JP2022126605A - Warehouse type refrigerator freezer - Google Patents

Warehouse type refrigerator freezer Download PDF

Info

Publication number
JP2022126605A
JP2022126605A JP2022022244A JP2022022244A JP2022126605A JP 2022126605 A JP2022126605 A JP 2022126605A JP 2022022244 A JP2022022244 A JP 2022022244A JP 2022022244 A JP2022022244 A JP 2022022244A JP 2022126605 A JP2022126605 A JP 2022126605A
Authority
JP
Japan
Prior art keywords
temperature
refrigerator
cooling fan
warehouse
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022022244A
Other languages
Japanese (ja)
Inventor
和夫 吉村
Kazuo Yoshimura
耕一 遠山
Koichi Toyama
靖博 熊谷
Yasuhiro Kumagai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sogo Corp
Original Assignee
Sogo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sogo Corp filed Critical Sogo Corp
Publication of JP2022126605A publication Critical patent/JP2022126605A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Landscapes

  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Defrosting Systems (AREA)
  • Refrigerator Housings (AREA)

Abstract

To achieve suppression against abrupt change in in-storage pressure and energy saving in a warehouse type refrigerator freezer that has a freezing cycle for circulating a refrigerant built in with an out-storage freezer unit including an inverter compressor, and an in-storage cooling unit including a cooling fan driven by a variable speed motor installed in the storage, a cooler, and a temperature expansion valve or electronic expansion valve, coupled through a refrigerant duct, and also comprises a control part performing drive control over the freezing cycle including stop/rotating speed control over the inverter compressor and cooling fan based upon various data from sensors installed outside the storage and at proper points of the freezing cycle.SOLUTION: A refrigerator freezer comprises control means which performs normal operation control in which a freezing cycle operates when an in-storage temperature exceeds a set upper-limit temperature and an inverter compressor is stopped from operating when the in-storage temperature exceeds a lower-limit temperature to place a cooling fan in low air-capacity operation, and controls rotational driving of the cooling fan not in a temperature range of the normal operation into lower-speed operation as the cooling load on the cooler is larger.SELECTED DRAWING: Figure 1

Description

本発明は、主に冷蔵・冷凍下で物品を貯蔵する断熱パネルを組み立てて構築する倉庫型冷凍冷蔵庫において、特に冷却ファンの駆動制御に関するものである。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a warehouse-type freezer-refrigerator constructed by assembling heat-insulating panels for mainly storing articles under refrigeration/freezing conditions, and particularly relates to drive control of a cooling fan.

冷凍冷蔵庫は、周知のとおり圧縮機、凝縮器、ファンからなる庫外ユニットと、膨張弁と冷却器(蒸発器)と冷却ファンからなる庫内ユニットとを冷媒管路で連結して冷媒を循環させてなる所謂冷凍サイクルを備えているものである。基本的な運転制御としては、庫内温度センサーで検知した庫内温度に基づいて冷却運転と冷却運転停止を繰り返して庫内温度を一定の範囲内に保つようにしている。 As is well known, a refrigerator/freezer circulates refrigerant by connecting an external unit consisting of a compressor, a condenser, and a fan, and an internal unit consisting of an expansion valve, a cooler (evaporator), and a cooling fan. It has a so-called refrigerating cycle. As basic operation control, based on the internal temperature detected by the internal temperature sensor, cooling operation and cooling stop are repeated to keep the internal temperature within a certain range.

特に冷却ファンを可変速とした倉庫型冷凍冷蔵庫の冷凍サイクルにおいて、冷却運転停止時(圧縮機作動停止時)の冷却ファンの運転制御として、例えば特許文献1には、冷媒温度・圧力の検出手段を備え、冷媒温度が低くなるに従い庫内ファンの稼働率を下げる制御手段が開示されており、また特に冷却運転停止時には冷却ファンの稼働率を制御(冷媒温度に対応して稼働率・回転速度の切り替え)する手段が開示されている。 In particular, in the refrigeration cycle of a warehouse-type freezer-refrigerator with a variable-speed cooling fan, as an operation control of the cooling fan when the cooling operation is stopped (when the compressor is stopped), for example, Patent Document 1 discloses means for detecting refrigerant temperature and pressure. is provided, and a control means is disclosed that lowers the operation rate of the internal fan as the refrigerant temperature decreases. means for switching) are disclosed.

また特許文献2には、前記特許文献で開示されている冷却装置運転停止中に冷却ファンの間欠運転を行わずに、庫内温度が基準温度を所定値上回った場合には庫内ファンの低速運転を所定時間行わせるという制御手段が開示されている。 Further, in Patent Document 2, when the internal temperature exceeds the reference temperature by a predetermined value without intermittently operating the cooling fan while the cooling device operation is stopped, as disclosed in the above Patent Document, the internal fan is operated at a low speed. A control means is disclosed for causing the operation to occur for a predetermined period of time.

また庫内ユニットに霜が付着すると冷却効率が低下するので、一定時間毎に庫内ユニット(冷却ユニット)に設けられている除霜ヒータによる除霜運転がなされている(特許文献2)。特に倉庫型の冷凍冷蔵庫では、デフロスト処理(除霜ヒータによる除霜運転)においては、一定時間毎に冷凍サイクルの稼動を停止し、ヒータ回路に通電して冷却器を加熱して霜取りを行い、霜取り後に冷凍サイクルを稼動するものであるが、特に前記霜取りは、短時間で効率的行うために冷却器は高温加熱するので、加熱終了後に冷却器の周囲空気が暖気塊となる。このため霜取り加熱終了後直ちに冷却ファンを駆動すると暖気塊が冷凍庫内に拡散し、冷凍庫全体の庫内温度を上昇させ、これに伴って庫内気圧が急激に上昇する。これに対応するために冷却ファンの駆動開始は少し遅らせている。 In addition, since the cooling efficiency decreases when frost adheres to the internal unit, a defrosting operation is performed by a defrosting heater provided in the internal unit (cooling unit) at regular intervals (Patent Document 2). In particular, in a warehouse-type freezer-refrigerator, in the defrosting process (defrosting operation by a defrosting heater), the operation of the refrigerating cycle is stopped at regular intervals, and the heater circuit is energized to heat the cooler to defrost. After defrosting, the refrigerating cycle is operated. Particularly, the defrosting is performed efficiently in a short time, so the cooler is heated to a high temperature, so after the heating is completed, the air around the cooler becomes a warm air mass. Therefore, if the cooling fan is driven immediately after defrosting and heating, the warm air diffuses into the freezer and raises the temperature inside the freezer as a whole, resulting in a rapid rise in the inside air pressure. In order to cope with this, the start of driving of the cooling fan is slightly delayed.

