JPH0646187B2 - Analysis equipment - Google Patents

Analysis equipment

Info

Publication number
JPH0646187B2
JPH0646187B2 JP60138945A JP13894585A JPH0646187B2 JP H0646187 B2 JPH0646187 B2 JP H0646187B2 JP 60138945 A JP60138945 A JP 60138945A JP 13894585 A JP13894585 A JP 13894585A JP H0646187 B2 JPH0646187 B2 JP H0646187B2
Authority
JP
Japan
Prior art keywords
temperature
output
enzyme sensor
sensor
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60138945A
Other languages
Japanese (ja)
Other versions
JPS62848A (en
Inventor
知一 土門
昌夫 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60138945A priority Critical patent/JPH0646187B2/en
Publication of JPS62848A publication Critical patent/JPS62848A/en
Publication of JPH0646187B2 publication Critical patent/JPH0646187B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、温度補正機構を有した分析装置に関する。TECHNICAL FIELD OF THE INVENTION The present invention relates to an analyzer having a temperature correction mechanism.

[発明の技術的背景とその問題点] 酵素センサは、測定しようとする液体に接触させるだけ
で簡単に成分濃度等を測定できるため、化学検査等の分
析装置に利用されるようになつてきた。
[Technical background of the invention and its problems] Enzyme sensors have come to be used in analyzers such as chemical tests because they can easily measure component concentrations and the like by contacting the liquid to be measured. .

しかし、酵素センサの信号出力は、温度によつて変化す
るため従来の分析装置では試料液体を一定温度に保持し
て測定するか又は、恒温部内に酵素センサ及び試料液容
器を収容し、常に一定温度に保つた状態で測定すること
が行なわれている。
However, since the signal output of the enzyme sensor changes depending on the temperature, in the conventional analyzer, the sample liquid is held at a constant temperature for measurement, or the enzyme sensor and the sample liquid container are housed in the constant temperature unit and always kept constant. Measurement is performed while keeping the temperature.

そのためこのような装置では、測定装置内に恒温部を内
蔵させたり、恒温槽内に酵素センサを設置させる必要が
あり、装置が大形になつたり、複雑になつたり、使いに
くい等の欠点があつた。又、試料を所定量測つて装置に
注入したり、試料を一定温度に保つための操作が必要
で、被測定液が置かれた状態のまま測定するには不都合
であつた。
Therefore, in such a device, it is necessary to incorporate a constant temperature part in the measuring device or to install an enzyme sensor in the constant temperature tank, and there are drawbacks such as the device becoming large, complicated, and difficult to use. Atsuta Further, it is inconvenient to measure a predetermined amount of the sample and inject it into the apparatus, or to maintain the sample at a constant temperature, so that it is not possible to carry out the measurement while the liquid to be measured is placed.

[発明の目的] 本発明は、このような問題に基づきなされたものであ
り、その目的とするところは、試料液を何ら保温手段等
による恒温状態とせずにあるがままの状態で酵素センサ
により直ちに成分を測定することが可能な分析装置を提
供することにある。
[Object of the Invention] The present invention has been made on the basis of such a problem, and an object of the present invention is to use an enzyme sensor without changing the sample solution to a constant temperature state by a heat-retaining means. An object of the present invention is to provide an analyzer capable of immediately measuring components.

[発明の概要] 本発明の分析装置は、従来の分析装置を構成する手段に
加えてさらに試料液の温度を計測する手段及び前記温度
計測手段による測定値を用いて試料液中の被検物質を測
定した酵素センサからの出力信号を補正する手段を備え
たことを特徴としている。酵素センサの出力、その1次
微分値及び2次微分値が試料液中の被検物質の濃度に比
例することは従来より知られている。しかしながらこれ
らの測定値はその温度条件によつて変動してしまうので
従来は恒温槽等の保温手段が必要であつたが、本発明の
分析装置では温度補正手段により温度による測定値の変
動の補正がなされるので試料済の温度にかかわらず容易
に測定ができる。特に本発明者らは、酵素センサの各温
度に対する変化速度出力(センサからの出力1次微分
値)の対数が温度に対しおよそ5℃〜40℃の範囲で直線
的に変化することを見い出した。従つて酵素センサから
の出力の1次微分値をもとにして測定する場合には単に
一定の関係式(1次微分値の対数が温度変化に対して直
線的に変化する関係)に基づいて簡単に温度補正を行う
ことができる。この酵素センサの変化速度出力の対数と
温度との関係の一例を第4図の特性図に示す。図で縦軸
は変化速度出力の対数の比を20℃における出力を基準に
示し、また横軸は温度をとつている。この特性図からも
広い温度範囲において直線的に変化することがわかる。
[Summary of the Invention] The analysis apparatus of the present invention comprises a means for measuring the temperature of a sample solution in addition to the means constituting the conventional analysis apparatus, and a test substance in the sample solution using the measurement value by the temperature measurement means. It is characterized by comprising means for correcting the output signal from the enzyme sensor that measured It has been conventionally known that the output of an enzyme sensor and its first and second derivative values are proportional to the concentration of a test substance in a sample solution. However, since these measured values fluctuate depending on the temperature conditions, conventionally, a heat-retaining means such as a constant temperature bath was required. Since it is done, the measurement can be easily performed regardless of the sampled temperature. In particular, the inventors have found that the logarithm of the rate of change output (first derivative of the output from the sensor) with respect to each temperature of the enzyme sensor changes linearly with respect to temperature in the range of about 5 ° C to 40 ° C. . Therefore, when measuring based on the first derivative of the output from the enzyme sensor, simply use a constant relational expression (the relation where the logarithm of the first derivative changes linearly with temperature change). The temperature can be easily corrected. An example of the relationship between the logarithm of the change speed output of this enzyme sensor and the temperature is shown in the characteristic diagram of FIG. In the figure, the vertical axis shows the logarithmic ratio of the change speed output based on the output at 20 ° C, and the horizontal axis shows the temperature. It can be seen from this characteristic diagram that the temperature changes linearly in a wide temperature range.

