JPH0646584A - Micromachine driver - Google Patents

Micromachine driver

Info

Publication number
JPH0646584A
JPH0646584A JP19547292A JP19547292A JPH0646584A JP H0646584 A JPH0646584 A JP H0646584A JP 19547292 A JP19547292 A JP 19547292A JP 19547292 A JP19547292 A JP 19547292A JP H0646584 A JPH0646584 A JP H0646584A
Authority
JP
Japan
Prior art keywords
liquid crystal
movable member
electrodes
substrates
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19547292A
Other languages
Japanese (ja)
Inventor
Shigeo Kasahara
滋雄 笠原
Fumio Takei
文雄 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19547292A priority Critical patent/JPH0646584A/en
Publication of JPH0646584A publication Critical patent/JPH0646584A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To raise the practicability by equipping this driver with a plurality of electrodes, liquid crystal charged between electrodes, and a mobile member which operates, according to the conditional change of the liquid crystal. CONSTITUTION:This driver is equipped with a plurality of electrodes 14 and 16, liquid crystal injected between both electrodes 14 and 16, and an mobile member 26 operating, according to the conditional change of the liquid crystal by the voltage application to this liquid crystal. In such constitution, when voltage is applied to the liquid crystal 24, the condition of the liquid crystal 4 changes, and vibration, convection, etc., occur in the liquid crystal 24. Accordingly, the mobile member 26 in contact with the liquid crystal 24 comes to operate according to the conditional change of the liquid crystal 24. So, the motion of this mobile member 26 is taken out to outside as a motion source, whereby it can drive a micromotor, a rotor, a micropiston, etc. Hereby, the practicability can be raised.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はマイクロマシンの駆動装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a driving device for a micromachine.

【0002】[0002]

【従来の技術】近年、ミリ又はミクロンの領域で作業を
するマイクロマシン(微細機械)の研究開発が行われて
いる。例えば、フォトリソグラフィ技術等の進歩によっ
て、大きさ数ミクロンのモータ、歯車、ピストンが製造
されている。大きさ数ミクロンのモータ、歯車、ピスト
ン等のマイクロマシンは、従来の代表的な機械を参考に
してそれを小型化した構造として設計され、フォトリソ
グラフィ技術等の微細加工技術によって製作されること
ができる。
2. Description of the Related Art In recent years, research and development of micromachines for working in the millimeter or micron range have been carried out. For example, advances in photolithography technology have produced motors, gears, and pistons having a size of several microns. Micromachines such as motors, gears, and pistons with a size of a few microns can be manufactured by microfabrication technology such as photolithography technology, which is designed as a downsized structure with reference to conventional typical machines. .

【0003】[0003]

【発明が解決しようとする課題】マイクロマシンは、回
転子やピストン等の可動部分とコイルに相当する駆動部
分を有する。駆動部分は可動部分を駆動するが、そのよ
うな微細な可動部分の運動量は小さく、その動作は特殊
器具を使用しなければ確認できない。そのため、ミクロ
ンオーダーのマイクロマシンは、原理的には製造できる
が、実際に製造し、そして特定の用途に使用する段階に
はなかなか達せず、用途が模索されている段階である。
また、従来のマイクロマシンは、動作原理が通常の機械
と同様のままで微細にしたため、非常に小さな動作の制
御が困難であり、実用化にはいたっていない。本発明の
目的は、新しい原理の、実用性の高いマイクロマシン駆
動装置を提供することである。
A micromachine has a movable part such as a rotor and a piston and a drive part corresponding to a coil. The drive part drives the movable part, but the momentum of such a fine movable part is small, and its movement cannot be confirmed without using special equipment. Therefore, micron-order micromachines can be manufactured in principle, but it is difficult to reach the stage where they are actually manufactured and used for a specific application, and the application is being sought.
Further, the conventional micromachine has the same operating principle as that of a normal machine and has been made finer. Therefore, it is difficult to control a very small operation, and it has not been put into practical use. An object of the present invention is to provide a micromachine drive device of a new principle and high practicability.

