JPS62168045A - Component measuring method - Google Patents

Component measuring method

Info

Publication number
JPS62168045A
JPS62168045A JP61008696A JP869686A JPS62168045A JP S62168045 A JPS62168045 A JP S62168045A JP 61008696 A JP61008696 A JP 61008696A JP 869686 A JP869686 A JP 869686A JP S62168045 A JPS62168045 A JP S62168045A
Authority
JP
Japan
Prior art keywords
value
offset
sensor
detected
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61008696A
Other languages
Japanese (ja)
Inventor
Akiyoshi Miyawaki
宮脇 明宜
Toshinori Kawamura
川村 俊教
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP61008696A priority Critical patent/JPS62168045A/en
Publication of JPS62168045A publication Critical patent/JPS62168045A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To take a measurement an irreducible time after a power source is turned on by detecting and storing the degree of variation in the offset of the output of a sensor, and calibrating a next detected electric signal value into a measured value according to the degree of variation. CONSTITUTION:A biosensor 1 equipped with a Pt electrode where oxygen is fixed and a counter electrode of Ag/AgCl is dipped in a buffer solution which is stirred by a rotator 3 rotated by a magnetic stirrer 2. A current which flows between both electrodes is converted by a current-voltage converter 6 into a voltage, which is A/D-converted 7 and inputted to an arithmetic part 8. Then the degree of variation in the offset of the output of the sensor 1 is detected and stored in a storage part 10, and the offset value of the sensor 1 as a measured value is extrapolated from plural offset values of the output of the sensor 1 before the stat of measurement by linear or hyperbolic approximation and the extrapolated value is subtracted from the detected electric signal value to obtain the measured value.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、センサを用いる成分測定法に関する。[Detailed description of the invention] 〔Technical field〕 The present invention relates to a component measuring method using a sensor.

〔背景技術〕[Background technology]

バイオセンサは、血液等の体液、尿1食品の成分等の測
定に用いられて、その基質特異性2反応特異性、感度の
高さ、応答の速さ等の点で優れており、臨床検査の分野
を中心に実用化が進み、普及しつつある。
Biosensors are used to measure body fluids such as blood, urine, food components, etc., and are excellent in terms of substrate specificity, reaction specificity, high sensitivity, and quick response, and are suitable for clinical testing. Practical use is progressing mainly in the fields of, and it is becoming widespread.

一般に、バイオセンサは、電極の表面に酵素を固定化し
たものが多い。
Generally, many biosensors have enzymes immobilized on the surface of an electrode.

電極式のバイオセンサは、電源を入れてから出力オフセ
ットが一定になるまでかなりの時間を要し、すぐには測
定できない場合が多い。第3回に、電極式のバイオセン
サの出力が、電源投入後の経過時間により変化するよう
すを曲線Cで示している。同図にみるように、電源投入
初期は、図中aの部分のごとく、大きなオフセット電流
が流れ、時間とともに減少し、曲′!/Acは一定レベ
ルに近づいていく。オフセットが減少している時点すで
試料を注入すると、出力はいったん立ち上がり、オフセ
ットの減少とともに下がってくる(図中Cの部分)。
Electrode-type biosensors require a considerable amount of time after the power is turned on until the output offset becomes constant, and measurements cannot be taken immediately in many cases. In the third part, curve C shows how the output of an electrode-type biosensor changes depending on the elapsed time after the power is turned on. As shown in the figure, when the power is initially turned on, a large offset current flows, as shown in part a in the figure, and decreases with time until the song '! /Ac approaches a certain level. If a sample is injected when the offset is decreasing, the output will rise once and then decrease as the offset decreases (portion C in the figure).

従来は、試料を注入した時点すのオフセット値y1を記
憶部に記憶しておき、Δを秒後(たとえば、Δt=10
)の値yを読み込み、)’−)’lを測定値として用い
ていた。すなわち、測定時のオフセット値を時間軸に平
行な直線Pにしていた。
Conventionally, the offset value y1 at the time when the sample is injected is stored in the storage unit, and Δ is set after seconds (for example, Δt=10
) was read, and )'-)'l was used as the measured value. That is, the offset value at the time of measurement was set to a straight line P parallel to the time axis.