例えば倉庫型冷蔵庫ではなく、家庭用冷蔵庫においては、霜取り後冷却器周囲の暖気を冷凍室に送り込むと冷凍室内の食品の温度上昇を招くので、霜取り停止後一定時間(タイマ作動期間中)低速回転とし、その後定格回転数に戻す制御が特許文献3に開示されている。 For example, in home refrigerators, not warehouse refrigerators, if the warm air around the cooler is sent into the freezer compartment after defrosting, the temperature of the food in the freezer compartment will rise. Patent document 3 discloses a control for returning to the rated rotation speed after that.

特開平9-16637号公報。Japanese Patent Application Laid-Open No. 9-16637. 特開2012-20263号公報。Japanese Patent Application Laid-Open No. 2012-20263. 特開昭61-3972号公報。JP-A-61-3972.

冷凍サイクルの運転制御が、タイマーや、冷蔵冷凍庫内の温度状態及び冷媒の温度・圧力状態を検知するセンサーからの各信号に基づいて、圧縮機の回転数制御(停止も含む)、冷媒管路の開閉遮断、冷却ファンの駆動・停止、霜取りヒータの通電・遮断等で制御しているものであるが、特許文献1に開示されている冷媒温度に基づく制御手段は、冷媒温度が高いときに冷却ファン稼働率(回転数)を高くし、冷却ファン稼働率(回転数)を低くするという制御手法は、冷媒の絞り手段としてキャピラリーチューブを採用しているためであり、高くなる冷媒温度を低下させる手段として冷却器を通過する空気量を多くしているものである。他方絞り手段として温度膨張弁や、電子式膨張弁を採用すると、冷媒温度が高まる冷媒流量を多くして対応し、冷却ファンは通常運転制御(定速運転)している。しかし省エネ対応としては必ずしも効果的であるとは言えない。 The operation control of the refrigeration cycle is based on each signal from the timer and the sensor that detects the temperature state in the refrigerator freezer and the temperature and pressure state of the refrigerant, the rotation speed control (including stop) of the compressor, refrigerant pipe line , the cooling fan is driven/stopped, and the defrosting heater is energized/shut off. The control method of increasing the cooling fan operating rate (rotational speed) and lowering the cooling fan operating rate (rotational speed) is because the capillary tube is used as a means of throttling the refrigerant, which reduces the refrigerant temperature. As a means for increasing the amount of air passing through the cooler. On the other hand, if a thermal expansion valve or an electronic expansion valve is employed as the throttling means, the flow rate of the refrigerant that increases the refrigerant temperature is increased, and the cooling fan is normally operated (constant speed operation). However, it cannot be said that it is necessarily effective for energy conservation.

また倉庫型冷凍冷蔵庫においては、倉庫形状・容積が相違し且つ冷蔵冷凍庫内の収納物品の配置による冷気流の流れ、外気温度による影響等などによる突発的な庫内環境の変動が生じた場合に、通常の運転制御手段では対応できない状況が発生してしまう。 In addition, in the case of warehouse-type refrigerator-freezers, sudden fluctuations in the internal environment due to factors such as the flow of cold air due to the different shape and volume of the warehouse, the arrangement of stored items in the refrigerator-freezer, and the influence of the outside air temperature, etc. , a situation occurs that cannot be dealt with by normal operation control means.

特に倉庫型冷凍冷蔵庫内への荷物の搬入搬出時において、庫内温度は外気の流入によって庫内温度が上昇する。庫内温度を速やかに低下させるために冷凍サイクルをフル稼働するが、庫内温度の急激な低下は、庫内気圧を急激に低下させて天井及び壁パネルが強い差圧を受けて破損してしまう恐れがある。また夏季における冷蔵冷凍庫のプルダウン運転(庫内温度を外気温から設定庫内温度まで冷却運転)も同様である。 In particular, the temperature inside the warehouse rises due to the inflow of outside air when cargo is carried in and out of the warehouse-type freezer-refrigerator. The refrigerating cycle is operated at full capacity to quickly lower the temperature inside the refrigerator, but a sudden drop in the temperature inside the refrigerator will cause the air pressure inside the refrigerator to drop sharply, and the ceiling and wall panels will be damaged due to the strong differential pressure. There is a risk that it will be lost. The same applies to the pull-down operation of a refrigerator/freezer in summer (cooling operation for cooling the temperature inside the refrigerator from the outside temperature to the set temperature inside the refrigerator).

また前記した除霜終了後の冷却ファンの駆動開始時間を遅らせる制御設定や、一定時間の低速回転制御においては、冷却チューブが冷却しすぎないように予め当該時間設定を行っているが、倉庫型冷蔵冷蔵庫では、庫内の状況(収納物品の量、配置、庫内設定温度等)によっては、冷却ファンの駆動開始や定格回転切替えにより、冷却器周囲の暖気塊が冷凍庫内に拡散し、冷凍庫内全体の気圧を急上昇させて、金属サンドイッチパネルなどで形成された冷凍庫を形成している天井及び壁パネルの目地を破損したり、扉が突然開口してしまうことがある。勿論冷蔵冷凍庫には庫内外の圧力の均等を図る両方向性の圧力調整弁(吸排気弁)が設けられているが、圧力調整弁では吸収できない突発的な圧力上昇が生ずる。 In addition, in the control setting for delaying the start time of the cooling fan after the end of defrosting and the low speed rotation control for a certain period of time, the time is set in advance so that the cooling tube is not cooled too much. In a refrigerator/refrigerator, depending on the conditions inside (amount of stored items, layout, set temperature, etc.), when the cooling fan starts to operate or the rated rotation is switched, the warm air mass around the cooler spreads into the freezer. The sudden rise in air pressure throughout the interior can damage the joints of the ceiling and wall panels forming a freezer made of metal sandwich panels or the like, or cause the door to suddenly open. Of course, a refrigerator/freezer is provided with a bi-directional pressure control valve (air intake/exhaust valve) for equalizing the pressure inside and outside the refrigerator, but a sudden pressure rise which cannot be absorbed by the pressure control valve occurs.

そこで本発明は、可変速冷却ファンを採用した倉庫型冷凍冷蔵庫において、冷凍サイクル運転停止時以外の常時運転においてもプルダウン運転時や貯蔵庫内への荷物搬入時における庫内温度の変動に対して、また冷却ファンの回転制御によって、冷凍冷蔵運転の全体のエネルギー効率を高めて省エネを図ると共に、突発的に発生する圧力変動にも対応できる新規な構成の倉庫型冷蔵冷却庫を提案したものである。 Therefore, the present invention provides a warehouse-type freezer-refrigerator that employs a variable speed cooling fan. In addition, by controlling the rotation of the cooling fan, the energy efficiency of the entire freezing and refrigerating operation is improved to save energy. .

