way, the conditions for this determination are: (1) After Sd≧So, control is performed using the normal lower limit value SO.

(2) (1)を行なうと共に、成る一定時間(1)で
復帰しなかった場合、その後通常の下限値Soで制御す
る。というものである。
(2) If (1) is performed and the system does not recover within the certain period of time (1), then control is performed using the normal lower limit value So. That is what it is.

以上、一連の下限値Sdの算出、吐出空気温度A1との
比較、および通常の下限値SOとの比較判断はマイクロ
プロセッサ−による制御で成すことができる。ここで、
例えば5o=−5℃、 k=0.5. Ko=−3℃。
As described above, the calculation of the series of lower limit values Sd, the comparison with the discharge air temperature A1, and the comparison judgment with the normal lower limit value SO can be performed under control by a microprocessor. here,
For example, 5o=-5°C, k=0.5. Ko = -3°C.

K工=5℃、 D=0.125℃/分とすると。Assuming that K = 5°C and D = 0.125°C/min.

Sd = =3℃−0,5(5−(−3))℃+0.1
25℃/分×T=−7°C+0.125℃/分XT  
     ・・・(2)となる。
Sd = =3℃-0,5(5-(-3))℃+0.1
25°C/min x T = -7°C + 0.125°C/min XT
...(2).

この式(2)に基づき、除霜後の下限値温度を変更した
場合の温度を第2図に示しである。同図で理解されるよ
うに、内層吐出空気温度A2、内層吸込空気温度B2、
庫内温度C3、品温D2の温度降下は速くなり、庫内が
目標とする温度−3℃に到達する時間は40分となり、
第3図で示した設定値が変わらない従来の制御方法では
60分掛っていたのを大巾に短縮でき、著しく改善され
ている。
FIG. 2 shows the temperature when the lower limit temperature after defrosting is changed based on this equation (2). As understood from the figure, inner layer discharge air temperature A2, inner layer suction air temperature B2,
The temperature inside the refrigerator C3 and the product temperature D2 decrease quickly, and it takes 40 minutes for the inside of the refrigerator to reach the target temperature of -3°C.
The conventional control method shown in FIG. 3, in which the set values do not change, takes 60 minutes, but this time can be significantly shortened, which is a significant improvement.

なお、上限値で温度制御する場合、除霜後の上限温度値
は、次の式にて算出し、除霜後はその算出値を新しい上
限値として庫内運転制御を行なう。
In addition, when controlling the temperature using the upper limit value, the upper limit temperature value after defrosting is calculated using the following formula, and after defrosting, the internal operation control is performed using the calculated value as the new upper limit value.

5d=So−kCK、−X、)+D4        
”(1)Sd:除霜後の上限値(’C) So:通常の上限値(’C) k :除霜時の庫内温度上昇が品温におよぼす度合で決
定される係数 に工:除霜後の庫内温度(℃)又は除霜後の算出庫内温
度 に。:除霜前の庫内温度(’C)又は除霜前の算出庫内
温度 によ−Ko:除霜での庫内温度上昇(℃)D :除霜後
の上限値で冷却した場合、品温に影響される度合で決定
される吐 出設定上昇率(℃/分) T : 除霜後の経過時間(分) そして、上限値と下限値の帯を変化させない場合は、上
式のD及びKが同じ値になり、帯を変化させる場合はり
、には異なる値となる。
5d=So-kCK,-X,)+D4
(1) Sd: Upper limit value after defrosting ('C) So: Normal upper limit value ('C) k: A coefficient determined by the degree to which the rise in internal temperature during defrosting affects the product temperature: To the internal temperature after defrosting (℃) or the calculated internal temperature after defrosting.: According to the internal temperature before defrosting ('C) or the calculated internal temperature before defrosting -Ko: By defrosting Temperature rise inside the refrigerator (°C) D: When cooling at the upper limit after defrosting, the rate of increase in discharge setting (°C/min) determined by the degree to which it is affected by product temperature T: Elapsed time after defrosting ( (min) When the band of the upper limit value and the lower limit value is not changed, D and K in the above formula have the same value, and when the band is changed, D and K have different values.