[発明の実施例] 以下、図面を参照しながら本発明の実施例について説明
する。
Embodiments of the Invention Embodiments of the present invention will be described below with reference to the drawings.

実施例1 第1図は、酵素センサ1により試料液2の成分を測定す
る装置である。試料液2に酵素センサ1を接触させ、酵
素センサ1の出力を増幅器4で増幅し、A/D変換器6
により変化量をアナログからディジタルに変換し信号処
理回路8へ入力している。試料液2の温度を検知するた
めに、温度センサ3を試料液2に接触させ温度計測部5
の信号をA/D変換器7によつてディジタル変換して信
号処理回路8へ入力している。信号処理回路8には、温
度に対応する係数がメモリされており、酵素センサ1に
よるセンサ出力の変化量の測定と、試料液2の温度を測
定を行いそれぞれのデータを取込んでいる。酵素センサ
1の出力の変化量を測定終了後に、測定温度からメモリ
されている温度の係数を読み出し、センサ出力の変化量
に温度の係数を乗じて温度補正をした結果を数字表示器
9により、成分を直読している。
Example 1 FIG. 1 shows an apparatus for measuring components of a sample solution 2 by an enzyme sensor 1. The enzyme sensor 1 is brought into contact with the sample solution 2, the output of the enzyme sensor 1 is amplified by the amplifier 4, and the A / D converter 6
The amount of change is converted from analog to digital and input to the signal processing circuit 8. In order to detect the temperature of the sample liquid 2, the temperature sensor 3 is brought into contact with the sample liquid 2 and the temperature measuring unit 5
The signal is converted into a digital signal by the A / D converter 7 and input to the signal processing circuit 8. A coefficient corresponding to the temperature is stored in the signal processing circuit 8, and the amount of change in the sensor output by the enzyme sensor 1 and the temperature of the sample solution 2 are measured and the respective data are captured. After the measurement of the change amount of the output of the enzyme sensor 1 is completed, the temperature coefficient stored in the memory is read from the measured temperature, and the result of temperature correction by multiplying the change amount of the sensor output by the temperature coefficient is displayed by the numerical display 9. I read the ingredients directly.

実施例2 第2図は、第1図の測定回路に一次微分回路を付加して
いる。酵素センサ1を試料液2に接触させ、酸素センサ
1の出力を増幅器4で増幅した後に、センサ出力の変化
速度を計測するために一次微分回路10に入力し、1次微
分値をA/D変換器6を介してディジタル変換して信号
処理回路8に入力している。一方、試料液3に接触させ
ている温度センサ3により、試料液3の温度情報は温度
計測部5およびA/D変換器7を通してディジタル信号
に変換されて信号処理部8に入力される。
Embodiment 2 In FIG. 2, a primary differentiating circuit is added to the measuring circuit of FIG. After the enzyme sensor 1 is brought into contact with the sample liquid 2 and the output of the oxygen sensor 1 is amplified by the amplifier 4, it is input to the primary differentiating circuit 10 to measure the changing speed of the sensor output, and the primary differential value is A / D. The signal is digitally converted via the converter 6 and input to the signal processing circuit 8. On the other hand, the temperature information of the sample liquid 3 is converted into a digital signal through the temperature measuring unit 5 and the A / D converter 7 by the temperature sensor 3 which is in contact with the sample liquid 3, and is input to the signal processing unit 8.