本発明に係る請求項1記載の倉庫型冷蔵冷蔵庫は、断熱パネルで構築して倉庫形状とした貯蔵庫本体に、インバータ圧縮機を含む庫外冷凍機ユニットと、庫内に設置する可変速モータで駆動する冷却ファン、及び冷却器、及び温度膨張弁又は電子式膨張弁を含む庫内冷却ユニットとを冷媒管路で連結し、冷媒を循環させる冷凍サイクルを組み込み、庫内外及び冷凍サイクルの適宜箇所に設置したセンサーからの各種データに基づいて、インバータ圧縮機及び冷却ファンの停止・回転数制御を含む冷凍サイクルの駆動制御を行う制御部を備えてなる倉庫型冷蔵冷蔵庫において、庫内温度が予め設定した上限温度を越えると冷凍サイクルが作動し、下限温度を越えるとインバータ圧縮機の動作を停止すると共に、冷却ファンを低風量運転とする通常運転制御を行うと共に、前記通常運転の温度範囲以外の冷却ファンの回転駆動を、冷却器の冷却負荷が大きい程低速運転を行う制御手段を備えてなることを特徴とするものである。 The warehouse-type refrigerator/refrigerator according to claim 1 of the present invention comprises a warehouse-shaped storage body constructed with heat-insulating panels, an external refrigerator unit including an inverter compressor, and a variable-speed motor installed inside the warehouse. A cooling fan to be driven, a cooler, and an internal cooling unit including a temperature expansion valve or an electronic expansion valve are connected by refrigerant pipes, and a refrigerating cycle that circulates the refrigerant is built in, and the inside and outside of the refrigerating cycle and appropriate points in the refrigerating cycle Based on various data from the sensor installed in the warehouse-type refrigerator-freezer equipped with a control unit that controls the drive of the refrigeration cycle including the stop and rotation speed control of the inverter compressor and cooling fan, When the set upper limit temperature is exceeded, the refrigeration cycle is activated, and when the lower limit temperature is exceeded, the operation of the inverter compressor is stopped, and normal operation control is performed to operate the cooling fan at a low air volume, and the temperature range is outside the normal operation range. The cooling fan is provided with control means for rotating the cooling fan at a lower speed as the cooling load of the cooler increases.

而して前記冷凍冷蔵庫の冷凍サイクルの運転は、常法とおり庫外冷凍機ユニットの圧縮機、凝縮器ファン及び庫内冷却ユニットの冷却ファンを駆動して、冷却器を通過する冷風によって貯蔵庫本体内を所定の低温に維持して、貯蔵庫本体内の物品の冷却・冷凍保存を実現している。 The refrigerating cycle of the freezer/refrigerator is normally operated by driving the compressor and the condenser fan of the outside refrigerator unit and the cooling fan of the inside cooling unit, and cooling the storage main body by cold air passing through the cooler. By maintaining the interior at a predetermined low temperature, the articles in the storage body are cooled and stored frozen.

貯蔵庫本体の低温維持(通常運転)は、冷却ファンに可変速モータを採用し、設定した上限温度と下限温度内で通常冷却運転を行うもので、上限温度を越えると冷凍サイクルが作動し、下限温度を越えると冷凍サイクルの動作を停止し、特に冷凍サイクル停止時には、冷却ファンを低速回転(定格回転速度の5~7%程度)とし、庫内の温度ムラの生じないように最低風量で冷却運転して、貯蔵庫本体内の温度上昇を抑える省エネ運転を行う。 The low temperature maintenance (normal operation) of the main body of the storage room uses a variable speed motor for the cooling fan and performs normal cooling operation within the set upper and lower temperature limits. When the temperature exceeds the temperature, the refrigeration cycle operation is stopped. Especially when the refrigeration cycle is stopped, the cooling fan rotates at a low speed (about 5 to 7% of the rated rotation speed) and cools with the minimum air flow so as not to cause temperature unevenness inside the refrigerator. Energy-saving operation that suppresses the temperature rise in the main body of the storage by operating.

また例えば上記の通常運転中における収納物の搬入・搬出時における外気(暖気)の庫内侵入による庫内温度上昇時や、プルダウン運転開始時のように庫内温度が通常運転時よりも高温時には、冷却器の冷媒蒸発温度が高くなって冷却器の冷却負荷が大きくなる。具体的にはTD温度(冷却器吸い込み空気温度と蒸発温度の差温)、庫内温度と冷媒蒸発温度の差温、過熱度(冷却器入口配管温度と出口配管温度)、電子膨張弁のMOP(最高圧力)信号、冷凍機(圧縮機)からの運転切替信号等のデータ信号に基づいて、冷却負荷の増大を検知した際に、冷却負荷が大きいほど冷却ファンの回転を低速とするものである。 Also, for example, when the temperature inside the refrigerator rises due to outside air (warm air) entering the refrigerator when carrying in and out of stored items during normal operation, or when the temperature inside the refrigerator is higher than during normal operation, such as when pull-down operation starts. , the refrigerant evaporation temperature of the cooler increases and the cooling load of the cooler increases. Specifically, the TD temperature (the difference between the temperature of the air sucked into the cooler and the evaporation temperature), the difference between the inside temperature and the evaporation temperature of the refrigerant, the degree of superheat (the temperature of the inlet pipe of the cooler and the temperature of the outlet pipe), and the MOP of the electronic expansion valve When an increase in the cooling load is detected based on data signals such as the (maximum pressure) signal and the operation switching signal from the refrigerator (compressor), the rotation of the cooling fan is reduced as the cooling load increases. be.

即ち庫内温度を基準とすると高温域、中温域、低温域に分けて冷却器の冷却負荷を判定し、前記の判定基準に従って順次冷却ファンの回転(風量)を上げて運転する。そうすると高温域や中温域における冷却ファンを高速運転(過負荷運転)又は定格運転(100%駆動)の場合に生ずる着霜の偏りを防止でき、結果的に庫内冷却も速やかになされ、省エネとなる。更にまた急激な庫内圧力変動を招くことなく、貯蔵庫本体を構成する断熱パネルの損傷発生を未然に防止でき、且つ圧力調整弁を少なくできる。 That is, using the internal temperature as a reference, the cooling load of the cooler is determined by dividing into a high temperature range, a medium temperature range, and a low temperature range, and the rotation (air volume) of the cooling fan is increased sequentially according to the above criteria. By doing so, it is possible to prevent uneven frost formation that occurs when the cooling fan is operated at high speed (overload operation) or rated operation (100% drive) in the high or medium temperature range. Become. Furthermore, it is possible to prevent damage to the heat-insulating panels constituting the main body of the storage without causing sudden fluctuations in the internal pressure of the storage, and to reduce the number of pressure regulating valves.

