JPS62262017A - Optical head actuator - Google Patents

Optical head actuator

Info

Publication number
JPS62262017A
JPS62262017A JP10620886A JP10620886A JPS62262017A JP S62262017 A JPS62262017 A JP S62262017A JP 10620886 A JP10620886 A JP 10620886A JP 10620886 A JP10620886 A JP 10620886A JP S62262017 A JPS62262017 A JP S62262017A
Authority
JP
Japan
Prior art keywords
type piezoelectric
lamination type
piezoelectric elements
reflecting mirror
optical head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10620886A
Other languages
Japanese (ja)
Inventor
Toshitaka Iwamoto
岩本 敏孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP10620886A priority Critical patent/JPS62262017A/en
Publication of JPS62262017A publication Critical patent/JPS62262017A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To obtain a small-sized optical head actuator without causing any beam shift by using a reflecting mirror supported by a pair of lamination type piezoelectric elements for generating a difference in height by a difference in voltages impressed on the lamination type piezoelectric element. CONSTITUTION:Both end parts of a reflecting mirror 1 are supported by a pair of lamination type piezoelectric elements 11, 12 which have been provided on a fixed base 9, and by an electric conduction to the lamination type piezoelectric elements 11, 12, the reflecting mirror 1 is driven in the directions as indicated with arrows A-A' centering around an aerial revolving shaft 0' and a light beam 7 is brought to an access. The lamination type piezoelectric elements 11, 12 are roughly proportional to magnitude of an impressed voltage, and stature, namely, height h1 and h2 are varied to h1' and h2', respectively. Accordingly, by controlling a value of the voltage applied to the lamination type piezoelectric element 11 and 12, a rotational angle theta of a galvanomirror 10 and a position of O which becomes a turning center can be changed freely.

Description

【発明の詳細な説明】 〔概要〕 本発明の光学ヘッドアクチュエータは、ガルバノミラ−
を構成する反射ミラーの駆動手段として、背丈、つまり
高さが印加電圧に対応して変化する一対の積層型圧電素
子を用いている。
[Detailed Description of the Invention] [Summary] The optical head actuator of the present invention includes a galvano mirror.
A pair of laminated piezoelectric elements whose length, or height, changes in accordance with the applied voltage are used as driving means for the reflecting mirrors constituting the device.

そして、該圧電素子にそれぞれ異なる電圧を加えること
により、前記反射ミラーは、恰も回動軸が存在するかの
ような動作、つまり架空の回転軸を中心とする回動運動
を行う。
Then, by applying different voltages to the piezoelectric elements, the reflecting mirror performs an operation as if a rotation axis exists, that is, a rotation movement about an imaginary rotation axis.

このため、前記反射ミラー用の支持アームおよび回動軸
が不要となり、光学ヘッドアクチュエータの小型軽量化
が可能となる。
This eliminates the need for the support arm and rotation shaft for the reflecting mirror, making it possible to reduce the size and weight of the optical head actuator.

〔産業上の利用分野〕[Industrial application field]

本発明は光ディスク装置に装備される光学ヘッドアクチ
ュエータの改良に係り、特に光ビームの走査を司る反射
ミラニの駆動方法を工夫することによって光学ヘッドア
クチュエータを小型化し、且つ、これと並行してディス
ク面の活用度を向上させた光学ヘッドアクチュエータに
関する。
The present invention relates to the improvement of an optical head actuator installed in an optical disc device, and in particular, by devising a driving method for a reflecting mirror that controls scanning of a light beam, the optical head actuator is miniaturized, and at the same time, the disc surface is This invention relates to an optical head actuator with improved utilization.

(従来の技術〕 従来のガルバノミラ−を使ったビームアクセスについて
、第4図及び第5図を用いて説明する。
(Prior Art) Beam access using a conventional galvanometer mirror will be explained with reference to FIGS. 4 and 5.

第4図はガルバノミラ−によるビームアクセスの模式図
、 第5図は従来のガルバノミラ−の構成例を示す斜視図で
ある。
FIG. 4 is a schematic diagram of beam access using a galvano mirror, and FIG. 5 is a perspective view showing an example of the configuration of a conventional galvano mirror.