しかし、このΔを秒間に、オフセット値は、さらに低下
しているわけで、真の値よりも小さい値しか得られない
ことになる。
However, the offset value further decreases during this Δ second, and only a value smaller than the true value is obtained.

このため、従来は、オフセットの低下率が一定値以下に
なるまで、測定をうけつけないようにしていた。しかし
、このようにしていては、電源投入後、すぐに測定する
ことはできない。また、緊急の測定を行うためには、バ
イオセンサを常に測定可能な状態にして置く必要がある
For this reason, in the past, measurements were not accepted until the offset reduction rate was below a certain value. However, with this method, it is not possible to measure immediately after power is turned on. Furthermore, in order to perform emergency measurements, it is necessary to keep the biosensor in a measurable state at all times.

〔発明の目的〕[Purpose of the invention]

この発明は、以上のことに鑑みて、センサを用いて成分
測定を行うにあたり、電源を入れてからできるだけ短い
時間で測定ができるような成分測定法を提供することを
目的とする。
In view of the above, an object of the present invention is to provide a component measuring method that can perform component measurement using a sensor in as short a time as possible after turning on the power.

〔発明の開示〕[Disclosure of the invention]

この発明は、上記の目的を達成するために、被検出成分
をセンサで検出して電気信号に変換し、被検出成分の測
定を行う方法において、前記センサの出力におけるオフ
セットの変動度を検出して記憶し、その変動度により次
の検出電気信号値を較正して測定値とすることを特徴と
する成分測定法を要旨としている。
In order to achieve the above object, the present invention includes a method of detecting a detected component with a sensor, converting it into an electrical signal, and measuring the detected component, in which the degree of offset variation in the output of the sensor is detected. The gist is a component measurement method characterized by storing the measured values and calibrating the next detected electric signal value based on the degree of variation to obtain the measured value.

以下に、この発明を、その実施例をあられす図面を参照
しながら詳しく説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第2図は、この発明の方法を実施するのに用いる装置(
成分測定器)の1例をあられす。
FIG. 2 shows the apparatus (
Here is an example of a component measuring device.

第2図にみるように、バイオセンサ1が、マグネチック
スターラ2により回転する回転子(Pj1拌子)3によ
って攪拌されている緩衝液4に浸されている。バイオセ
ンサ1は、酵素を固定化したPt電極と、Ag/AgC
1の対極とをそなえている。それらのPt電極と対極と
の間に定電圧源5により一定電圧が印加されている。そ
れら両電極間に流れる電流は、電流−電圧変換6により
電圧に変化され、A−Dコンバータ7により数値化され
て、演算部8に入る。演算部8には、電源投入と同時に
読み込まれるプログラム記憶部9、データの記憶部10
、および、演算結果の表示部11が接続されている。
As shown in FIG. 2, the biosensor 1 is immersed in a buffer solution 4 that is being stirred by a rotor (Pj1 stirrer) 3 that is rotated by a magnetic stirrer 2. Biosensor 1 includes a Pt electrode on which an enzyme is immobilized and an Ag/AgC
It has the opposite polarity of 1. A constant voltage source 5 applies a constant voltage between the Pt electrode and the counter electrode. The current flowing between these two electrodes is converted into a voltage by a current-voltage converter 6, converted into a numerical value by an A-D converter 7, and then inputted into an arithmetic unit 8. The calculation unit 8 includes a program storage unit 9 and a data storage unit 10 that are read at the same time as the power is turned on.
, and a calculation result display section 11 are connected.

第3図は、バイオセンサ1の出力の一例を曲線Cであら
れしている。
In FIG. 3, an example of the output of the biosensor 1 is plotted by a curve C.

以下、第2図および第3図を参照しながら説明する。This will be explained below with reference to FIGS. 2 and 3.