(ト)発明の効果 本発明の運転方式は、冷却装置のON、OFFサイクル
運転制御において、そのOFF作動の条件となる予め設
定された設定温度の下限値を、除霜後その除霜時の庫内
温度上昇巾に合わせて一段と低く設定させた補正設定温
度の下限値で運転するようにしたので、除霜の冷却が十
分に行なわれ、除霜時に上昇した貯蔵品の温度を速やか
に目標温度に冷却することが可能である。
(G) Effects of the Invention The operating method of the present invention, in the ON/OFF cycle operation control of the cooling device, sets the lower limit of the preset temperature that is the condition for the OFF operation after defrosting. Since operation is now performed at the lower limit of the corrected set temperature, which is set lower according to the range of temperature rise inside the warehouse, sufficient cooling is performed during defrosting, and the temperature of stored items that rose during defrosting can be quickly adjusted to the target value. It is possible to cool down to temperature.

依って、例えば生鮮食品を貯蔵している場合、除霜時の
温度上昇による鮮度低下を最小限に抑えることができる
。また、目的の庫内温度になった時点で最初の下限値に
基づくサーモサイクル制御に移行し、通常の運転に戻す
ことが自動的に行なねれる。
Therefore, for example, when fresh foods are stored, a decrease in freshness due to a temperature rise during defrosting can be minimized. Further, when the temperature inside the refrigerator reaches the target temperature, the thermocycle control is started based on the first lower limit value, and normal operation cannot be resumed automatically.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は冷凍・冷蔵庫の一種である前面開放型オープン
ショーケースの断面図、第2図は本運転方式によるショ
ーケース内容温度を示すグラフ図、第3図は従来運転方
式によるショーケース内容温度を示すグラフ図である。 1・・・ショーケース本体、2,3・・・冷気循環路、
6・・・冷却器、10・・・温度制御器の検温部、Al
、A2・・・内層吐出空気温度、Bl、B2・・・内層
吸込空気温度、CI。 C2・・・庫内温度、 Di、D2・・・品温。 第1図 手続補正書(師) 昭和63年8月29日
Figure 1 is a cross-sectional view of a front-opening open showcase, which is a type of freezer/refrigerator, Figure 2 is a graph showing the temperature of the contents of the showcase under this operating method, and Figure 3 is the temperature of the contents of the showcase under the conventional operation method. FIG. 1... Showcase body, 2, 3... Cold air circulation path,
6... Cooler, 10... Temperature measuring part of temperature controller, Al
, A2... Inner layer discharge air temperature, Bl, B2... Inner layer suction air temperature, CI. C2... Inner temperature, Di, D2... Product temperature. Figure 1 Procedural Amendment (Master) August 29, 1986

Claims (1)

【特許請求の範囲】[Claims] 庫内の循環空気の温度を検知して、その温度が予め設定
された基準となる設定温度の下限値に達すると冷却装置
の運転を停止し、前記設定温度の上限値になると冷却装
置を再駆動するサイクル運転を行ない、庫内を所定の温
度に保つ冷凍・冷蔵庫の冷却運転方式において、除霜終
了後、前記下限値を除霜時の庫内温度上昇巾に合わせて
より低く設定する補正設定温度にて冷却装置を駆動し、
駆動後、漸次元の下限値に復帰変化する設定値に基づく
運転制御を行ない、下限値に復帰後、または、一定時間
内の非復帰の場合、その時点以降通常のサイクル運転を
行なうことを特徴とする冷凍・冷蔵庫の冷却運転方式。
The temperature of the circulating air inside the refrigerator is detected, and when the temperature reaches the lower limit of the set temperature, which is a preset reference, the operation of the cooling system is stopped, and when the temperature reaches the upper limit of the set temperature, the operation of the cooling system is restarted. In a cooling operation method for freezers and refrigerators that perform cycle operation to keep the inside of the refrigerator at a predetermined temperature, after defrosting is completed, the lower limit value is set lower according to the range of temperature rise inside the refrigerator during defrosting. Drive the cooling device at the set temperature,
After driving, operation control is performed based on a set value that gradually returns to the lower limit value of the dimension, and after returning to the lower limit value, or if it does not return within a certain period of time, normal cycle operation is performed from that point onwards. Cooling operation method for freezers and refrigerators.
JP14061188A 1988-06-09 1988-06-09 Freezing / refrigerator cooling operation method Expired - Fee Related JPH0648126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14061188A JPH0648126B2 (en) 1988-06-09 1988-06-09 Freezing / refrigerator cooling operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14061188A JPH0648126B2 (en) 1988-06-09 1988-06-09 Freezing / refrigerator cooling operation method

