JPH0647953B2 - Gas turbine output leveling method - Google Patents

Gas turbine output leveling method

Info

Publication number
JPH0647953B2
JPH0647953B2 JP5494390A JP5494390A JPH0647953B2 JP H0647953 B2 JPH0647953 B2 JP H0647953B2 JP 5494390 A JP5494390 A JP 5494390A JP 5494390 A JP5494390 A JP 5494390A JP H0647953 B2 JPH0647953 B2 JP H0647953B2
Authority
JP
Japan
Prior art keywords
gas turbine
temperature
output
intercooler
leveling method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5494390A
Other languages
Japanese (ja)
Other versions
JPH03258926A (en
Inventor
鈴木  剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP5494390A priority Critical patent/JPH0647953B2/en
Publication of JPH03258926A publication Critical patent/JPH03258926A/en
Publication of JPH0647953B2 publication Critical patent/JPH0647953B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガスタービンの中間冷却器からの廃熱の一部
を利用して、気温上昇時におけるガスタービンの出力低
下を防止するガスタービン出力平準化方法に関するもの
である。
TECHNICAL FIELD The present invention utilizes a part of waste heat from an intercooler of a gas turbine to prevent the output of the gas turbine from decreasing when the temperature rises. The present invention relates to an output leveling method.

〔従来の技術〕[Conventional technology]

従来のガスタービンは大気温度変化により出力の変化が
著しいという問題があった。
The conventional gas turbine has a problem that the output changes remarkably due to changes in atmospheric temperature.

すなわち、大気温度の低い冬場では空気密度が高いの
で、ガスタービン出力が充分でるのに対し、大気温度の
高い夏場ではその出力が低下することになる。
That is, since the air density is high in the winter when the atmospheric temperature is low, the output of the gas turbine is sufficient, whereas the output decreases in the summer when the atmospheric temperature is high.

そこで、従来はガスタービンの排気ガスの熱を利用した
廃熱ボイラで発生した蒸気により作動させた二重効用の
吸収式冷凍機によってガスタービンの吸込空気温度を調
節する方法が採用されているが、この場合、設備費が高
価であると共に、吸気温度調節に必要なエネルギー(冷
熱)を得るためには熱容量が充分過ぎるという問題があ
った。
Therefore, conventionally, a method has been adopted in which the suction air temperature of the gas turbine is adjusted by a double-effect absorption refrigerator that is operated by steam generated in a waste heat boiler that uses the heat of the exhaust gas of the gas turbine. In this case, there is a problem that the equipment cost is high and the heat capacity is too large to obtain the energy (cold heat) necessary for adjusting the intake air temperature.

一方、タービンに直結した低圧圧縮機と高圧圧縮機との
間に中間冷却器を有する中間冷却器付のガスタービンで
は、その中間冷却器で熱交換したエネルギーが温水とし
て捨てられていた。この点に着目した本発明者等は種々
検討を加えた結果、この捨てられていた温水を熱源とし
てガスタービンの吸込空気を冷却すれば、安価な設備で
夏場における気温上昇に伴う出力低下を防止できること
が判明し、本発明に到達した。
On the other hand, in a gas turbine with an intercooler having an intercooler between a low-pressure compressor directly connected to the turbine and a high-pressure compressor, the energy exchanged by the intercooler is discarded as hot water. As a result of various studies conducted by the inventors of the present invention focused on this point, if the suction air of the gas turbine is cooled by using the discarded hot water as a heat source, the output reduction due to the temperature rise in the summer can be prevented with inexpensive equipment. It turned out that it was possible, and reached the present invention.

〔発明の解決しようとする課題〕[Problems to be Solved by the Invention]

本発明は中間冷却器付のガスタービンを大幅に改造する
ことなく、安価な設備で大気温度変化によるガスタービ
ン出力低下を防止できるガスタービン出力平準化方法を
提供することを課題としたものである。
An object of the present invention is to provide a gas turbine output leveling method capable of preventing a decrease in gas turbine output due to a change in atmospheric temperature with inexpensive equipment without significantly modifying a gas turbine with an intercooler. .

〔課題を解決するための手段〕[Means for Solving the Problems]

上記の課題を解決するための手段として、本発明のガス
タービン出力平準化方法は、ガスタービンの中間冷却器
の廃熱の一部により該廃熱を熱源とする吸収冷凍機を駆
動し、該吸収冷凍機で発生した冷熱によりガスタービン
の吸込空気を冷却し、気温上昇に伴うガスタービンの出
力低下を防止するようにしたものである。
As a means for solving the above-mentioned problems, the gas turbine output leveling method of the present invention drives an absorption refrigerator that uses the waste heat as a heat source by a part of the waste heat of the intercooler of the gas turbine, The intake air of the gas turbine is cooled by the cold heat generated in the absorption refrigerator, so that the output reduction of the gas turbine due to the temperature rise is prevented.

〔実施例〕〔Example〕

以下、図面を参照して本発明の実施例について説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の方法を適用したコージェネシステムの
系統図であり、燃料Fと圧縮機6から供給される圧縮空
気を燃焼器1で混合して燃焼させ、その燃焼ガスで発電
機4を直結したタービン2を駆動するガスタービン3
と、そのタービン2の排気ガスEの排熱を利用して蒸気
Sを発生する廃熱ボイラ5とを有している。
FIG. 1 is a system diagram of a cogeneration system to which the method of the present invention is applied. Fuel F and compressed air supplied from a compressor 6 are mixed in a combustor 1 and burned, and the combustion gas is used to drive a generator 4 Gas turbine 3 for driving turbine 2 directly connected
And a waste heat boiler 5 that generates steam S by utilizing the exhaust heat of the exhaust gas E of the turbine 2.

このタービン2には圧縮機6が直結されており、吸気フ
ィルタ7を通過した吸込空気Aは、熱交換器8によって
冷却されたあと、低圧側の圧縮機6Aによって圧縮され
る。圧縮された吸込空気A′は、中間冷却器9の高温部
9A及び低温部9Bで冷却された後、高圧側の圧縮機6
Bによって、さらに加圧A″されて燃焼器1へ導入され
る。
A compressor 6 is directly connected to the turbine 2, and the suction air A passing through the intake filter 7 is cooled by the heat exchanger 8 and then compressed by the low pressure side compressor 6A. The compressed intake air A ′ is cooled by the high temperature part 9A and the low temperature part 9B of the intercooler 9, and then the high pressure side compressor 6
B is further pressurized A ″ and introduced into the combustor 1.

上記の中間冷却器9の低温部9Bは冷却水Wで冷却され
るが、高温部9Aで吸込空気Aを冷却して得られた廃熱
は、温水循環ポンプ11を介して一重効用の吸収冷凍機
12の熱源となる。さらに、この吸収冷凍機12で冷却
された冷水は、冷水ポンプ13で吸込空気Aの熱交換器
8に送られ、吸込空気Aを冷却する。
The low temperature part 9B of the intercooler 9 is cooled by the cooling water W, but the waste heat obtained by cooling the intake air A by the high temperature part 9A is absorbed by the single-effect absorption refrigeration via the hot water circulation pump 11. It becomes the heat source of the machine 12. Further, the cold water cooled by the absorption refrigerator 12 is sent to the heat exchanger 8 for the suction air A by the cold water pump 13 to cool the suction air A.

すなわち、低圧側の圧縮機6Aから吐出された吸込空気
A′は、中間冷却器9で冷却水W等で冷却されるが、そ
の一部は高温部9Aで温水循環ポンプ11を介して吸収
冷凍機12の熱源となり、低圧側の圧縮機6Aの圧縮空
気A′を冷却する。さらに高温部9Bで所定温度に冷却
された圧縮空気A′は、高圧側の圧縮機6Bの吸込空気
として吸込まれ加圧され、そこから吐出した空気が燃焼
器1へ供給されて、燃料Fと共に高温の燃焼ガスとなり
タービン3へ導びかれ、発電機4により発電される。
That is, the suction air A ′ discharged from the low pressure side compressor 6A is cooled by the cooling water W or the like in the intercooler 9, but a part of the suction air A ′ is absorbed and refrigerated in the high temperature portion 9A via the hot water circulation pump 11. It becomes a heat source of the machine 12 and cools the compressed air A ′ of the low pressure side compressor 6A. Further, the compressed air A'cooled to a predetermined temperature in the high temperature portion 9B is sucked and pressurized as suction air of the high-pressure side compressor 6B, and the air discharged from the compressed air A'is supplied to the combustor 1 to be supplied with the fuel F. It becomes high-temperature combustion gas, is guided to the turbine 3, and is generated by the generator 4.

次に、第2図は気温変化に対応した上記ガスタービン3
の出力変化を示しており、通常、ガスタービン3の出力
の基準点の基準温度15℃における出力Noに対し、気
温が上昇することにより、従来、線図Nxのごとく右下
がりとなり、一方気温が下がる場合は左上がりに出力は
上昇し、発電機4の制限値の出力Nまで上昇が可能であ
った。
Next, FIG. 2 shows the gas turbine 3 corresponding to the temperature change.
The output change of the gas turbine 3 is shown in FIG. 1. Normally, the temperature rises with respect to the output No at the reference temperature of 15 ° C. at the reference point of the output of the gas turbine 3, so that the temperature conventionally decreases to the right as shown in the diagram Nx, while When it decreased, the output increased to the left, and it was possible to increase to the output N which is the limit value of the generator 4.

そこで、本発明では基準温度15℃以上の時に、吸込空
気Aを冷却することにより、一点鎖線Ncで示す出力特
性を維持することが可能になる。
Therefore, in the present invention, by cooling the intake air A when the reference temperature is 15 ° C. or higher, it becomes possible to maintain the output characteristics shown by the alternate long and short dash line Nc.

〔発明の効果〕〔The invention's effect〕

以上に説明したごとく、本発明のガスタービンの出力平
準化方法によれば、ガスタービンの出力特性が気温の変
化により変わることを防止でき、信頼度の高いコージェ
ネシステムを提供できるという利点がある。
As described above, according to the gas turbine output leveling method of the present invention, there is an advantage that the output characteristics of the gas turbine can be prevented from changing due to changes in temperature, and a highly reliable cogeneration system can be provided.

また、本発明では吸込空気の冷却用の従来温水として捨
てられていた中間冷却器での冷却廃熱を有効に利用でき
るので、系全体の熱効率を高めうるという利点がある。
Further, in the present invention, the waste heat of cooling in the intercooler, which was conventionally discarded as hot water for cooling the intake air, can be effectively used, so that there is an advantage that the thermal efficiency of the entire system can be increased.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の方法を適用したコージェネシステムの
系統図、第2図は第1図のガスタービンの出力と外気の
温度との関係を示す線図である。 3……ガスタービン、6A……低圧側の圧縮機、8……
熱交換器、9……中間冷却器、12……吸収冷凍機、A
……吸込空気。
FIG. 1 is a system diagram of a cogeneration system to which the method of the present invention is applied, and FIG. 2 is a diagram showing the relationship between the output of the gas turbine of FIG. 1 and the temperature of the outside air. 3 ... Gas turbine, 6A ... Low pressure side compressor, 8 ...
Heat exchanger, 9 ... Intercooler, 12 ... Absorption refrigerator, A
…… Inhaled air.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ガスタービンの中間冷却器の廃熱の一部に
より該廃熱を熱源とする吸収冷凍機を駆動し、該吸収冷
凍機で発生した冷熱によりガスタービンの吸込空気を冷
却し、気温上昇に伴うガスタービンの出力低下を防止す
るようにしたガスタービン出力平準化方法。
1. An absorption refrigerating machine using the waste heat as a heat source is driven by a part of the waste heat of an intercooler of the gas turbine, and the suction air of the gas turbine is cooled by the cold heat generated in the absorption refrigerating machine. A gas turbine output leveling method for preventing a decrease in gas turbine output due to an increase in temperature.
JP5494390A 1990-03-08 1990-03-08 Gas turbine output leveling method Expired - Lifetime JPH0647953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5494390A JPH0647953B2 (en) 1990-03-08 1990-03-08 Gas turbine output leveling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5494390A JPH0647953B2 (en) 1990-03-08 1990-03-08 Gas turbine output leveling method

Publications (2)

Publication Number Publication Date
JPH03258926A JPH03258926A (en) 1991-11-19
JPH0647953B2 true JPH0647953B2 (en) 1994-06-22

Family

ID=12984730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5494390A Expired - Lifetime JPH0647953B2 (en) 1990-03-08 1990-03-08 Gas turbine output leveling method

Country Status (1)

Country Link
JP (1) JPH0647953B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5353585A (en) * 1992-03-03 1994-10-11 Michael Munk Controlled fog injection for internal combustion system
US5326254A (en) * 1993-02-26 1994-07-05 Michael Munk Fog conditioned flue gas recirculation for burner-containing apparatus
US7254950B2 (en) * 2005-02-11 2007-08-14 General Electric Company Methods and apparatus for operating gas turbine engines
US7716930B2 (en) * 2007-01-29 2010-05-18 General Electric Company Integrated plant cooling system

Also Published As

Publication number Publication date
JPH03258926A (en) 1991-11-19

Similar Documents

Publication Publication Date Title
US6745574B1 (en) Microturbine direct fired absorption chiller
JP2001099520A (en) Hybrid absorbing type electrical power and cold heat or hot heat supplying device
KR19990044175A (en) Method and apparatus for intake cooling of gas turbine and internal combustion engine starter
JPH08144850A (en) Exhaust heat recovery system
JPH0647953B2 (en) Gas turbine output leveling method
JPH0926226A (en) Refrigeration apparatus
US4445639A (en) Heat pump systems for residential use
KR20040061773A (en) Three generation energy system for controlling among cooling/heating and electric power generation
JP2002081791A (en) Exhaust heat absorption refrigerating machine
JPH07305606A (en) Exhaust heat recovery system
JP3773225B2 (en) Waste heat recovery device for internal combustion engine
JP4408560B2 (en) Power recovery system
US4444018A (en) Heat pump systems for residential use
JPH0416613B2 (en)
US4444021A (en) Heat pump systems for residential use
JP4005884B2 (en) Ammonia absorption refrigerator
JP3176755B2 (en) Gas turbine equipment
JPS5879618A (en) Intake air cooler of internal-combustion engine
JPH0278736A (en) Gas turbine equipment
CN1222639A (en) Combined air conditioning system
JP2003336929A (en) Absorbing and compression type refrigerator and method of operating the refrigerator
JPH08246899A (en) Gas turbine inlet air cooling device
JP2001050055A (en) Engine system and engine charge cooling method
EP0095457B1 (en) A method of operating an internal combustion engine with an air compressor driven thereby
JPH11257098A (en) Intake air cooling gas turbine power generating device