また本発明の請求項2記載に係る倉庫型冷凍冷蔵庫は、特に冷却ファンの回転駆動制御を、冷却器の冷却負荷の判定基準を冷媒の設計蒸発温度に対する庫内平均温度とした場合、冷却器の冷媒の設計蒸発温度に対して庫内平均温度が30℃以上の高温域では10~20%以下の範囲で駆動し、10℃以上では50%以下で駆動し、10℃未満では100%駆動を基準としたものである。倉庫型冷凍冷蔵庫は、容積や形状が個別に相違すると共に冷却器の仕様が相違するので、前記の駆動制御の具体的数値は試運転調整時に設定する。 Further, in the warehouse-type freezer-refrigerator according to claim 2 of the present invention, in particular, when the rotation drive control of the cooling fan is set to the average temperature in the refrigerator with respect to the design evaporation temperature of the refrigerant as the criterion for determining the cooling load of the cooler, the cooler In the high temperature range where the average internal temperature is 30°C or higher, it operates within a range of 10 to 20% or less against the design evaporation temperature of the refrigerant, drives at 50% or less at 10°C or higher, and operates at 100% at less than 10°C. is based on Warehouse-type freezer-refrigerators are individually different in volume and shape, and the specifications of the coolers are also different.

また本発明の請求項3記載に係る倉庫型冷凍冷蔵庫は、特に庫内温度センサーを複数適宜個所に設置すると共に、貯蔵庫に設けた開閉扉に開閉センサーを設置し、扉開閉操作後の冷却ファンの動作基準温度を、開閉扉近傍空間に設置した温度センサーの検知データとしてなるもので、局所的に発生する暖空気塊の急激な冷却による圧力変動を抑えるものである。 Further, the warehouse-type freezer-refrigerator according to claim 3 of the present invention is particularly provided with a plurality of internal temperature sensors installed at appropriate locations, an open/close sensor installed at the open/close door provided in the storage, and a cooling fan after the door opening/closing operation. The operating reference temperature of is used as the detection data of the temperature sensor installed in the space near the opening and closing door, and suppresses the pressure fluctuation due to the rapid cooling of the locally generated warm air mass.

また本発明の請求項4記載に係る倉庫型冷凍冷蔵庫は、特に冷却器にデフロストヒータを設け、設定した一定時間毎並びに冷媒温度・圧力検知に基づいてデフロスト処理を行った後、冷却器の温度低下後の冷却ファンの起動動作を低速運転とし、庫内圧力安定後に所定の回転で動作させる制御を行うもので、デフロスト処理後の冷却器周囲の暖気の急激な拡散を防止して、庫内圧力の急激な変動を防止する。 Further, in the warehouse-type freezer-refrigerator according to claim 4 of the present invention, a defrost heater is particularly provided in the cooler, and after defrosting is performed at predetermined time intervals and based on refrigerant temperature and pressure detection, the temperature of the cooler After the cooling fan starts to operate at a low speed after the pressure drops, it is controlled to operate at a predetermined speed after the internal pressure stabilizes. Prevent sudden fluctuations in pressure.

本発明は上記のとおりで、冷凍冷蔵庫の冷却運転制御に際して、冷凍機の通常の動作制御と共に、冷却ファンも回転速度制御を行って、突発的な圧力変動の発生を軽減し、且つ全体の消費電力を軽減する制御を可能としたものである。 As described above, when controlling the cooling operation of the refrigerator, the present invention controls the normal operation of the refrigerator and also controls the rotation speed of the cooling fan to reduce sudden pressure fluctuations and reduce the overall consumption. This enables control to reduce power consumption.

本発明の実施形態の冷却サイクル構成部材及び各種センサーの配置説明図。FIG. 2 is an explanatory diagram of the arrangement of cooling cycle constituent members and various sensors according to the embodiment of the present invention. 同制御部のブロック説明図。Block explanatory drawing of the same control part.

次に本発明の実施形態について説明する。実施形態に示した冷凍冷蔵庫は、断熱パネルを組み合わせた倉庫型の貯蔵庫本体1と、周知の冷凍サイクルを構成する庫外冷凍機ユニット2、及び庫内に設置する庫内冷却ユニット3、及び庫外冷凍機ユニット2と庫内冷却ユニット3とを連結して冷媒を循環させる冷媒管路4とで構成される。 Next, embodiments of the present invention will be described. The freezer-refrigerator shown in the embodiment includes a warehouse-type storage body 1 combined with heat-insulating panels, an outside refrigerator unit 2 that constitutes a well-known refrigeration cycle, an inside cooling unit 3 installed inside the refrigerator, and a refrigerator. It is composed of a refrigerant pipe line 4 that connects the outside refrigerator unit 2 and the inside cooling unit 3 and circulates the refrigerant.

貯蔵庫本体1は、開閉センサー付きの開閉扉11と、庫内外の圧力調整を行う圧力調整弁12と庫内適宜箇所に配置した複数の庫内温度センサー13a,13b,13c,13d及び庫外温度センサー14を備えてなる。 The storage body 1 includes an opening/closing door 11 with an opening/closing sensor, a pressure control valve 12 for adjusting the pressure inside and outside the storage, a plurality of temperature sensors 13a, 13b, 13c, and 13d disposed at appropriate locations inside the storage, and an outside temperature sensor. A sensor 14 is provided.

庫外冷凍機ユニット2は、圧縮機(周波数変更で回転数を変更できるインバータ圧縮機)と、凝縮器と、凝縮器を冷却するための凝縮器ファンを備え、冷媒管路4の出入部分に、出口液管圧力計21及び入口液管圧力計22を設けてなる。尚前記圧力計は予め組み込まれている場合もある。 The outside refrigerator unit 2 includes a compressor (an inverter compressor whose rotation speed can be changed by changing the frequency), a condenser, and a condenser fan for cooling the condenser. , an outlet liquid tube pressure gauge 21 and an inlet liquid tube pressure gauge 22 are provided. Note that the pressure gauge may be incorporated in advance.