信号処理部8では、酵素センサ1からの信号の1次微分
値の対数が温度変化に対して直線的に変化する関係を利
用して酵素センサ1からの情報に温度補正を施した結果
を数字表示器9に表示させている。
The signal processing unit 8 uses the relationship that the logarithm of the first-order differential value of the signal from the enzyme sensor 1 changes linearly with respect to temperature change to obtain the result of performing temperature correction on the information from the enzyme sensor 1 as a numeral. It is displayed on the display unit 9.

そして、この実施例2においては、1次微分値(酵素反
応の変化速度)を利用して測定しているため酵素反応中
にも測定結果が表示でき、実施例1と比較して測定が短
時間で行えるという特徴を有している。
In addition, in this Example 2, since the measurement is performed using the first-order differential value (change rate of the enzyme reaction), the measurement result can be displayed even during the enzyme reaction, and the measurement is shorter than that in Example 1. It has the feature that it can be done in time.

上記の装置を実際に使用し測定した結果を第1表に表わ
す。
Table 1 shows the measurement results obtained by actually using the above apparatus.

測定条件としては被検試料に45mg/dlの濃度のグルコー
ス液を用いて、その試料液の温度を種々かえて測定し、
補正後の出力値を調べた。その結果測定結果は十分満足
できるもので良好な結果が得られた。
As a measurement condition, a glucose solution having a concentration of 45 mg / dl was used as a test sample, and the temperature of the sample solution was changed variously to measure,
The output value after correction was examined. As a result, the measurement results were satisfactory and good results were obtained.

実施例3 第3図は、温度センサにサーミスタ11を用いサーミスタ
の温度特性を利用して酵素センサ1の温度補正を行うも
のである。酵素センサ1の出力の変化速度を求めるため
に増幅器4の後に一次微分回路10に入力している。
Third Embodiment FIG. 3 shows that the thermistor 11 is used as a temperature sensor and the temperature characteristic of the thermistor is used to correct the temperature of the enzyme sensor 1. It is input to the primary differentiating circuit 10 after the amplifier 4 in order to obtain the change speed of the output of the enzyme sensor 1.

さて、温度センサ11のサーミスタの抵抗−温度特性は、
酵素センサの変化速度出力−温度特性の直線と逆の関係
になり温度が下降すると抵抗値が上昇する。従つて、酵
素センサ1の変化速度出力と温度センサ11の抵抗変化を
電圧信号に変換して加算すれば、温度に対しては平坦な
出力を得ることができる。温度センサ11の抵抗変化を電
圧変換し、酵素センサ1の変化速度出力と全く逆の直線
にするためゲイン調整するゲイン調整部12を経て、酵素
センサ1の変化速度出力と加算器13で演算され、温度に
対して常にフラットな出力信号が得られる。A/D変換
器6と演算処理回路14により数字表示器9で成分を読み
とつている。
Now, the resistance-temperature characteristic of the thermistor of the temperature sensor 11 is
The change rate output of the enzyme sensor is inversely related to the straight line of the temperature characteristic, and the resistance value increases as the temperature decreases. Therefore, if the change speed output of the enzyme sensor 1 and the resistance change of the temperature sensor 11 are converted into voltage signals and added, a flat output with respect to temperature can be obtained. The resistance change of the temperature sensor 11 is converted into a voltage, and the change speed output of the enzyme sensor 1 and the adder 13 are used to calculate the change speed output of the enzyme sensor 1 via a gain adjusting unit 12 that adjusts the gain to be a straight line that is completely opposite. , A flat output signal is always obtained with respect to temperature. The components are read by the numerical display 9 by the A / D converter 6 and the arithmetic processing circuit 14.

以上の実施例の各装置によれば、酵素センサの実用温度
範囲において、良好な測定結果が得られた。
According to the respective devices of the above examples, good measurement results were obtained in the practical temperature range of the enzyme sensor.

[発明の効果] 本発明によれば、酵素センサからの出力の1次微分値に
温度補正を施して測定するため、試料液中の被検物質の
濃度を周囲温度の影響を受けずに精度良く、しかも短時
間に測定できる。又、単に温度計測系と補正回路を付加
するのみでよく、恒温部等が不要となり小形化且つ簡略
化した装置が提供できる。
EFFECTS OF THE INVENTION According to the present invention, since the first derivative of the output from the enzyme sensor is subjected to temperature correction for measurement, the concentration of the test substance in the sample solution can be accurately measured without being affected by the ambient temperature. It is good and can be measured in a short time. Further, it suffices to simply add a temperature measurement system and a correction circuit, and a constant temperature unit and the like are not required, so that a compact and simplified device can be provided.