【0004】[0004]

【課題を解決するための手段】本発明によるマイクロマ
シン駆動装置は、複数の電極14,16と、該電極間に
注入された液晶24と、少なくとも一部が該液晶に接触
し、該液晶への電圧印加による該液晶の状態の変化に応
じて動作する可動部材26とを備えたことを特徴とする
ものである。
In the micromachine driving device according to the present invention, a plurality of electrodes 14 and 16, a liquid crystal 24 injected between the electrodes, and at least a part of the liquid crystal 24 are in contact with the liquid crystal, The movable member 26 that operates according to the change in the state of the liquid crystal due to the voltage application is provided.

【0005】[0005]

【作用】上記した構成においては、液晶に電圧を印加す
ることにより、液晶の状態が変化し、液晶に振動や対流
等が生じる。従って、液晶に接触している可動部材が液
晶の状態の変化に応じて動作するようになる。この可動
部材の運動を運動源として外部に取り出し、微細モータ
の回転子や微細ピストン等を駆動することができる。
In the above structure, when a voltage is applied to the liquid crystal, the state of the liquid crystal changes, and the liquid crystal vibrates or convection. Therefore, the movable member in contact with the liquid crystal operates according to the change in the state of the liquid crystal. The motion of the movable member can be taken out as a motion source to drive the rotor of the fine motor, the fine piston, and the like.

【0006】[0006]

【実施例】図1は本発明の第1実施例を示す図である。
このマイクロマシン駆動装置は、一対の対向する基板1
0,12を有し、この基板10,12の内面にそれぞれ
電極14,16、及び配向膜18,20が形成されてい
る。基板10,12は配向膜18,20を内側にしてス
ペーサ22を介して貼り合わせてある。そして、基板1
0,12及びスペーサ22に囲まれた領域に液晶24が
注入されている。さらに、可動部材26が液晶24に接
触するように基板10,12の間に配置されている。可
動部材26は外部の部材(図示せず)に接続可能であ
る。
FIG. 1 is a diagram showing a first embodiment of the present invention.
This micromachine driving device includes a pair of opposed substrates 1
0 and 12, and electrodes 14 and 16 and alignment films 18 and 20 are formed on the inner surfaces of the substrates 10 and 12, respectively. The substrates 10 and 12 are bonded to each other with the alignment films 18 and 20 inside with a spacer 22 interposed therebetween. And the substrate 1
The liquid crystal 24 is injected into the region surrounded by 0 and 12 and the spacer 22. Further, the movable member 26 is arranged between the substrates 10 and 12 so as to contact the liquid crystal 24. The movable member 26 can be connected to an external member (not shown).

【0007】実施例においては、基板10,12は50
×60×1.1mmのガラス基板であり、電極14,16
は直径20mmの丸ベタ透明電極(ITO)である。配向
膜18,20はこの基板10,12の電極14,16の
上に3wtパーセントのポリイミド溶液(日産化学工業社
製サンエバ−RN−722)溶液をスピンコータを用い
て2000rpm の回転数で塗布した後に、250℃で3
0分焼成したものである。
In the embodiment, the substrates 10 and 12 are 50
It is a glass substrate of × 60 × 1.1 mm, and has electrodes 14, 16
Is a round solid transparent electrode (ITO) with a diameter of 20 mm. The alignment films 18 and 20 were applied on the electrodes 14 and 16 of the substrates 10 and 12 with a 3 wt% polyimide solution (San Ever-RN-722 manufactured by Nissan Chemical Industries, Ltd.) at a rotation speed of 2000 rpm using a spin coater. , At 250 ℃ 3
It was baked for 0 minutes.