これらの図において、2はミラー回動輪、3は対物レン
ズ、4はコイル、5は磁気回路、Fは対物レンズの像側
焦点位置、rは対物レンズの像側焦点距離、Uは対物レ
ンズの光軸、lは像側焦点位置から光軸と反射ミラーと
が交わる点までの距離、0は反射ミラーの回転中心、θ
は反射ミラーの回転角、δはディスク偏心量をそれぞれ
示している。
In these figures, 2 is the mirror rotation wheel, 3 is the objective lens, 4 is the coil, 5 is the magnetic circuit, F is the image side focal position of the objective lens, r is the image side focal length of the objective lens, and U is the objective lens. The optical axis, l is the distance from the image side focal position to the point where the optical axis intersects the reflecting mirror, 0 is the rotation center of the reflecting mirror, θ
represents the rotation angle of the reflecting mirror, and δ represents the amount of disk eccentricity.

第4図、第5図に示すように、ガルバノミラ−10は、
コイル4に流す電流の量で反射ミラー1の回動角θを制
御している。
As shown in FIGS. 4 and 5, the galvanometer mirror 10 is
The rotation angle θ of the reflecting mirror 1 is controlled by the amount of current flowing through the coil 4.

ところが従来のガルバノミラ−の場合は、第4図に示す
ように、ビームシフトEが光ビーム7をアクセスするこ
とによって生じる。
However, in the case of a conventional galvanometer mirror, a beam shift E is caused by accessing the light beam 7, as shown in FIG.

例えば今、ディスク偏心量δ=0.05mmアクセスす
るときのビームシフトEを計算すると、0.23mmと
なり、光検知器(図示せず)上で光ディスク15からの
戻り光も当然動くことになる(光ビーム7がディスク1
5の面に対して垂直に入射しない限り入射光と戻り光と
は一敗しない)。これはトラックエラー信号のオフセッ
ト量となり、トラック追従性を劣化させる原因となる。
For example, if we calculate the beam shift E when accessing the disk eccentricity δ = 0.05 mm, it will be 0.23 mm, and the return light from the optical disk 15 will naturally move on the photodetector (not shown). Light beam 7 is on disk 1
Unless the incident light is perpendicular to the surface of 5, the incident light and the returned light will not be destroyed.) This becomes an offset amount of the track error signal and causes deterioration of track followability.

なお、このように構成されたガルバノミラ−10の高さ
h(第5図参照)は約15In111である。
The height h (see FIG. 5) of the galvano mirror 10 constructed in this way is approximately 15 In111.

第6図はビームシフトが発生しないガルバノミラ−の構
成例を示す模式図であって、いいかえれば同図はビーム
シフトの発生を防止するためのガルバノミラ−と対物レ
ンズとの相対位置の条件を示した図である。なお、その
条件は両者間に、a=f「・lという関係が保たれるこ
とである。
FIG. 6 is a schematic diagram showing an example of the configuration of a galvano mirror in which no beam shift occurs. In other words, the figure shows the relative positional conditions between the galvano mirror and the objective lens to prevent the occurrence of beam shift. It is a diagram. Note that the condition is that the relationship a=f"·l is maintained between the two.

第7図は対物レンズの一形状例を示す斜視図であるが、
本例の場合は、対物レンズの直径dが約6.5mm 、
高さh’が約4 arm、そしてレンズ端面Kから焦点
位置Fまでの距離f゛は約2mmというように既に小型
化されている。
FIG. 7 is a perspective view showing an example of the shape of the objective lens.
In this example, the diameter d of the objective lens is approximately 6.5 mm,
The height h' is about 4 arms, and the distance f' from the lens end face K to the focal point F is about 2 mm, so it has already been miniaturized.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが第8図で示したように、対物レンズにはこれを
取り巻いて、コイル4.磁気回路5.対物レンズを支持
する板バネ8等がベース9上に配設され、前記第6図(
ビームシフトが発生しないガルバノミラ−の構成例図)
に示したような構成にしようとすると、像側焦点位置F
から光軸Uと反射ミラー1とが交わる点Pまでの距離l
が12〜13mmと長くなるため、光学ヘッドの総高さ
ト■は、第9図(光学へソドアクチュエータの構成例図
)に示すようには34〜36mmと非常に高くなってし
まう。
However, as shown in FIG. 8, the objective lens has a coil 4 surrounding it. Magnetic circuit 5. A plate spring 8 and the like for supporting the objective lens are disposed on the base 9, and are arranged on the base 9 as shown in FIG.
(Example diagram of galvanometer mirror configuration that does not cause beam shift)
If you try to use the configuration shown in , the image side focal position F
Distance l from to the point P where the optical axis U and the reflecting mirror 1 intersect
is as long as 12 to 13 mm, so the total height of the optical head becomes extremely high as 34 to 36 mm as shown in FIG. 9 (a diagram showing an example of the configuration of an optical head actuator).