【図面の簡単な説明】[Brief description of drawings]

第1図,第2図,第3図は本発明に係る実施例のブロッ
ク図、第4図は酵素センサ出力の変化速度出力の対数の
比と温度との関係を表わした特性図である。 1……酵素センサ、2……試料液 3,11……温度センサ、4……増幅器 5……温度計測回路、6,7……A/Dコンバータ 8……信号処理回路、9……数字表示器 10……一次微分回路、12……ゲイン調節回路 13……加算回路、14……演算処理回路
FIGS. 1, 2, and 3 are block diagrams of an embodiment according to the present invention, and FIG. 4 is a characteristic diagram showing the relationship between the logarithmic ratio of the change rate output of the enzyme sensor output and the temperature. 1 ... Enzyme sensor, 2 ... Sample solution 3,11 ... Temperature sensor, 4 ... Amplifier 5 ... Temperature measurement circuit, 6,7 ... A / D converter 8 ... Signal processing circuit, 9 ... Number Display 10 …… Primary differentiation circuit, 12 …… Gain adjusting circuit 13 …… Adding circuit, 14 …… Calculation processing circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】試料液中の被検物質の濃度を酵素反応を利
用して測定するための酵素センサと、 前記試料液の温度を測定する温度測定手段と、 前記酵素センサからの出力信号を1次微分し、該微分値
を出力する微分手段と、 この微分手段からの出力信号に前記温度測定手段からの
出力信号に応じた所定の補正を行って出力する補正演算
手段と を備えたことを特徴とする分析装置。
1. An enzyme sensor for measuring the concentration of a test substance in a sample solution using an enzymatic reaction, a temperature measuring unit for measuring the temperature of the sample solution, and an output signal from the enzyme sensor. A differential calculating means for performing primary differentiation and outputting the differentiated value; and a correction calculating means for performing a predetermined correction on the output signal from the differentiating means according to the output signal from the temperature measuring means and outputting the corrected signal. An analyzer characterized by.
JP60138945A 1985-06-27 1985-06-27 Analysis equipment Expired - Lifetime JPH0646187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60138945A JPH0646187B2 (en) 1985-06-27 1985-06-27 Analysis equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60138945A JPH0646187B2 (en) 1985-06-27 1985-06-27 Analysis equipment

Publications (2)

Publication Number Publication Date
JPS62848A JPS62848A (en) 1987-01-06
JPH0646187B2 true JPH0646187B2 (en) 1994-06-15

Family

ID=15233823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60138945A Expired - Lifetime JPH0646187B2 (en) 1985-06-27 1985-06-27 Analysis equipment

Country Status (1)

Country Link
JP (1) JPH0646187B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4635851A (en) * 1983-09-19 1987-01-13 Pegasus Industries, Inc. Casting nozzle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53133086A (en) * 1977-04-25 1978-11-20 Kyoto Daiichi Kagaku Kk Electrochemical analyzer
JPS58113744A (en) * 1981-12-26 1983-07-06 Omron Tateisi Electronics Co Measuring device having electrode utilizing enzyme
JPS61187645A (en) * 1985-02-15 1986-08-21 Fuji Electric Co Ltd Temperature compensation apparatus of measuring device utilizing immobilized enzyme membrane
JPS61253453A (en) * 1985-05-02 1986-11-11 Kubota Ltd Measurement for water of bulk solid material in hopper

Also Published As

Publication number Publication date
JPS62848A (en) 1987-01-06

Similar Documents

Publication Publication Date Title
US3960497A (en) Chemical analyzer with automatic calibration
US4420564A (en) Blood sugar analyzer having fixed enzyme membrane sensor
US3857771A (en) Rate sensing batch analyzer
CA2217312A1 (en) Method and apparatus for calibrating a sensor element
JPH11194108A (en) Method and apparatus for measurement of component amount under existence of coexisting substance
JP2511062B2 (en) Gas verification method and device
US5295746A (en) High resolution digital thermometer
US6596153B1 (en) Method for analyzing a gas sample
JPH0646187B2 (en) Analysis equipment
CN107607144B (en) Sensor baseline drift correction method and detection equipment
US4264328A (en) Method for recording measured values in an automatically performed blood gas analysis
JP2869610B2 (en) Calibration method of electrolyte analyzer
JPH0674933A (en) Measuring method and measuring device for ferrous ion concentration in soil
JPS61122555A (en) Multifunctional analyzer
JP3138774B2 (en) pH measuring device and its calibration method
JPS62168045A (en) Component measuring method
TW201202692A (en) Measurement device and measurement method utilizing the same
CN217133032U (en) Measuring electrode with temperature measurement compensation function
JP2586983Y2 (en) Combination-type effective chlorine countermeasure free reagent-free chlorine analyzer
JPS62240848A (en) Humor component assaymeter
Williams et al. Measurement/data-processing method to improve the ruggedness of membrane-based sensors: Application to amperometric oxygen sensor
Richter Jr Automatic Coulometric Titrations Involving Amperometric End Point
KR100328979B1 (en) Multi-channel apparatus for measuring pH/Ion
JPS635254A (en) Measuring apparatus
CN117761124A (en) Pressure product correction method and device with temperature compensation