【0008】この基板10,12の間に、平均径が5.
5μm、長さが50〜200μmのグラスファイバー
と、平均径が4μm、長さが50〜200μmのグラス
ファイバーとを混合したものを挿入して基板10,12
を貼り合わせた(平均径が4μmのグラスファイバーは
20wtパーセント)。平均径が5.5μmのグラスファ
イバーがスペーサ22となるものであり、平均径が4μ
mのグラスファイバーが可動部材26となるものであ
る。なお、平均径が4μmのグラスファイバーは、径が
均一なもの、及び不均一なものを含んでいた。
Between the substrates 10 and 12, an average diameter of 5.
Substrates 10 and 12 by inserting a mixture of glass fibers having a diameter of 5 μm and a length of 50 to 200 μm and glass fibers having an average diameter of 4 μm and a length of 50 to 200 μm.
Were pasted together (20 wt% for a glass fiber having an average diameter of 4 μm). The glass fiber having an average diameter of 5.5 μm serves as the spacer 22, and the average diameter is 4 μm.
The glass fiber of m serves as the movable member 26. The glass fibers having an average diameter of 4 μm included those having a uniform diameter and those having a non-uniform diameter.

【0009】液晶24は、フッ素系のネマチック液晶
に、カイラルネマチック液晶を3.6wtパーセント混合
した、ネマチック/コレステリック相転移型液晶を使用
した。この液晶24は、電圧無印加時または低電圧印加
時にはコレステリック相となり、高電圧を印加したとき
には基板10,12の基板面に垂直に配向したネマチッ
ク相になる。
As the liquid crystal 24, a nematic / cholesteric phase transition type liquid crystal in which 3.6 wt% of a chiral nematic liquid crystal is mixed with a fluorine-based nematic liquid crystal is used. The liquid crystal 24 has a cholesteric phase when no voltage is applied or a low voltage is applied, and has a nematic phase which is oriented perpendicular to the substrate surfaces of the substrates 10 and 12 when a high voltage is applied.

【0010】この液晶パネルの電極14,16間に種々
の形体の電圧を印加してみた。例えば、サイン波、ラン
プ波、及び矩形波の電圧を印加し、電圧、周波数に応じ
た、平均径が4μmのグラスファイバーからなる可動部
材26の動きを顕微鏡で観察した。平均径が5.5μm
のグラスファイバーはスペーサ22となっているため、
4μmのグラスファイバーからなる可動部材26は液晶
24中で自由に動きうる状態になっている。
Voltages of various shapes were applied between the electrodes 14 and 16 of this liquid crystal panel. For example, sine wave, ramp wave, and rectangular wave voltages were applied, and the movement of the movable member 26 made of glass fiber having an average diameter of 4 μm was observed with a microscope according to the voltage and frequency. Average diameter is 5.5 μm
Since the glass fiber of is the spacer 22,
The movable member 26 made of 4 μm glass fiber is freely movable in the liquid crystal 24.

【0011】この状態で、電圧値Vppを±50Vにし
て、周波数を0.1〜1KHz の範囲で変化させながら、
4μmのグラスファイバーからなる可動部材26の動き
を顕微鏡で観察し続けた。その結果、4μmのグラスフ
ァイバーからなる可動部材26は、周波数が600Hz程
度を中心として数百Hzの範囲内でのみ、運動するが確認
された。そして、4μmのグラスファイバーからなる可
動部材26のうち、径が均一なものは並進運動し、径が
不均一のものは回転運動をするのが確認された。従っ
て、可動部材26の運動を外部の部材に取り出せば、ミ
クロンオーダーの運動機構をもったマイクロマシンを構
成することができる。
In this state, the voltage value Vpp is set to ± 50 V and the frequency is changed in the range of 0.1 to 1 kHz,
The movement of the movable member 26 made of 4 μm glass fiber was continuously observed with a microscope. As a result, it was confirmed that the movable member 26 made of 4 μm glass fiber moved only within a range of several hundred Hz centered on the frequency of about 600 Hz. It was confirmed that among the movable members 26 made of 4 μm glass fiber, those having a uniform diameter make translational movements, and those having a non-uniform diameter make rotational movements. Therefore, if the movement of the movable member 26 is taken out to an external member, a micromachine having a movement mechanism of the order of microns can be constructed.