またl”の寸法は光ディスク15の中心側に向がう光学
へソドの対物レンズ3から回動軸の中心Oまでの距離に
相当するため、この寸法が大きいと光≠イスク15のイ
ンナー側に光学ヘッドが入り込めなくなって(る。
In addition, the dimension l" corresponds to the distance from the objective lens 3 of the optical disk 15 toward the center of the optical disk 15 to the center O of the rotation axis, so if this dimension is large, the light ≠ the inner side of the disk 15. The optical head can no longer fit in.

これはディスク面の有効活用という観点がらは非常に不
利な条件となる。
This is a very disadvantageous condition from the viewpoint of effective utilization of the disk surface.

本発明はガルバノミラ−の欠点であるビームシフトの大
きい点と、それが起きにくい構成にするとサイズが大き
くなるといった二つの問題点を効果的に解決するために
なされたものである。
The present invention has been made in order to effectively solve two problems of galvano mirrors: the large beam shift, and the large size of the galvano mirror if configured to prevent this from occurring.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の光学ヘッドアクチュエータは、反射ミラーの駆
動方式を、回動軸が実在する従来の方式から、一対の積
層型圧電素子を用いた回動軸不要型の駆動方式に変え、
これによって回動軸および反射ミラー支持用のアームを
排除し、光学ヘッドアクチュエータを小型化した点に特
徴がある。
The optical head actuator of the present invention changes the driving method of the reflecting mirror from the conventional method in which there is an actual rotational axis to a driving method that uses a pair of laminated piezoelectric elements and does not require a rotational axis.
As a result, the rotating shaft and the arm for supporting the reflecting mirror are eliminated, making the optical head actuator more compact.

〔作用〕[Effect]

上述のように、積層型圧電素子に印加される電圧の差に
よって背丈、つまり高さに差を生じる一対の積層型圧電
素子に支持された反射ミラーは、実在しない架空の回転
軸を回動中心とする回動連動ヲ行って光ビームをアクセ
スする。
As mentioned above, the reflecting mirror supported by a pair of laminated piezoelectric elements whose heights differ due to the difference in the voltage applied to the laminated piezoelectric elements rotates around an imaginary axis of rotation that does not exist. The light beam can be accessed by rotating and interlocking.

〔実施例〕〔Example〕

第1図は本発明のガルバノミラ−の構成を示す要部斜視
図、第2図は本発明の原理を示す要部側面図であるが、
これまでの説明に用いた各図と同一符号は同一物を示す
ものとする。
FIG. 1 is a perspective view of the main part showing the structure of the galvanometer mirror of the present invention, and FIG. 2 is a side view of the main part showing the principle of the invention.
The same reference numerals as in each of the figures used in the explanation so far indicate the same parts.

第1図および第2図に示すように、本発明のガルバノミ
ラ−は、固定台9上に配設された一対の積層型圧電素子
11および12によって反射ミラー1の両端部が支持さ
れ、該積層型圧電素子11.12への通電によって反射
ミラー1は架空の回転軸θ″を中心として矢印A −A
’方向に駆動されて光ビーム7をアクセスさせる構成に
なっている。
As shown in FIGS. 1 and 2, in the galvanometer mirror of the present invention, both ends of a reflecting mirror 1 are supported by a pair of laminated piezoelectric elements 11 and 12 disposed on a fixed base 9, and By energizing the type piezoelectric elements 11 and 12, the reflecting mirror 1 moves in the direction of arrow A-A around the imaginary rotation axis θ''.
' direction to access the light beam 7.