Publications (2)

Publication Number Publication Date
JPH01310278A true JPH01310278A (en) 1989-12-14
JPH0648126B2 JPH0648126B2 (en) 1994-06-22

Family

ID=15272734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14061188A Expired - Fee Related JPH0648126B2 (en) 1988-06-09 1988-06-09 Freezing / refrigerator cooling operation method

Country Status (1)

Country Link
JP (1) JPH0648126B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042133A (en) * 2010-08-19 2012-03-01 Toshiba Corp Refrigerator
WO2023283483A1 (en) * 2021-07-09 2023-01-12 Phononic, Inc. Control scheme for beverage coolers optimized for beverage quality and fast pulldown time

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042133A (en) * 2010-08-19 2012-03-01 Toshiba Corp Refrigerator
WO2023283483A1 (en) * 2021-07-09 2023-01-12 Phononic, Inc. Control scheme for beverage coolers optimized for beverage quality and fast pulldown time

Also Published As

Publication number Publication date
JPH0648126B2 (en) 1994-06-22

Similar Documents

Publication Publication Date Title
JP3287360B2 (en) Refrigerator with high efficiency multi-evaporator cycle (HIGH EFFICIENCY MULTI-EVAPORATOR CYCLE (HM CYCLE)) and control method therefor
KR870001533B1 (en) Refrigerator
JPH10141830A (en) Method and apparatus for controlling cooking/chilling system of refrigerator
JP3455058B2 (en) refrigerator
EP1074803B1 (en) Refrigerator with blast chiller and quick freezer
JP2004037042A (en) Refrigerator
KR101804629B1 (en) Refrigerator and control method thereof
JP3354165B2 (en) Refrigerator refrigerator temperature control device
KR100229145B1 (en) A method for controlling the interior temperature of a refrigerator
JPH01310278A (en) Cooling operation of freezing refrigerator
JPH1163775A (en) Multi-refrigerator
JPH03217775A (en) Refrigerator and control thereof
KR100229488B1 (en) Independent cooling type refrigerator and defrost control method thereof
KR19990084755A (en) Operation control method of refrigerator
JP2687637B2 (en) Operation control device for container refrigeration equipment
US20240044568A1 (en) Refrigerator and control method thereof
JP3288001B2 (en) Control device for inverter-driven refrigerator
JP2007120913A (en) Refrigerator
JPH05332658A (en) Display case
KR100190124B1 (en) Control method of a refrigerator
JP2002228322A (en) Method for controlling heater of refrigerator
JP2639975B2 (en) Refrigeration, refrigerator cooling operation method
TW202212753A (en) Intelligent refrigerator capable of rapid cooling and fresh keeping which has an independent cooling and fresh keeping room capable of quickly cooling the items placed in the cooling and fresh keeping room for fresh keeping and can also maintain the normal operation of other parts and the storage chamber of the refrigerator at the same time
KR20220084715A (en) refrigerator and operating method thereof
JP2022126605A (en) Warehouse type refrigerator freezer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees