JPH03258926A - Leveling method for gas turbine output - Google Patents

Leveling method for gas turbine output

Info

Publication number
JPH03258926A
JPH03258926A JP5494390A JP5494390A JPH03258926A JP H03258926 A JPH03258926 A JP H03258926A JP 5494390 A JP5494390 A JP 5494390A JP 5494390 A JP5494390 A JP 5494390A JP H03258926 A JPH03258926 A JP H03258926A
Authority
JP
Japan
Prior art keywords
gas turbine
suction air
intercooler
temperature
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5494390A
Other languages
Japanese (ja)
Other versions
JPH0647953B2 (en
Inventor
Takeshi Suzuki
剛 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP5494390A priority Critical patent/JPH0647953B2/en
Publication of JPH03258926A publication Critical patent/JPH03258926A/en
Publication of JPH0647953B2 publication Critical patent/JPH0647953B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To prevent a reduction in gas turbine output due to the change in atmospheric temperature through a cheap equipment by driving an absorption refrigerating machine by a part of waste heat of an intercooler for a gas turbine, and cooling suction air of the gas turbine by the generated cold. CONSTITUTION:Suction air A' delivered from a low-pressure side compressor 6A is cooled by cooling water at the low-temperature section 9B of an intercooler 9, and the waste heat obtained by cooling suction air A at the high- temperature section 9A becomes a heat source of a singlet utility absorption refrigerating machine 12 through a hot water circulating pump 11. The cold water cooled in the absorption refrigerating machine 12 is sent to a heat exchanger 8 for the suction air A through a cold water pump 13 to cool the suction air A. Compressed air A'' cooled at the low-temperature section 9B of the intercooler 9 is sucked and pressurized as suction air for a high-pressure side compressor 6B, and the air delivered from there is supplied to a combustor 1, becomes high-temperature combustion gas together with fuel F, and the combustion gas is then guided to a gas turbine 3 to generate electricity through an electric generator 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガスタービンの中間冷却器からの廃熱の一部
を利用して、気温上昇時におけるガスタービンの出力低
下を防止するガスタービン出力平準化方法に関するもの
である。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a gas turbine that utilizes a portion of waste heat from an intercooler of the gas turbine to prevent a decrease in the output of the gas turbine when the temperature rises. This relates to an output leveling method.

〔従来の技術〕[Conventional technology]

従来のガスタービンは大気温度変化により出力の変化が
著しいという問題があった。
Conventional gas turbines have had the problem of significant changes in output due to changes in atmospheric temperature.

すなわち、大気温度の低い冬場では空気密度が高いので
、ガスタービン出力が充分でるのに対し、大気温度の高
い夏場ではその出力が低下することになる。
That is, in the winter when the atmospheric temperature is low, the air density is high, so the gas turbine output is sufficient, whereas in the summer when the atmospheric temperature is high, the output is reduced.

そこで、従来はガスタービンの排気ガスの熱を利用した
廃熱ボイラで発生した蒸気により作動させた二重効用の
吸収式冷凍機によってガスタービンの吸込空気温度を調
節する方法が採用されているが、この場合、設備費が高
価であると共に、吸気温度調節に必要なエネルギー(冷
熱)を得るためには熱容量が充分過ぎるという問題があ
った。
Conventionally, therefore, a method has been adopted to adjust the temperature of the gas turbine's intake air using a dual-effect absorption chiller operated by steam generated in a waste heat boiler that utilizes the heat of the gas turbine's exhaust gas. In this case, there were problems in that the equipment cost was high and the heat capacity was too sufficient to obtain the energy (cold heat) necessary for adjusting the intake air temperature.

一方、タービンに直結した低圧圧縮機と高圧圧縮機との
間に中間冷却器を有する中間冷却器付のガスタービンで
は、その中間冷却器で熱交換したエネルギーが温水とし
て捨てられていた。
On the other hand, in a gas turbine with an intercooler that has an intercooler between a low pressure compressor and a high pressure compressor that are directly connected to the turbine, the energy exchanged in the intercooler is discarded as hot water.

この点に着目した本発明者等は種々検討を加えた結果、
この捨てられていた温水を熱源としてガスタービンの吸
込空気を冷却すれば、安価な設備で夏場における気温上
昇に伴う出力低下を防止できることが判明し、本発明に
到達した。
The inventors of the present invention focused on this point, and as a result of various studies,
It has been found that by using this discarded hot water as a heat source to cool the intake air of a gas turbine, it is possible to prevent a decrease in output due to a rise in temperature in the summer with inexpensive equipment, leading to the present invention.

〔発明の解決しようとする課題〕[Problem to be solved by the invention]

本発明は中間冷却器付のガスタービンを大幅に改造する
ことなく、安価な設備で大気温度変化によるガスタービ
ン出力低下を防止できるガスタービン出力平準化方法を
提供することを課題としたものである。
An object of the present invention is to provide a gas turbine output leveling method that can prevent a decrease in gas turbine output due to atmospheric temperature changes using inexpensive equipment without significantly modifying a gas turbine equipped with an intercooler. .

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題を解決するための手段として、本発明のガス
タービン出力平準化方法は、ガスタービンの中間冷却器
の廃熱の一部により該廃熱を熱源とする吸収冷凍機を駆
動し、該吸収冷凍機で発生した冷熱によりガスタービン
の吸込空気を冷却し、気温上昇に伴うガスタービンの出
力低下を防止するようにしたものである。
As a means for solving the above problems, the gas turbine output leveling method of the present invention uses part of the waste heat of the intercooler of the gas turbine to drive an absorption refrigerator using the waste heat as a heat source. The cold heat generated by the absorption refrigerator cools the intake air of the gas turbine, thereby preventing a decrease in the output of the gas turbine due to a rise in temperature.

〔実施例〕〔Example〕

以下、図面を参照して本発明の実施例について説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の方法を適用したコージエネシステムの
系統図であり、燃料Fと圧w3機6から供給される圧縮
空気を燃焼器Iで混合して燃焼させ、その燃焼ガスで発
電機4を直結したタービン2を駆動するガスタービン3
と、そのタービン2の排気ガスEの排熱を利用してグ気
Sを発生する廃熱ボイラ5とを有している。
Fig. 1 is a system diagram of a cogeneration system to which the method of the present invention is applied, in which fuel F and compressed air supplied from pressure w3 generator 6 are mixed and combusted in combustor I, and the combustion gas is used to generate a generator. A gas turbine 3 that drives a turbine 2 directly connected to a gas turbine 4.
and a waste heat boiler 5 that generates gas S using the exhaust heat of the exhaust gas E of the turbine 2.

このタービン2には圧縮機6が直結されており、吸気フ
ィルタ7を通過した吸込空気Aは、熱交換器8によって
冷却されたあと、低圧側の圧縮機6Aによって圧縮され
る。圧縮された吸込空気A′は、中間冷却器9の高温部
9A及び低温部9Bで冷却された後、高圧側の圧縮機6
Bによって、さらに加圧A”されて燃焼器1へ導入され
る。
A compressor 6 is directly connected to the turbine 2, and the intake air A that has passed through the intake filter 7 is cooled by a heat exchanger 8 and then compressed by the low-pressure side compressor 6A. The compressed suction air A' is cooled in the high-temperature section 9A and low-temperature section 9B of the intercooler 9, and then passes through the high-pressure side compressor 6.
It is further pressurized by B and introduced into the combustor 1.

上記の中間冷却器9の低温部9Bは冷却水Wで冷却され
るが、高温部9Aで吸込空気Aを冷却して得られた廃熱
は、温水循環ポンプ11を介して一重効用の吸収冷凍機
12の熱源となる。
The low-temperature section 9B of the intercooler 9 is cooled by cooling water W, but the waste heat obtained by cooling the intake air A in the high-temperature section 9A is transferred to a single-effect absorption refrigeration system via a hot water circulation pump 11. It becomes a heat source for the machine 12.

さらに、この吸収冷凍機I2で冷却された冷水は、冷水
ポンプ13で吸込空気Aの熱交換器8に送られ、吸込空
気Aを冷却する。
Furthermore, the cold water cooled by the absorption refrigerator I2 is sent to the heat exchanger 8 for the suction air A by the cold water pump 13, and cools the suction air A.

すなわち、低圧側の圧縮機6Aから吐出された吸込空気
A′は、中間冷却器9で冷却水W等で冷却されるが、そ
の一部は高温部9Aで温水循環ポンプ11を介して吸収
冷凍機12の熱源となり、低圧側の圧縮機6Aの圧縮空
気A′を冷却する。さらに高温部9Bで所定温度に冷却
された圧縮空気A′は、高圧側の圧縮機6Bの吸込空気
として吸込まれ加圧され、そこから吐出した空気が燃焼
器1へ供給されて、燃料Fと共に高温の燃焼ガスとなり
タービン3へ導びかれ、発電機4により発電される。
That is, suction air A' discharged from the low-pressure side compressor 6A is cooled with cooling water W etc. in the intercooler 9, but a part of it is absorbed and frozen in the high temperature section 9A via the hot water circulation pump 11. It serves as a heat source for the compressor 12 and cools the compressed air A' of the low pressure side compressor 6A. Furthermore, the compressed air A' cooled to a predetermined temperature in the high-temperature section 9B is sucked in as suction air by the high-pressure side compressor 6B and pressurized, and the air discharged from there is supplied to the combustor 1, where it is supplied together with fuel F. The resulting high-temperature combustion gas is guided to the turbine 3 and generated by the generator 4.

次に、第2図は気温変化に対応した上記ガスタービン3
の出力変化を示しており、通常、ガスタービン3の出力
の基準点の基準温度15℃における出力Noに対し、気
温が上昇することにより、従来、線図Nxのごとく右下
がりとなり、一方気温が下がる場合は左上がりに出力は
上昇し、発電機4の制限値の出力Nまで上昇が可能であ
った。
Next, Figure 2 shows the above gas turbine 3 that responds to temperature changes.
Normally, as the temperature rises, the output No. at the reference point of the output of the gas turbine 3 at the reference temperature of 15 degrees Celsius decreases to the right as shown in the diagram Nx. When the output decreases, the output increases upward to the left, and it is possible to increase the output to the limit value N of the generator 4.

そこで、本発明では基準温度15℃以上の時に、吸込空
気Aを冷却することにより、−点鎖線Ncで示す出力特
性を維持することが可能になる。
Accordingly, in the present invention, by cooling the intake air A when the reference temperature is 15° C. or higher, it becomes possible to maintain the output characteristics shown by the - dotted chain line Nc.

〔発明の効果〕〔Effect of the invention〕

以上に説明したごとく、本発明のガスタービンの出力平
準化方法によれば、ガスタービンの出力特性が気温の変
化により変わることを防止でき、信頼度の高いコージエ
ネシステムを提供できるという利点がある。
As explained above, according to the gas turbine output leveling method of the present invention, it is possible to prevent the output characteristics of the gas turbine from changing due to changes in temperature, and there is an advantage that a highly reliable cogeneration system can be provided. .

また、本発明では吸込空気の冷却用に従来温水として捨
てられていた中間冷却器での冷却廃熱を有効に利用でき
るので、系全体の熱効率を高めうるという利点がある。
Further, in the present invention, the cooling waste heat from the intercooler, which was conventionally discarded as hot water, can be effectively used for cooling the intake air, so there is an advantage that the thermal efficiency of the entire system can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を適用したコージェネシステムの
系統図、第2図は第1図のガスタービンの出力と外気の
温度との関係を示す線図である。 3・・・ガスタービン、6A・・・低圧側の圧縮機、8
・・・熱交換器、9・・・中間冷却器、12・・・吸収
冷凍機、A・・・吸込空気。
FIG. 1 is a system diagram of a cogeneration system to which the method of the present invention is applied, and FIG. 2 is a diagram showing the relationship between the output of the gas turbine in FIG. 1 and the temperature of outside air. 3... Gas turbine, 6A... Low pressure side compressor, 8
... Heat exchanger, 9 ... Intercooler, 12 ... Absorption refrigerator, A ... Suction air.

Claims (1)

【特許請求の範囲】[Claims] ガスタービンの中間冷却器の廃熱の一部により該廃熱を
熱源とする吸収冷凍機を駆動し、該吸収冷凍機で発生し
た冷熱によりガスタービンの吸込空気を冷却し、気温上
昇に伴うガスタービンの出力低下を防止するようにした
ガスタービン出力平準化方法。
Part of the waste heat from the intercooler of the gas turbine drives an absorption chiller that uses the waste heat as a heat source, and the cold energy generated by the absorption chiller cools the intake air of the gas turbine. A gas turbine output leveling method that prevents a decrease in turbine output.
JP5494390A 1990-03-08 1990-03-08 Gas turbine output leveling method Expired - Lifetime JPH0647953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5494390A JPH0647953B2 (en) 1990-03-08 1990-03-08 Gas turbine output leveling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5494390A JPH0647953B2 (en) 1990-03-08 1990-03-08 Gas turbine output leveling method

Publications (2)

Publication Number Publication Date
JPH03258926A true JPH03258926A (en) 1991-11-19
JPH0647953B2 JPH0647953B2 (en) 1994-06-22

Family

ID=12984730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5494390A Expired - Lifetime JPH0647953B2 (en) 1990-03-08 1990-03-08 Gas turbine output leveling method

Country Status (1)

Country Link
JP (1) JPH0647953B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326254A (en) * 1993-02-26 1994-07-05 Michael Munk Fog conditioned flue gas recirculation for burner-containing apparatus
US5353585A (en) * 1992-03-03 1994-10-11 Michael Munk Controlled fog injection for internal combustion system
JP2006220150A (en) * 2005-02-11 2006-08-24 General Electric Co <Ge> Gas turbine engine assembled body and intermediate cooling device system
JP2008185031A (en) * 2007-01-29 2008-08-14 General Electric Co <Ge> Integrated plant cooling system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5353585A (en) * 1992-03-03 1994-10-11 Michael Munk Controlled fog injection for internal combustion system
US5326254A (en) * 1993-02-26 1994-07-05 Michael Munk Fog conditioned flue gas recirculation for burner-containing apparatus
JP2006220150A (en) * 2005-02-11 2006-08-24 General Electric Co <Ge> Gas turbine engine assembled body and intermediate cooling device system
US7254950B2 (en) * 2005-02-11 2007-08-14 General Electric Company Methods and apparatus for operating gas turbine engines
JP2008185031A (en) * 2007-01-29 2008-08-14 General Electric Co <Ge> Integrated plant cooling system

Also Published As

Publication number Publication date
JPH0647953B2 (en) 1994-06-22

Similar Documents

Publication Publication Date Title
US11686250B2 (en) Gas turbine energy supplementing systems and heating systems, and methods of making and using the same
CA1218240A (en) Regenerative gas turbine cycle
US5678401A (en) Energy supply system utilizing gas and steam turbines
JPH01280638A (en) Gas turbine cogeneration system
CN107461276B (en) A kind of small distributed cooling heating and power generation system
CN106989535B (en) Lithium bromide unit operation adjusting method based on gas distributed energy station
JP2003161164A (en) Combined-cycle power generation plant
JPH03258926A (en) Leveling method for gas turbine output
KR20040061773A (en) Three generation energy system for controlling among cooling/heating and electric power generation
US4445639A (en) Heat pump systems for residential use
JPH0354327A (en) Surplus power utilizing system
JP3640411B2 (en) Waste heat recovery system
JPH07332109A (en) Compressed air storage type power generating plant
JP2005320938A (en) Exhaust heat recovery device and exhaust heat recovery method
CN211116273U (en) Constant temperature air inlet device for synthetic gas turbine for combustion
JP2003193910A (en) Cogeneration system and its operation control method
CN113356952A (en) Combined cooling and power system capable of pre-cooling air at inlet of gas turbine and operation method thereof
JPS63215842A (en) Gas turbine generating system
JPH07247862A (en) Gas turbine plant
JPH0416613B2 (en)
JP3176755B2 (en) Gas turbine equipment
JPS63215841A (en) Gas turbine generating system
IL107530A (en) Method of and apparatus for augmenting power produced by gas turbines
JPH09144508A (en) Combined power generation system
JPH0570270B2 (en)