この積層型圧電素子11.12は、印加電圧の大きさに
ほぼ比例して、背丈、つまり高さり、がり、+に、そし
てhtがh2′というようにそれぞれ変化する。
The stacked piezoelectric elements 11, 12 change in height, ie, height, radius, +, ht changes to h2', etc. approximately in proportion to the magnitude of the applied voltage.

従って積層型圧電素子11および12に加える電圧の値
を制御すれば、ガルバノミラ−10の回動角θおよび回
動中心となる0の位置を自由に変えることができる。
Therefore, by controlling the value of the voltage applied to the laminated piezoelectric elements 11 and 12, the rotation angle θ of the galvanometer mirror 10 and the position of 0, which is the center of rotation, can be freely changed.

そこで前記第6図(ビームシフトが発生しないガルバノ
ミラ−の構成側図)で示した条件、即ちa=、/T−・
lを満足するようにすればビームシフトEの発生を防止
することが可能となる。ただし光学ヘッドアクチェエー
タがフォーカスアクセスを行っている時は像側焦点位置
F(第6図参照)が上下するので、実際にはlの長さが
変化する。
Therefore, the conditions shown in FIG. 6 (a side view of the configuration of a galvano mirror in which no beam shift occurs), that is, a=, /T-.
By satisfying l, it is possible to prevent the beam shift E from occurring. However, when the optical head actuator performs focus access, the image-side focal position F (see FIG. 6) moves up and down, so the length of l actually changes.

そうするとa−F「・lの関係は崩れるが、この場合は
、例えばフォーカスコイル(図示せず)に流れる電流値
から対物レンズ3の移動量を割り出し、高さ変化後の積
層型圧電素子11.12に加える電圧を調整することで
aの長さを変えることができるので、常にa = y/
T −iの関係を維持することは可能である。
In this case, the relationship a-F'·l will collapse, but in this case, for example, the amount of movement of the objective lens 3 is determined from the value of the current flowing through the focus coil (not shown), and the amount of movement of the objective lens 3 is calculated from the value of the current flowing through the focus coil (not shown), and the amount of movement of the stacked piezoelectric element 11 after the height change is determined. The length of a can be changed by adjusting the voltage applied to 12, so a = y/
It is possible to maintain the relationship T-i.

また本発明は、回転中心0から反射ミラー1を支持する
ためのアームが伸びている従来方式と異なり、アーム自
体が不必要であるため、フォーカスアクチュエータとア
ームが干渉するようなことはなく、小型化が容易となる
Furthermore, unlike the conventional method in which an arm extends from the rotation center 0 to support the reflecting mirror 1, the present invention does not require the arm itself, so there is no interference between the focus actuator and the arm, and the invention is compact. This makes it easier to