庫内冷却ユニット3は、冷媒管路4に介設する電子膨張弁(特に高精度の動作を求めずに大きな変動が少ない冷凍冷蔵庫の場合は温度式外均膨張弁を採用しても良い)31、冷却器(蒸発器)32、冷却ファン33、冷却ファン33を駆動するファン駆動モータ(インバータ制御付きモータ若しくは可変DCモータ)34、冷却器32の霜取りを行うデフロストヒータ35、更に冷却器32の出入口管路に配置した入口管圧力・温度計36a,37a、出口管圧力・温度計36b,37bを設けてなる。但し圧力計は設置調整後に取り外しても良い。 The internal cooling unit 3 is an electronic expansion valve interposed in the refrigerant pipe 4 (especially in the case of a freezer/refrigerator that does not require high-precision operation and has few large fluctuations, a temperature-type outer equalization expansion valve may be adopted). 31, cooler (evaporator) 32, cooling fan 33, fan drive motor (motor with inverter control or variable DC motor) 34 for driving cooling fan 33, defrost heater 35 for defrosting cooler 32, further cooler 32 Inlet tube pressure/temperature gauges 36a, 37a and outlet tube pressure/thermometers 36b, 37b are provided in the inlet and outlet pipelines. However, the pressure gauge may be removed after installation adjustment.

また前記の各センサーの信号を受けて、各部の動作制御を行う制御部(演算処理部)を備えており、前記制御部には、タイマー、各機器や庫内外の状態を表示する表示手段、前記の各センサーの信号を受け、またタイマーに基づく各駆動機器の動作制御を予めプログラムして格納したメモリ部、所定の動作信号を出力する動作信号出力手段、外部から温度設定等の設定を行う設定入力手段等を備えたもので、庫外の適宜箇所に設置しているものである。 In addition, it is provided with a control unit (arithmetic processing unit) that receives signals from the sensors and controls the operation of each unit. A memory unit that receives signals from the sensors and stores pre-programmed operation control of each driving device based on a timer, an operation signal output means that outputs a predetermined operation signal, and temperature setting, etc., are set from the outside. It is provided with setting input means and the like, and is installed at an appropriate location outside the refrigerator.

而して前記冷凍冷蔵庫の冷凍サイクルの運転は、常法とおり庫外冷凍機ユニット2の圧縮機、凝縮器ファン及び庫内冷却ユニット3の冷却ファン33を駆動し、冷却器32を通過する冷風によって貯蔵庫本体1内を所定の低温に維持して、貯蔵庫本体1内の物品の冷却・冷凍保存を実現しているもので、特にインバータ圧縮機と共に冷却ファン33のファン駆動モータ34にも可変速モータを採用したものである。 The refrigerating cycle of the freezer-refrigerator is operated as usual by driving the compressor and condenser fan of the outside refrigerator unit 2 and the cooling fan 33 of the inside cooling unit 3, and cooling air passing through the cooler 32. maintains the inside of the storage body 1 at a predetermined low temperature to realize cooling and frozen storage of the articles in the storage body 1. It uses a motor.

通常の冷却運転は、庫内温度センサー13で予め設定した上限温度を越えると冷凍サイクルが作動し、下限温度を越えると冷凍サイクルの動作を停止するものであるが、庫内温度センサー13により、冷却設定温度に達したことを感知すると、圧縮機を停止させるが、冷却ファン33は直ちに停止せずに、冷却ファン33のファン駆動モータ34を、低速回転(5~7%回転)とし、庫内の温度ムラの生じないように最低風量での冷却運転するようにして、貯蔵庫本体1内の温度上昇を抑える省エネ運転を行う。 In a normal cooling operation, the refrigerating cycle is activated when the upper temperature limit preset by the internal temperature sensor 13 is exceeded, and the operation of the refrigerating cycle is stopped when the lower limit temperature is exceeded. When it senses that the cooling set temperature has been reached, the compressor is stopped, but the cooling fan 33 is not stopped immediately, but the fan drive motor 34 of the cooling fan 33 is rotated at a low speed (5 to 7% rotation), and the refrigerator is closed. An energy-saving operation for suppressing temperature rise in the storage body 1 is performed by performing a cooling operation with a minimum air volume so as not to cause temperature unevenness inside.

本発明は、特に前記した通常冷却運転に至る前の庫内冷却運転を、庫内温度(複数の温度センサー13a,13b,13c,13dの平均値)に対応して冷却ファンの回転数を制御するもので、基本的には高温域(例えば冷媒の設計蒸発温度に対して+30℃以上)では20%以下の回転数で駆動し、中温域(同+10℃以上)では50%以下、低温域(+10℃未満)では100%のようにし、庫内温度が予定庫内温度に達していない場合に、通常冷却運転に至るまでの間、冷却ファン33の回転数制御を行うものである。勿論前記の冷却ファンの回転数設定は基準であり、設置時の試運転で微調整を行う。尚前記の庫内温度平均値に替えて、TD温度(冷却器吸い込み空気温度と蒸発温度の差温)、過熱度(冷却器入口配管温度と出口配管温度)を基にして冷却器負荷を判定しても良い。 In particular, the present invention controls the rotation speed of the cooling fan in response to the inside temperature (average value of a plurality of temperature sensors 13a, 13b, 13c, 13d) in the inside cooling operation before reaching the normal cooling operation. Basically, it is driven at 20% or less in the high temperature range (e.g. +30°C or higher than the design evaporation temperature of the refrigerant), 50% or less in the medium temperature range (+10°C or higher), and in the low temperature range. (less than +10° C.) is set to 100%, and if the inside temperature does not reach the expected inside temperature, the rotation speed of the cooling fan 33 is controlled until the normal cooling operation. Of course, the setting of the rotation speed of the cooling fan is a standard, and fine adjustments are made during a test run at the time of installation. Instead of the above-mentioned average internal temperature value, the cooler load is determined based on the TD temperature (difference between cooler intake air temperature and evaporation temperature) and degree of superheat (cooler inlet pipe temperature and outlet pipe temperature). You can

庫内温度が予定庫内温度よりの高いときは、冷却ファン33をフル稼働させて、速やかに庫内温度を下げようとすると、冷媒の過熱度が大きくなり、圧縮機に過負荷運転を強いることになり、しかも着霜に偏りが生じてしまうが、冷却ファン33の回転数を下げたとしても、偏った着霜のデフロストインターバルを含め、冷却器32の熱交換面積を有効に使うことになり、庫内暖空気は効率的に冷却され、庫内冷却のエネルギー効率を考慮すると、低速回転の方が優れていることになる。 When the internal temperature is higher than the expected internal temperature, if the cooling fan 33 is operated at full capacity to lower the internal temperature quickly, the degree of superheating of the refrigerant increases, forcing the compressor to operate under an overload condition. In addition, even if the rotation speed of the cooling fan 33 is lowered, the heat exchange area of the cooler 32 including the defrost interval for uneven frost formation can be effectively used. As a result, the warm air inside the refrigerator is cooled efficiently, and considering the energy efficiency of cooling inside the refrigerator, the low-speed rotation is superior.