【0012】次に、周波数を600Hzにして、電圧値V
ppを0〜100Vの範囲内で変化させたところ、±18
V程度から4μmのグラスファイバーからなる可動部材
26が回転運動、又は並進運動を初め、Vppを大きくす
るのに従って回転数が増加し、運動量が大きくなった。
さらに、径が4μmで長さが10μm程度のグラスファ
イバーについて回転数を測定したところ、Vpp=20V
で回転数が約30rpm,Vpp=100Vで回転数が約4
00rpm 程度の変化が起こった。
Next, the frequency is set to 600 Hz and the voltage value V
When pp is changed within the range of 0 to 100V, ± 18
The movable member 26 made of glass fiber having a size of about V to 4 μm started a rotational movement or a translational movement, and as Vpp was increased, the number of rotations increased and the momentum increased.
Furthermore, when the rotation speed of a glass fiber having a diameter of 4 μm and a length of about 10 μm was measured, Vpp = 20 V
And the rotation speed is about 30 rpm, Vpp = 100V and the rotation speed is about 4
A change of about 00 rpm occurred.

【0013】図2は本発明の第2実施例を示す図であ
る。この実施例は微細モータに応用したものである。図
1と同様に、電極14,16及び配向膜18,20を有
する基板10,12及びスペーサ22に囲まれた領域に
は液晶24が満たされている。可動部材26は、液晶2
4に接触するように基板10,12の間に配置されてい
る。この実施例では、可動部材26はプロペラ状の形状
を有し、矢印で示されるように、液晶24の状態が変化
すると回転が誘起されるようになっている。
FIG. 2 is a diagram showing a second embodiment of the present invention. This embodiment is applied to a fine motor. Similar to FIG. 1, liquid crystal 24 is filled in a region surrounded by the substrates 10 and 12 having the electrodes 14 and 16 and the alignment films 18 and 20 and the spacer 22. The movable member 26 is the liquid crystal 2
It is arranged between the substrates 10 and 12 so as to contact the substrate 4. In this embodiment, the movable member 26 has a propeller-like shape, and rotation is induced when the state of the liquid crystal 24 changes, as indicated by the arrow.

【0014】この可動部材26は軸26aを有し、軸2
6aは基板10,12に設けた微小な開口部10a,1
2aから外部に延びる。従って、この可動部材26の軸
26aが微細モータの回転出力軸になる。この構成にお
いて、両電極間14,16に電圧を印加すると、液晶2
4が周波数に応じて振動あるいは対流し、その結果可動
部材26が回転し、可動部材26の軸26aから回転出
力が取り出される。
The movable member 26 has a shaft 26a, and the shaft 2
6a denotes minute openings 10a, 1 provided on the substrates 10, 12.
It extends from 2a to the outside. Therefore, the shaft 26a of the movable member 26 becomes the rotation output shaft of the fine motor. In this configuration, when a voltage is applied between both electrodes 14 and 16, the liquid crystal 2
4 vibrates or convects depending on the frequency, and as a result, the movable member 26 rotates, and the rotation output is taken out from the shaft 26a of the movable member 26.

【0015】図3は本発明の第3実施例を示す図であ
る。この実施例は微細ピストンに応用したものである。
図1と同様に、電極14,16及び配向膜18,20を
有する基板10,12及びスペーサ22に囲まれた領域
には液晶24が満たされている。可動部材26は、液晶
24に接触するように基板10,12の間に配置されて
いる。可動部材26は一定の翼状の形状を有し、矢印で
示されるように、液晶24の状態が変化すると並進運動
が誘起されるようになっている。
FIG. 3 is a diagram showing a third embodiment of the present invention. This embodiment is applied to a fine piston.
Similar to FIG. 1, liquid crystal 24 is filled in a region surrounded by the substrates 10 and 12 having the electrodes 14 and 16 and the alignment films 18 and 20 and the spacer 22. The movable member 26 is arranged between the substrates 10 and 12 so as to contact the liquid crystal 24. The movable member 26 has a fixed wing shape, and as shown by an arrow, a translational motion is induced when the state of the liquid crystal 24 changes.

【0016】この可動部材26は軸26bを有し、軸2
6bは基板10,12に設けた微小な開口部10a,1
2aから外部に延びる。従って、この可動部材26の軸
26bにピストン可動部分を接続しておくと、微細ピス
トンが得られる。両電極間14,16に電圧を印加する
と、液晶24が周波数に応じて振動あるいは対流し、そ
の結果可動部材26が並進運動し、可動部材26の軸2
6bから並進出力が取り出される。
The movable member 26 has a shaft 26b, and the shaft 2
6b denotes minute openings 10a, 1 provided on the substrates 10, 12.
It extends from 2a to the outside. Therefore, if a piston movable portion is connected to the shaft 26b of the movable member 26, a fine piston can be obtained. When a voltage is applied to both electrodes 14 and 16, the liquid crystal 24 vibrates or convects in accordance with the frequency, and as a result, the movable member 26 moves in translation and the axis 2 of the movable member 26 moves.
The translational output is taken from 6b.

【0017】なお、図2、図3の装置は、露光とエッチ
ングを用いるフォトリソグラフィ技術によって微細に製
造可能である。また、可動部材26は軸26a又は軸2
6bは、基板10,12に設けた微小な開口部10a,
12aから外部に延びる。このような構造は、可動部材
26を基板10,12間に挿入し、軸26a又は軸26
bが基板10,12の開口部10a,12aから外部に
突出した状態で、液晶24を真空注入するとよい。すな
わち、軸26a又は軸26bが突出した基板10,12
を真空雰囲気にし、そこで開口部10a,12aに液晶
24を滴下し、そこで基板10,12を常圧状態に戻す
ことにより、圧力差及び毛細管現象により液晶22が基
板10,12間に進入する。注入後は、液晶24のもつ
表面張力のため、液晶24は洩れずに基板10,12間
に保持され、軸受けにもなる。
The apparatus shown in FIGS. 2 and 3 can be finely manufactured by a photolithography technique using exposure and etching. In addition, the movable member 26 is the shaft 26a or the shaft 2.
6b is a minute opening 10a provided on the substrates 10 and 12,
It extends from 12a to the outside. In such a structure, the movable member 26 is inserted between the substrates 10 and 12, and the shaft 26a or the shaft 26 is inserted.
It is advisable to inject the liquid crystal 24 in a vacuum while b is projected to the outside from the openings 10a and 12a of the substrates 10 and 12. That is, the substrates 10 and 12 with the shaft 26a or the shaft 26b protruding
Is made a vacuum atmosphere, the liquid crystal 24 is dropped in the openings 10a and 12a, and the substrates 10 and 12 are returned to the normal pressure state there, so that the liquid crystal 22 enters between the substrates 10 and 12 due to the pressure difference and the capillary phenomenon. After the injection, the liquid crystal 24 is held between the substrates 10 and 12 without leaking due to the surface tension of the liquid crystal 24 and also serves as a bearing.

【0018】図4は本発明の第4実施例を示す図であ
る。この実施例は光を反射、遮断、又は吸収する光学素
子の一つとしてのマイクロポリゴンミラーに応用したも
のである。図1と同様に、電極14,16及び配向膜1
8,20を有する基板10,12及びスペーサ22に囲
まれた領域には液晶24が満たされている。可動部材2
6は、液晶24に接触するように基板10,12の間に
配置されている。可動部材26はプロペラ状の形状を有
し、矢印で示されるように、液晶24の状態が変化する
と回転が誘起されるようになっている。
FIG. 4 is a diagram showing a fourth embodiment of the present invention. This embodiment is applied to a micropolygon mirror as one of optical elements that reflect, block, or absorb light. Similar to FIG. 1, the electrodes 14 and 16 and the alignment film 1
A liquid crystal 24 is filled in a region surrounded by the substrates 10 and 12 having 8 and 20 and the spacer 22. Movable member 2
6 is arranged between the substrates 10 and 12 so as to contact the liquid crystal 24. The movable member 26 has a propeller shape, and rotation is induced when the state of the liquid crystal 24 changes, as indicated by the arrow.