なお、第8図に示したフォーカスアクチュエータと第1
図のガルバノミラ−10を組み合わせて、第3図に示す
ような光学ヘッドアクチュエータを構成すると、その高
さHは20ma+程度におさまり、どれだけディスクの
インナー側に入り込めるかに関係する12の値も8w+
m程度となり、従来のものに比較してかなり小型化され
る0図中、6は反射板、20はフォーカスアクチュエー
タをそれぞれ示す。
Note that the focus actuator and the first
When the galvano mirror 10 shown in the figure is combined to form an optical head actuator as shown in Fig. 3, its height H will be about 20 ma+, and the value of 12, which is related to how far it can penetrate into the inner side of the disk, will be 8 w+.
In the figure, 6 indicates a reflector and 20 indicates a focus actuator.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ビームシフトが起こらず、しかも小型
化された光学ヘッドアクチュエータが実現する。
According to the present invention, an optical head actuator that does not cause beam shift and is miniaturized can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のガルバノミラ−の構成を示す要部斜視
図、 第2図は本発明の原理を示す要部側面図、第3図は本発
明の光学へ7ドアクチユエータの構成を示す要部斜視図
、 第4図はガルバノミラ−によるビームアクセス動作の模
式図、 第5図は従来のガルバノミラ−の構成例を示す斜視図、 第6図はビームシフトが発生しないガルバノミラ−の構
成例の模式図、 第7図は対物レンズの形状例を示す斜視図、第8図は光
学ヘッドアクチュエータの構造を示す斜視図、 第9図は゛光学ヘッドアクチュエータの構成例の模式図
である。 図中、1は反射ミラー、 1aは反射ミラーの光反射面、 2はミラー回動輪、 3は対物レンズ、 4はコイル、 5は磁気回路、 6は反射板、 7は光ビーム、 8は仮バネ、 9は固定台、 10はガルバノミラ−1 11、12は積層型圧電素子、 15は光ディスク、 15aはディスク面、 20はフォーカスアクチュエータ、 δはディスク偏心量・ Eばビームシフト量、 0はガルバノミラ−の回転中心、 0゛は架空の回転軸、 Fは対物レンズの像側焦点位置、 fは対物レンズの像側焦点距離、 Pは光軸と反射ミラーとが交わる点、 θは反射ミラーの回動角、 aはガルバノミラ−の回転中心から光軸と反射ミラーと
が交わる点までの距離、lは像側焦点位置Fから光軸と
反射ミラーとが交わる点までの距離、 l゛はFと0間の距離、 Uは対物レンズの光軸、 hはガルバノミラ−の高さ、 h+、 h2は積層型圧電素子比12の背丈、hl’ 
、 hz’ は通電後の積層型圧電素子11゜12の背
丈、 ■(は光学へラドアクチュエータの総高さ、をそれぞれ
示す。 2トメトG万のTルハ′ツミラーのaN 同第1図 す今朝グ原f7こ 第2図 /f岑59’fJn)¥7り→−2T−りΔλ象賎Eグ
第3図 +It’シス7 6ら表のがルハッSラーl;Jシヒーーム77ビス図第
4図 る芝?−n’ij’ルバ°ノミラーZ禾」成゛回75乏
テf17 ピー4エフLtt1・紮すむグー・力”ノムバソSラリ
夷#Q’(PJm第6図
Fig. 1 is a perspective view of the main parts showing the structure of the galvano mirror of the present invention, Fig. 2 is a side view of the main parts showing the principle of the invention, and Fig. 3 is the main part showing the structure of the optical seven-door actuator of the invention. A perspective view, FIG. 4 is a schematic diagram of beam access operation by a galvano mirror, FIG. 5 is a perspective view showing an example of a configuration of a conventional galvano mirror, and FIG. 6 is a schematic diagram of an example of a configuration of a galvano mirror in which no beam shift occurs. , FIG. 7 is a perspective view showing an example of the shape of the objective lens, FIG. 8 is a perspective view showing the structure of the optical head actuator, and FIG. 9 is a schematic diagram of an example of the structure of the optical head actuator. In the figure, 1 is a reflection mirror, 1a is a light reflection surface of the reflection mirror, 2 is a mirror rotation wheel, 3 is an objective lens, 4 is a coil, 5 is a magnetic circuit, 6 is a reflection plate, 7 is a light beam, 8 is a temporary Spring, 9 is a fixed base, 10 is a galvano mirror 1, 11 and 12 are laminated piezoelectric elements, 15 is an optical disk, 15a is a disk surface, 20 is a focus actuator, δ is the amount of disk eccentricity, E is the amount of beam shift, 0 is the galvano mirror − rotation center, 0゛ is the imaginary rotation axis, F is the image-side focal position of the objective lens, f is the image-side focal length of the objective lens, P is the point where the optical axis and the reflecting mirror intersect, θ is the point of the reflecting mirror Rotation angle, a is the distance from the center of rotation of the galvanometer mirror to the point where the optical axis and the reflecting mirror intersect, l is the distance from the image side focal position F to the point where the optical axis and the reflecting mirror intersect, l゛ is F The distance between
, hz' is the height of the laminated piezoelectric element 11゜12 after energization, and ■( is the total height of the optical helide actuator, respectively.) Figure 3 + It'sis7 6 et al. 4. Shiba? -n'ij'Ruba°Nomirror Zhe' Completed 75 times f17 P4F Ltt1, Chosumu Gu Power 'Nombaso S Rariii #Q' (PJm Figure 6