例えば貯蔵庫本体1内に収納物の搬入・搬出に際して、庫内温度が上昇するが、前記の庫内温度上昇に対して一気にフル稼働冷却を行うことなく、低速冷却運転を行い、徐々にフル運転に移行させる。この結果庫内暖気の急速冷却化による庫内圧力の急激変動を抑えることになり、貯蔵庫本体1の断熱パネルの損傷発生を未然に防ぐことになる。 For example, when the stored items are carried into and out of the storage main body 1, the temperature inside the storage chamber rises. move to As a result, sudden fluctuations in the internal pressure due to rapid cooling of the warm air inside the container can be suppressed, and damage to the heat insulating panel of the main body 1 of the container can be prevented.

特に開閉センサーで開閉扉11の開閉を感知した際に、冷却ファン33の運転制御に際しての制御基準となる庫内温度を、開閉扉11に近い位置に配置した温度センサー13a,13bの検知温度を採用すると、開閉扉近傍空間の暖空気に対して急速冷却による急激な圧力変化を抑えることができる。 In particular, when the opening/closing sensor senses the opening/closing of the opening/closing door 11, the internal temperature, which is the control reference for controlling the operation of the cooling fan 33, is used as the temperature detected by the temperature sensors 13a and 13b located near the opening/closing door 11. When adopted, it is possible to suppress rapid pressure changes due to rapid cooling of the warm air in the space near the opening/closing door.

また同様にプルダウン(外気温と同等の庫内温度から指定庫内温度まで冷却する運転状況)時においても、庫内温度に対応して冷却ファン33の回転数制御を行うもので、高温域から低温域まで徐々に回転数を上げて運転することになり、圧縮機及びファン駆動モータ34の連続的な過負荷運転を防止し、冷却ファン33の風量を減速するなどして、庫内における冷気団の発生による急激な庫内圧力低下のような圧力変動を減少させる。 Similarly, during pull-down (operating conditions where the inside temperature is equivalent to the outside temperature to the specified inside temperature), the number of revolutions of the cooling fan 33 is controlled according to the inside temperature. The rotation speed is gradually increased to the low temperature range to prevent continuous overload operation of the compressor and the fan drive motor 34, and the air volume of the cooling fan 33 is reduced to reduce the cold air in the refrigerator. Reduces pressure fluctuations such as sudden pressure drop in the chamber due to the occurrence of flocculation.

特に一般的には高温時のプルダウン運転時は、膨張弁のMOP機能及び吸入圧力調整弁を働かせるが、冷却器の冷媒圧力の低下によって過熱度が30℃以上となって、冷却コイルの着霜が偏り、デフロストが必要になる等、必ずしも高速運転(高速冷却)がプルダウン時間(通常運転までの時間)を短くはしない。本発明を採用することで、過熱度の極端な上昇を抑えられ、冷却器32に対する霜の付着が偏らず、霜取りに要するエネルギーを低減でき、結果的にプルダウン時間を短くすることができる。 In particular, during pull-down operation at high temperatures, the MOP function of the expansion valve and the suction pressure control valve are activated, but due to the decrease in refrigerant pressure in the cooler, the degree of superheat becomes 30°C or more, and the cooling coil frosts. high-speed operation (high-speed cooling) does not necessarily shorten the pull-down time (time until normal operation). By adopting the present invention, an extreme rise in the degree of superheat can be suppressed, frost adheres to the cooler 32 evenly, the energy required for defrosting can be reduced, and as a result the pull-down time can be shortened.

このように冷却ファン33の適宜な低速運転制御を行うことで、貯蔵庫本体1内の急激な陽圧陰圧変化を軽減し、夜間陽圧により扉が開いてしまう事を無くし、また圧力調整弁(吸排気弁)12の設置数量の削減が可能となり、設備にかかるコスト低減を助長すると共に、電子膨張弁(或いは温度膨張弁)の冷媒制御ではカバーできない部分を、冷却ファンの風量制御による熱交換の効率化で補い、全体として省エネとなるバランスの良い運転としたものである。 By appropriately controlling the low-speed operation of the cooling fan 33 in this way, a sudden change in the positive pressure and negative pressure in the storage body 1 can be reduced, the door will not be opened due to the positive pressure at night, and the pressure regulating valve It is possible to reduce the number of intake and exhaust valves 12 installed, which helps reduce the cost of equipment, and the part that cannot be covered by the refrigerant control of the electronic expansion valve (or the temperature expansion valve) can be handled by the air volume control of the cooling fan. It is a well-balanced operation that compensates for the efficiency of replacement and saves energy as a whole.

また冷却器32には霜が付着するので定期的(一定時間毎)にデフロスト処理(デフロストヒータへの通電)を行うものである他、冷媒管の出入口管圧力・温度計36a,37a,36b,37bの圧力・温度の検知信号に基づいて、圧力低下及び冷媒配管温度差が1℃以下となり一定時間改善されない場合に、着霜過多と判定し、強制的にデフロスト処理を行い、圧縮機の過負荷運転を抑止する。 In addition, since frost adheres to the cooler 32, defrost processing (energization of the defrost heater) is performed periodically (every fixed time). Based on the pressure and temperature detection signal of 37b, if the pressure drop and the refrigerant pipe temperature difference become 1 ° C or less and do not improve for a certain period of time, it is determined that excessive frosting is occurring, defrosting is performed forcibly, and the compressor is overheated. Suppress load operation.

前記のデフロスト処理後の冷却ファン33の駆動を、従前装置のようにヒータ加熱を終了して冷媒を通した所定時間後に一気にフル回転させることなく、冷却チューブ(冷却器32)がある程度冷えた後に、低速回転で起動し、適宜時間経過に合わせて回転速度を上げることで、デフロストヒータ35によって高温となった冷却器32の周囲の暖気塊をゆっくりと冷凍庫内に拡散させ、冷凍庫内全体の急激な気圧上昇を抑え、気圧上昇は吸排気弁12で対応させることで、壁パネルや開閉扉に異常な負荷が加わることが無いようにしているものである。 After the cooling tube (cooler 32) has cooled to a certain extent, the cooling fan 33 after the defrost process is not driven to full rotation at once after a predetermined time after finishing the heating of the heater and passing the coolant as in the conventional device. , start at low speed rotation, and increase the rotation speed appropriately according to the passage of time, so that the warm air mass around the cooler 32 heated by the defrost heater 35 is slowly diffused into the freezer, and the entire inside of the freezer is rapidly An abnormal pressure rise is suppressed, and the pressure rise is dealt with by the intake/exhaust valve 12, so that an abnormal load is not applied to the wall panel or the opening/closing door.