【0019】この可動部材26は軸26aを有し、軸2
6aは基板10,12に設けた微小な開口部10a,1
2aから外部に延びる。この可動部材26は多角錐状の
反射面28を有し、入射光Aが反射面28の一つで反射
し、反射光Bと進むようになっている。可動部材26が
回転するにつれて反射面28の位置が変わることは公知
のポリゴンミラーと同様である。なお、実施例では、基
板10,12が透明であり、多角錐状の反射面28は基
板10,12内に設けられているが、多角錐状の反射面
28を基板10,12の外側に設けることもできる。
The movable member 26 has a shaft 26a, and the shaft 2
6a denotes minute openings 10a, 1 provided on the substrates 10, 12.
It extends from 2a to the outside. The movable member 26 has a polygonal pyramidal reflecting surface 28, and the incident light A is reflected by one of the reflecting surfaces 28 and proceeds to the reflected light B. The position of the reflecting surface 28 changes as the movable member 26 rotates, similar to a known polygon mirror. In the embodiment, the substrates 10 and 12 are transparent, and the polygonal pyramidal reflecting surface 28 is provided inside the substrates 10 and 12, but the polygonal pyramidal reflecting surface 28 is provided outside the substrates 10 and 12. It can also be provided.

【0020】図5は本発明の第5実施例を示す図であ
る。この実施例は光を反射、遮断、又は吸収する光学素
子の一つとしてのマイクロ光スイッチに応用したもので
ある。図1と同様に、電極14,16及び配向膜18,
20を有する基板10,12及びスペーサ22に囲まれ
た領域には液晶24が満たされている。可動部材26
は、液晶24に接触するように基板10,12の間に配
置されている。可動部材26は一定の翼状の形状を有
し、矢印で示されるように、液晶24の状態が変化する
と並進運動が誘起されるようになっている。
FIG. 5 is a diagram showing a fifth embodiment of the present invention. This embodiment is applied to a micro optical switch as one of optical elements that reflect, block, or absorb light. Similar to FIG. 1, the electrodes 14, 16 and the alignment film 18,
The region surrounded by the substrates 10 and 12 having 20 and the spacer 22 is filled with the liquid crystal 24. Movable member 26
Are arranged between the substrates 10 and 12 so as to contact the liquid crystal 24. The movable member 26 has a fixed wing shape, and as shown by an arrow, a translational motion is induced when the state of the liquid crystal 24 changes.

【0021】この可動部材26は傾斜した反射面30を
有し、入射光Aが反射面30で反射し、反射光Bとして
進む。可動部材26が並進運動をするにつれて、実線及
び破線で示されるように、反射光Bの光路が切り替わ
る。また、光を反射、遮断、又は吸収する光学素子とし
ては、上記のマイクロポリゴンミラー及びマイクロ光ス
イッチの他に、マイクロチョッパ等とすることもでき
る。
The movable member 26 has an inclined reflecting surface 30, and the incident light A is reflected by the reflecting surface 30 and travels as reflected light B. As the movable member 26 makes a translational motion, the optical path of the reflected light B switches as shown by the solid line and the broken line. Further, as an optical element that reflects, blocks, or absorbs light, a micro chopper or the like can be used in addition to the above micro polygon mirror and micro optical switch.

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば、
液晶をエネルギー伝達源とする新規のマイクロマシン駆
動装置を得ることができ、マイクロマシンの応用に寄与
するところが大きい。
As described above, according to the present invention,
It is possible to obtain a novel micromachine driving device that uses liquid crystal as an energy transmission source, and it greatly contributes to the application of the micromachine.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す図である。FIG. 1 is a diagram showing a first embodiment of the present invention.

【図2】本発明の第2実施例を示す図である。FIG. 2 is a diagram showing a second embodiment of the present invention.

【図3】本発明の第3実施例を示す図である。FIG. 3 is a diagram showing a third embodiment of the present invention.