Claims (1)

【特許請求の範囲】 ディスク上の微小光スポットで情報の読み書きを行う光
ディスク装置に装備され、光ビーム(7)を光ディスク
(15)の半径方向にアクセスするためのガルバノミラ
ー(10)を具備して成る光学ヘッドアクチュエータの
構成において、 前記ガルバノミラー(10)は、印加された電圧に対応
して背丈が変化する一対の積層型圧電素子(11)、(
12)によって反射ミラー(1)が支持されてなること
を特徴とする光学ヘッドアクチュエータ。
[Claims] An optical disc device that reads and writes information using a minute light spot on a disc is equipped with a galvanometer mirror (10) for accessing a light beam (7) in the radial direction of the optical disc (15). In the configuration of the optical head actuator, the galvano mirror (10) includes a pair of laminated piezoelectric elements (11) whose height changes depending on the applied voltage;
12) An optical head actuator characterized in that a reflecting mirror (1) is supported by a member.
JP10620886A 1986-05-08 1986-05-08 Optical head actuator Pending JPS62262017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10620886A JPS62262017A (en) 1986-05-08 1986-05-08 Optical head actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10620886A JPS62262017A (en) 1986-05-08 1986-05-08 Optical head actuator

Publications (1)

Publication Number Publication Date
JPS62262017A true JPS62262017A (en) 1987-11-14

Family

ID=14427739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10620886A Pending JPS62262017A (en) 1986-05-08 1986-05-08 Optical head actuator

Country Status (1)

Country Link
JP (1) JPS62262017A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2770674A1 (en) * 1997-10-31 1999-05-07 Asahi Optical Co Ltd OPTICAL SYSTEM FOR OPTICAL DISC UNIT
US6278682B1 (en) 1997-11-08 2001-08-21 Asahi Kogaku Kogyo Kabushiki Kaisha Optical system for optical disc drive
US6285484B1 (en) * 1997-06-27 2001-09-04 Asahi Kogaku Kogyo Kabushiki Kaisha Rotation detecting system for galvano mirror
US6292447B1 (en) 1997-10-24 2001-09-18 Asahi Kogaku Kogyo Kabushiki Kaisha Head for optical disc drive
US6324141B2 (en) 1997-10-24 2001-11-27 Asahi Kogaku Kogyo Kabushiki Kaisha Optical system for optical disc drive
US6341106B1 (en) 1997-11-05 2002-01-22 Asahi Kogaku Kogyo Kabushiki Kaisha Optical disc drive
US6344917B1 (en) 1997-10-17 2002-02-05 Asahi Kogaku Kogyo Kabushiki Kaisha Galvano mirror unit
US6376953B1 (en) 1997-06-27 2002-04-23 Asahi Kogaku Kogyo Kabushiki Kaisha Galvano mirror unit
US6404715B1 (en) 1997-10-06 2002-06-11 Asahi Kogaku Kogyo Kabushiki Kaisha Detecting system for detecting rotation angle of deflection mirror
US6404485B1 (en) 1997-10-24 2002-06-11 Asahi Kogaku Kogyo Kabushiki Kaisha Rotation amount detecting system of deflection mirror for optical disc drive
US6407975B1 (en) 1998-03-16 2002-06-18 Asahi Kogaku Kogyo Kabushiki Kaisha Of Tokyo Optical disk drive
US6411588B1 (en) 1997-09-12 2002-06-25 Asahi Kogaku Kogyo Kabushiki Kaisha Optical data recording/reproducing device
US6421156B1 (en) 1997-10-17 2002-07-16 Asahi Kogaku Kogyo Kabushiki Kaisha Galvano mirror unit
US6424068B2 (en) 1997-06-27 2002-07-23 Asahi Kogaku Kogyo Kabushiki Kaisha Galvano mirror unit
US6529465B2 (en) 1997-06-26 2003-03-04 Pentax Corporation Optical system for optical disk drive
US6650604B1 (en) 1997-12-27 2003-11-18 Pentax Corporation Optical head of disk drive