以上の通りインバータ冷凍機の最適制御に加え、冷却ファンの駆動も回転数制御を可能として、冷凍能力が広範囲に調整する運転に対応できると共に、運転の高効率化、使用電力軽減が実現できたものである。尚当然のことであるが、冷凍機及び膨張弁(特に電子膨張弁)の機能と重複しないよう制御方法の優先順序を考慮した制御手段を採用することが必要である。 As described above, in addition to the optimal control of the inverter refrigerator, it is possible to control the number of rotations of the cooling fan drive, making it possible to respond to operations in which the refrigeration capacity is adjusted over a wide range. It is. As a matter of course, it is necessary to adopt a control means that considers the order of priority of control methods so as not to duplicate the functions of the refrigerator and the expansion valve (particularly, the electronic expansion valve).

1 貯蔵庫本体
11 開閉扉
12 圧力調整弁(吸排気弁)
13a,13b,13c,13d 庫内温度センサー
14 庫外温度センサー
2 庫外冷凍機ユニット
21 出口液管圧力計
22 入口液管圧力計
3 庫内冷却ユニット
31 電子膨張弁
32 冷却器(蒸発器)
33 冷却ファン
34 ファン駆動モータ
35 デフロストヒータ
36a,36b 入口・出口管の圧力計
37a,37b 入口・出口管の温度計
4 冷媒管路
41 電磁開閉弁
1 storage body 11 open/close door 12 pressure control valve (intake and exhaust valve)
13a, 13b, 13c, 13d inside temperature sensor 14 outside temperature sensor 2 outside refrigerator unit 21 outlet liquid tube pressure gauge 22 inlet liquid tube pressure gauge 3 inside cooling unit 31 electronic expansion valve 32 cooler (evaporator)
33 cooling fan 34 fan drive motor 35 defrost heaters 36a, 36b inlet/outlet pipe pressure gauges 37a, 37b inlet/outlet pipe thermometers 4 refrigerant pipe 41 electromagnetic on-off valve

Claims (4)

断熱パネルで構築して倉庫形状とした貯蔵庫本体に、インバータ圧縮機を含む庫外冷凍機ユニットと、庫内に設置する可変速モータで駆動する冷却ファン、及び冷却器、及び温度膨張弁又は電子式膨張弁を含む庫内冷却ユニットとを冷媒管路で連結し、冷媒を循環させる冷凍サイクルを組み込み、庫内外及び冷凍サイクルの適宜箇所に設置したセンサーからの各種データに基づいて、インバータ圧縮機及び冷却ファンの停止・回転数制御を含む冷凍サイクルの駆動制御を行う制御部を備えてなる倉庫型冷蔵冷蔵庫において、
庫内温度が予め設定した上限温度を越えると冷凍サイクルが作動し、下限温度を越えるとインバータ圧縮機の動作を停止すると共に、冷却ファンを低風量運転とする通常運転制御を行うと共に、前記通常運転の温度範囲以外の冷却ファンの回転駆動を、冷却器の冷却負荷が大きい程低速運転を行う制御手段を備えてなることを特徴とする倉庫型冷凍冷蔵庫。
The main body of the warehouse, which is constructed with heat-insulating panels and has the shape of a warehouse, is equipped with an external refrigerator unit including an inverter compressor, a cooling fan and cooler installed inside the warehouse and driven by a variable speed motor, and a temperature expansion valve or an electronic A refrigerating cycle that circulates the refrigerant is connected to the internal cooling unit including the type expansion valve by a refrigerant pipe. and a warehouse-type refrigerator-refrigerator comprising a control unit that controls the driving of the refrigeration cycle, including stopping and controlling the rotation speed of the cooling fan,
When the internal temperature exceeds a preset upper limit temperature, the refrigerating cycle is activated. A warehouse-type freezer-refrigerator comprising control means for rotating the cooling fan outside the operating temperature range at a lower speed as the cooling load of the cooler increases.
請求項1記載の倉庫型冷凍冷蔵庫において、
冷却ファンの回転駆動制御を、冷却器の冷却負荷の判定基準を冷媒の設計蒸発温度に対する庫内平均温度とした場合、庫内平均温度が30℃以上の高温域では10~20%以下の範囲で駆動し、10℃以上では50%以下で駆動し、10℃未満では100%駆動を基準としてなる倉庫型冷凍冷蔵庫。
In the warehouse-type refrigerator-freezer according to claim 1,
When the cooling load of the cooler is determined based on the average temperature inside the refrigerator against the design evaporation temperature of the refrigerant, the rotation drive control of the cooling fan is in the range of 10 to 20% or less in the high temperature range where the average temperature inside the refrigerator is 30 ° C or higher. A warehouse-type freezer-refrigerator driven at 10°C or higher, driven at 50% or less at 10°C or higher, and driven at 100% at lower than 10°C.
庫内温度センサーを複数適宜個所に設置すると共に、貯蔵庫に設けた開閉扉に開閉センサーを設置し、扉開閉操作後の冷却ファンの動作制御基準を、開閉扉近傍空間に設置した温度センサーの検知データとしてなる請求項2記載の倉庫型冷凍冷蔵庫。 In addition to installing multiple internal temperature sensors at suitable locations, an open/close sensor is installed on the opening/closing door provided in the storage room, and the temperature sensor installed in the space near the opening/closing door detects the operation control standard of the cooling fan after opening/closing the door. 3. The warehouse-type freezer-refrigerator according to claim 2, which serves as data. 冷却器にデフロストヒータを設け、設定した一定時間毎並びに冷媒温度・圧力検知に基づいてデフロスト処理を行った後、冷却器の温度低下後の冷却ファンの起動動作を低速運転とし、庫内圧力安定後に所定の回転で動作させる制御を行う請求項1乃至3記載の何れかの倉庫型冷蔵冷凍庫。 A defrost heater is installed in the cooler, and after defrosting is performed at regular intervals and based on the refrigerant temperature and pressure detection, the cooling fan is started at a low speed after the cooler temperature drops, and the internal pressure is stabilized. 4. The warehouse-type refrigerator/freezer according to any one of claims 1 to 3, wherein control is performed to operate at a predetermined rotation later.
JP2022022244A 2021-02-18 2022-02-16 Warehouse type refrigerator freezer Pending JP2022126605A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021024188 2021-02-18
JP2021024188 2021-02-18

Publications (1)

Publication Number Publication Date
JP2022126605A true JP2022126605A (en) 2022-08-30

Family

ID=83058938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022022244A Pending JP2022126605A (en) 2021-02-18 2022-02-16 Warehouse type refrigerator freezer