【図4】本発明の第4実施例を示す図である。FIG. 4 is a diagram showing a fourth embodiment of the present invention.

【図5】本発明の第5実施例を示す図である。FIG. 5 is a diagram showing a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10,12…基板 14,16…電極 24…液晶 26…可動部材 10, 12 ... Substrate 14, 16 ... Electrode 24 ... Liquid crystal 26 ... Movable member

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 複数の電極(14,16)と、該電極間
に注入された液晶(24)と、少なくとも一部が該液晶
に接触し、該液晶への電圧印加による該液晶の状態の変
化に応じて動作する可動部材(26)とを備えたマイク
ロマシン駆動装置。
1. A plurality of electrodes (14, 16), a liquid crystal (24) injected between the electrodes, and at least a part of the liquid crystal (24) contacting the liquid crystal, and a state of the liquid crystal by applying a voltage to the liquid crystal. A micromachine driving device comprising a movable member (26) that operates according to a change.
【請求項2】 該液晶に印加する電圧の、電圧値、周波
数及び波形の少なくとも一つを変化させることにより、
該可動部材の動作を制御するようにしたことを特徴とす
る請求項1に記載のマイクロマシン駆動装置。
2. By changing at least one of a voltage value, a frequency and a waveform of a voltage applied to the liquid crystal,
The micromachine driving device according to claim 1, wherein the operation of the movable member is controlled.
【請求項3】 該可動部材が回転運動及び並進運動の少
なくとも一方を行うようにしたことを特徴とする請求項
1に記載のマイクロマシン駆動装置。
3. The micromachine driving device according to claim 1, wherein the movable member is configured to perform at least one of a rotational movement and a translational movement.
【請求項4】 該可動部材の一部あるいはそれに接続さ
れた部材が、光を反射、遮断、又は吸収するようにした
ことを特徴とする請求項1に記載のマイクロマシン駆動
装置。
4. The micromachine driving device according to claim 1, wherein a part of the movable member or a member connected to the movable member reflects, blocks, or absorbs light.
JP19547292A 1992-07-22 1992-07-22 Micromachine driver Withdrawn JPH0646584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19547292A JPH0646584A (en) 1992-07-22 1992-07-22 Micromachine driver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19547292A JPH0646584A (en) 1992-07-22 1992-07-22 Micromachine driver

Publications (1)

Publication Number Publication Date
JPH0646584A true JPH0646584A (en) 1994-02-18

Family

ID=16341656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19547292A Withdrawn JPH0646584A (en) 1992-07-22 1992-07-22 Micromachine driver

Country Status (1)

Country Link
JP (1) JPH0646584A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031827A1 (en) * 2001-10-01 2003-04-17 Kochi University Of Technology Mechanism and method for forming liquid crystal flow, and object moving mechanism using liquid crystal flow
JP2005121700A (en) * 2003-10-14 2005-05-12 Stanley Electric Co Ltd Fluid and device using the fluid
JP2007071225A (en) * 2005-09-02 2007-03-22 Kochi Univ Of Technology Liquid-crystal flow formation mechanism and method utilizing liquid-crystal defects, and object movement mechanism and method utilizing liquid-crystal flow
JP2008199824A (en) * 2007-02-14 2008-08-28 Kochi Univ Of Technology Energy storage device
JP2010197685A (en) * 2009-02-25 2010-09-09 Kochi Univ Of Technology Object moving mechanism using phase transition between liquid-liquid crystal, and method for moving object
JP2010275529A (en) * 2010-03-29 2010-12-09 Stanley Electric Co Ltd Fluid, display using the fluid, and micromachine
WO2012029308A1 (en) * 2010-09-01 2012-03-08 公立大学法人高知工科大学 Object movement mechanism and object movement mechanism using interaction between liquid-liquid crystal phase transition and disturbance of orientation field
WO2012029307A1 (en) * 2010-09-01 2012-03-08 公立大学法人高知工科大学 Object movement mechanism and object selection mechanism using liquid-liquid crystal phase transition