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6529465B2 (en) 1997-06-26 2003-03-04 Pentax Corporation Optical system for optical disk drive
US6376953B1 (en) 1997-06-27 2002-04-23 Asahi Kogaku Kogyo Kabushiki Kaisha Galvano mirror unit
US6285484B1 (en) * 1997-06-27 2001-09-04 Asahi Kogaku Kogyo Kabushiki Kaisha Rotation detecting system for galvano mirror
US6424068B2 (en) 1997-06-27 2002-07-23 Asahi Kogaku Kogyo Kabushiki Kaisha Galvano mirror unit
US6327066B2 (en) 1997-06-27 2001-12-04 Asahi Kogaku Kogyo Kabushiki Kaisha Rotation detecting system for galvano mirror
US6411588B1 (en) 1997-09-12 2002-06-25 Asahi Kogaku Kogyo Kabushiki Kaisha Optical data recording/reproducing device
US6404715B1 (en) 1997-10-06 2002-06-11 Asahi Kogaku Kogyo Kabushiki Kaisha Detecting system for detecting rotation angle of deflection mirror
US6421156B1 (en) 1997-10-17 2002-07-16 Asahi Kogaku Kogyo Kabushiki Kaisha Galvano mirror unit
US6344917B1 (en) 1997-10-17 2002-02-05 Asahi Kogaku Kogyo Kabushiki Kaisha Galvano mirror unit
US6324141B2 (en) 1997-10-24 2001-11-27 Asahi Kogaku Kogyo Kabushiki Kaisha Optical system for optical disc drive
US6404485B1 (en) 1997-10-24 2002-06-11 Asahi Kogaku Kogyo Kabushiki Kaisha Rotation amount detecting system of deflection mirror for optical disc drive
US6292447B1 (en) 1997-10-24 2001-09-18 Asahi Kogaku Kogyo Kabushiki Kaisha Head for optical disc drive
US6333910B1 (en) 1997-10-31 2001-12-25 Asahi Kogaku Kogyo Kabushiki Kaisha Optical system for optical disc drive
FR2770674A1 (en) * 1997-10-31 1999-05-07 Asahi Optical Co Ltd OPTICAL SYSTEM FOR OPTICAL DISC UNIT
US6341106B1 (en) 1997-11-05 2002-01-22 Asahi Kogaku Kogyo Kabushiki Kaisha Optical disc drive
US6278682B1 (en) 1997-11-08 2001-08-21 Asahi Kogaku Kogyo Kabushiki Kaisha Optical system for optical disc drive
US6650604B1 (en) 1997-12-27 2003-11-18 Pentax Corporation Optical head of disk drive
US6407975B1 (en) 1998-03-16 2002-06-18 Asahi Kogaku Kogyo Kabushiki Kaisha Of Tokyo Optical disk drive

Similar Documents

Publication Publication Date Title
JPS62262017A (en) Optical head actuator
US5212582A (en) Electrostatically controlled beam steering device and method
JPH04291220A (en) Light deflector
NL8000132A (en) MULTI-AXIS MIRROR SYSTEM.
JPH0156466B2 (en)
JPH09146034A (en) Galvanomirror and optical disk device using the same
JPS61289541A (en) Optical head actuator
JP2875896B2 (en) Optical head actuator
JP2761300B2 (en) Tracking actuator for optical disk drive
JPH0279221A (en) Helical scanning type optical recording regenerator
US7697398B2 (en) Optical pickup device having an electromechanical conversion element for recording and/ or reproducing information
JPS61289542A (en) Optical head actuator
JPH09146031A (en) Galvanomirror and optical disk using the same
JPS6141043Y2 (en)
JPH0223849B2 (en)
JPS61177651A (en) Optical disk device
JPS6337830A (en) Movable magnet type two-dimensional actuator
JPH01129750A (en) Driving gear
JPS59160838A (en) Information detection head
JPS59160833A (en) Driving device for projection lens
JPH0423232A (en) Method and device for controlling light spot
JPH03134826A (en) Mirror rotation driving device
JPS6260733B2 (en)
JPS63113944A (en) Three-axis optical head
JPH079704B2 (en) Optical disk device