Country Status (1)

Country Link
JP (1) JP2022126605A (en)

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5787292U (en) * 1980-11-17 1982-05-29
JPS5840476A (en) * 1981-09-04 1983-03-09 松下冷機株式会社 Control circuit for fan motor of refrigerator
JPS613972A (en) * 1984-06-18 1986-01-09 松下冷機株式会社 Controller for operation of blower for agitating cold air inrefrigerator
JPS6475877A (en) * 1987-09-16 1989-03-22 Daikin Ind Ltd Refrigerator
JPH06174360A (en) * 1992-09-30 1994-06-24 Sanyo Electric Co Ltd Freezer
JPH0763460A (en) * 1993-08-26 1995-03-10 Matsushita Refrig Co Ltd Freezing refrrigerator
JPH0875345A (en) * 1994-08-31 1996-03-19 Sanyo Electric Co Ltd Assembling type cooling refrigerator
JPH09166377A (en) * 1995-10-12 1997-06-24 Hoshizaki Electric Co Ltd Low temperature storage
JP2002071255A (en) * 2000-08-24 2002-03-08 Toshiba Corp Refrigerator and its controlling method
JP2002081713A (en) * 2000-09-04 2002-03-22 Sanyo Electric Co Ltd Control device of refrigerating device
JP2002195668A (en) * 2000-12-25 2002-07-10 Matsushita Refrig Co Ltd Refrigerator
JP2003050071A (en) * 2001-08-03 2003-02-21 Hoshizaki Electric Co Ltd Operation controller for cooling device
JP2005172304A (en) * 2003-12-09 2005-06-30 Matsushita Electric Ind Co Ltd Freezing/refrigerating unit and refrigerator
JP2007225158A (en) * 2006-02-21 2007-09-06 Mitsubishi Electric Corp Defrosting operation control device and method
JP2007309585A (en) * 2006-05-18 2007-11-29 Daikin Ind Ltd Refrigerating device
JP2008082620A (en) * 2006-09-27 2008-04-10 Sanyo Electric Co Ltd Cooling device
JP2009014313A (en) * 2007-07-09 2009-01-22 Daiwa Industries Ltd Refrigerator
WO2016135812A1 (en) * 2015-02-23 2016-09-01 三菱電機株式会社 Refrigerator
JP2018136037A (en) * 2017-02-20 2018-08-30 ホシザキ株式会社 Knockdown prefabricated cooling storage
JP2019219101A (en) * 2018-06-19 2019-12-26 福島工業株式会社 Cooling storage
JP2020012600A (en) * 2018-07-19 2020-01-23 ホシザキ株式会社 Cooling storage

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5787292U (en) * 1980-11-17 1982-05-29
JPS5840476A (en) * 1981-09-04 1983-03-09 松下冷機株式会社 Control circuit for fan motor of refrigerator
JPS613972A (en) * 1984-06-18 1986-01-09 松下冷機株式会社 Controller for operation of blower for agitating cold air inrefrigerator
JPS6475877A (en) * 1987-09-16 1989-03-22 Daikin Ind Ltd Refrigerator
JPH06174360A (en) * 1992-09-30 1994-06-24 Sanyo Electric Co Ltd Freezer
JPH0763460A (en) * 1993-08-26 1995-03-10 Matsushita Refrig Co Ltd Freezing refrrigerator
JPH0875345A (en) * 1994-08-31 1996-03-19 Sanyo Electric Co Ltd Assembling type cooling refrigerator
JPH09166377A (en) * 1995-10-12 1997-06-24 Hoshizaki Electric Co Ltd Low temperature storage
JP2002071255A (en) * 2000-08-24 2002-03-08 Toshiba Corp Refrigerator and its controlling method
JP2002081713A (en) * 2000-09-04 2002-03-22 Sanyo Electric Co Ltd Control device of refrigerating device
JP2002195668A (en) * 2000-12-25 2002-07-10 Matsushita Refrig Co Ltd Refrigerator
JP2003050071A (en) * 2001-08-03 2003-02-21 Hoshizaki Electric Co Ltd Operation controller for cooling device
JP2005172304A (en) * 2003-12-09 2005-06-30 Matsushita Electric Ind Co Ltd Freezing/refrigerating unit and refrigerator
JP2007225158A (en) * 2006-02-21 2007-09-06 Mitsubishi Electric Corp Defrosting operation control device and method
JP2007309585A (en) * 2006-05-18 2007-11-29 Daikin Ind Ltd Refrigerating device
JP2008082620A (en) * 2006-09-27 2008-04-10 Sanyo Electric Co Ltd Cooling device
JP2009014313A (en) * 2007-07-09 2009-01-22 Daiwa Industries Ltd Refrigerator
WO2016135812A1 (en) * 2015-02-23 2016-09-01 三菱電機株式会社 Refrigerator
JP2018136037A (en) * 2017-02-20 2018-08-30 ホシザキ株式会社 Knockdown prefabricated cooling storage
JP2019219101A (en) * 2018-06-19 2019-12-26 福島工業株式会社 Cooling storage
JP2020012600A (en) * 2018-07-19 2020-01-23 ホシザキ株式会社 Cooling storage

Similar Documents

Publication Publication Date Title
JP4954484B2 (en) Cooling storage
JP4289427B2 (en) Refrigeration equipment
JP3538021B2 (en) Refrigerator cooling operation control device
JP5826317B2 (en) refrigerator
KR101620430B1 (en) Refrigerator and control method of the same
US11371768B2 (en) Refrigerator and method for controlling the same
US11226145B2 (en) Refrigerator and method for controlling a compressor based on temperature of storage compartment
CN112283880A (en) Control system and control method for preventing air conditioner from freezing
WO2019058450A1 (en) Refrigerator
JP2009014313A (en) Refrigerator
KR102617277B1 (en) Refrigerator and method for controlling the same
JP5055180B2 (en) Cooling storage
JP2022126605A (en) Warehouse type refrigerator freezer
JP5722160B2 (en) Cooling storage
KR101708933B1 (en) Refrigerant circulation system for Refrigerating apparatus
JP2023125463A (en) refrigerator
KR100400470B1 (en) Fan Control Method of Air Conditioner
KR100370092B1 (en) control method for cooling system in the refrigerator
JPH11201621A (en) Refrigerator
JP4286106B2 (en) Freezer refrigerator
KR100390436B1 (en) defrosting method in the refrigerator using fan
JPH0989435A (en) Refrigerator
JP2017187246A (en) refrigerator
KR100207086B1 (en) Refrigerator defrost operating control method
JP2016011830A (en) refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230704