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031827A1 (en) * 2001-10-01 2003-04-17 Kochi University Of Technology Mechanism and method for forming liquid crystal flow, and object moving mechanism using liquid crystal flow
US7826029B2 (en) 2001-10-01 2010-11-02 Kochi University Of Technology Liquid crystal flow forming mechanism, method of forming same, and object moving mechanism using liquid crystal flow
US8363172B2 (en) 2001-10-01 2013-01-29 Kochi University Of Technology Liquid crystal motor making use of flow of liquid crystal
JP2005121700A (en) * 2003-10-14 2005-05-12 Stanley Electric Co Ltd Fluid and device using the fluid
JP4558299B2 (en) * 2003-10-14 2010-10-06 スタンレー電気株式会社 Fluid, display device using the fluid, and micromachine
JP2007071225A (en) * 2005-09-02 2007-03-22 Kochi Univ Of Technology Liquid-crystal flow formation mechanism and method utilizing liquid-crystal defects, and object movement mechanism and method utilizing liquid-crystal flow
JP2008199824A (en) * 2007-02-14 2008-08-28 Kochi Univ Of Technology Energy storage device
JP2010197685A (en) * 2009-02-25 2010-09-09 Kochi Univ Of Technology Object moving mechanism using phase transition between liquid-liquid crystal, and method for moving object
JP2010275529A (en) * 2010-03-29 2010-12-09 Stanley Electric Co Ltd Fluid, display using the fluid, and micromachine
WO2012029308A1 (en) * 2010-09-01 2012-03-08 公立大学法人高知工科大学 Object movement mechanism and object movement mechanism using interaction between liquid-liquid crystal phase transition and disturbance of orientation field
WO2012029307A1 (en) * 2010-09-01 2012-03-08 公立大学法人高知工科大学 Object movement mechanism and object selection mechanism using liquid-liquid crystal phase transition
JP2012072761A (en) * 2010-09-01 2012-04-12 Kochi Univ Of Technology Object movement mechanism and object movement method using interaction between liquid-liquid crystal phase transition and liquid crystal defect

Similar Documents

Publication Publication Date Title
KR100725200B1 (en) Digital micromirror device and method for non-contacting, edge-coupled hidden hinge geometry
US5392151A (en) Method and apparatus for steering light
US5202785A (en) Method and device for steering light
US7443568B2 (en) Method and system for resonant operation of a reflective spatial light modulator
US7505195B2 (en) Reflective spatial light modulator with high stiffness torsion spring hinge
JP4492252B2 (en) Actuator
JP4966562B2 (en) Micro electro mechanical element, micro electro mechanical element array, light modulation element, micro electro mechanical light modulation element, micro electro mechanical light modulation element array, and image forming apparatus using these
JP2004280107A (en) Micro mirror element including dielectrophoretic liquid
JPH0646584A (en) Micromachine driver
US7453617B2 (en) Scanning device and fabrication method thereof
GB2255193A (en) Electrically controllable waveplate.
JP4792322B2 (en) Microelectromechanical modulator, microelectromechanical modulator array, image forming apparatus, and microelectromechanical modulator design method
JP2005137102A (en) Actuator
JP2001251872A (en) Electrostatic actuator driving mechanism, electrostatic actuator driving method, and electrostatic actuator, rotating stage and polygon mirror using them
JP2006115683A (en) Electrostatic actuator and optical scanning device
KR20060084307A (en) Electromagnetic mems scanning micromirror and optical scanning device thereby
JPS62262017A (en) Optical head actuator
WO2010109825A1 (en) Actuator, drive device, lens unit, image-capturing device
Zeng et al. Piston-motion micromirror based on electrowetting of liquid metals
Taii et al. A transparent sheet display by plastic MEMS
JP2001260100A (en) Driving method for minute object driving device
KR20060018683A (en) Electrostatic mems scanning micromirror and fabrication method thereof
JP2001013895A (en) Minute object driving device, and driving method thereof
JPH06123839A (en) Light valve
KR102658547B1 (en) Scanning device operated using electromagnetic force

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005