電源投入初期は、曲線Cのa部分のごとく大きなオフセ
ット電流が流れ、これが時間とともに減少し、一定レベ
ルに近づいていく。電源を投入してから、オフセットが
a部分にあるうちからオフセット値の変動度を読み込み
、記憶部1oに記憶する。そのオフセット値が減少して
いる時点すで試料を注入すると、出力がいったん立ち上
がり、オフセットの減少とともに下がってくる(第3図
中、C部分)。その出力の立ち上がりを検出した時点す
から所定時間Δを後の検出電気信号値(出力値)yを読
み込む。他方、出力の立ち上がりを検出した時点すの直
前のオフセット値の変動度から、出力値yを読み込んだ
時点b+Δtのオフセット値を推定して出力値yを較正
し、測定値として表示部11に表示する。
When the power is initially turned on, a large offset current flows as shown in part a of curve C, and this decreases over time and approaches a constant level. After turning on the power, the degree of variation of the offset value is read from the time when the offset is in the section a, and is stored in the storage unit 1o. When a sample is injected at the time when the offset value is decreasing, the output rises once and then decreases as the offset decreases (section C in FIG. 3). The detected electric signal value (output value) y after a predetermined time Δ is read from the time when the rise of the output is detected. On the other hand, the output value y is calibrated by estimating the offset value at the time b+Δt when the output value y is read from the degree of variation in the offset value immediately before the time when the rise of the output is detected, and is displayed on the display unit 11 as a measured value. do.

このように、この発明の成分測定法は、測定開始直前の
センサの出力におけるオフセット値の変動度により、検
出電気信号値を較正するようにしているので、オフセッ
ト値が降下または上昇しているときでも測定誤差をなく
すまたは小さくすることができる。このため、オフセッ
ト値が変動していても、その影響を少なくでき、精度よ
く被検出成分の測定を行うことができる。もちろん、オ
フセット値が全くまたはほとんど変動していないときで
も、精度よく測定できる。また、センサの出力における
オフセットが不安定である電源投入初期でも測定でき、
測定装置のウオームアツプ時間が少なくてすむ。このた
め、緊急の測定を行うために測定装置を常に測定可能な
状態にして置く必要がなくなる。
In this way, the component measurement method of the present invention calibrates the detected electrical signal value based on the degree of variation in the offset value in the output of the sensor immediately before the start of measurement. However, measurement errors can be eliminated or reduced. Therefore, even if the offset value fluctuates, its influence can be reduced, and the detected component can be measured with high accuracy. Of course, accurate measurements can be made even when the offset value does not change at all or hardly changes. In addition, it can be measured even at the beginning of power-on, when the offset in the sensor output is unstable.
The warm-up time of the measuring device is reduced. Therefore, it is no longer necessary to always keep the measuring device in a measurable state in order to perform urgent measurements.

上記説明では、センサとしてバイオセンサが用いられて
いたが、被検出成分を検出して電気信号に変換するもの
であれば、バイオセンサ以外のセンサが用いられてもよ
い。また、電極型以外のセンサが用いられてもよい。被
検出成分は、血液等の体液、尿1食品中の成分、その他
のものに含まれる成分があり、液中以外に含まれていて
も良いつぎに、より具体的な実施例に基づき説明する第
1図は、この発明の要部の1実施例をあられすフローチ
ャートである。
In the above description, a biosensor is used as the sensor, but any sensor other than the biosensor may be used as long as it detects a detected component and converts it into an electrical signal. Also, sensors other than electrode types may be used. Components to be detected include components contained in body fluids such as blood, components in urine1 foods, and other substances, and may be contained in other than liquids.Next, we will explain based on more specific examples. FIG. 1 is a flowchart showing one embodiment of the main part of the present invention.

以下、第1〜3図を参照しながら説明する。This will be explained below with reference to FIGS. 1 to 3.

電源投入初期は、曲線Cのa部分のごとく大きなオフセ
ット電流が流れ、これが時間とともに減少シ、一定レベ
ルに近づいていく。電源を投入してから所定時間間隔で
オフセット値の読み込みを開始する。読み込まれたオフ
セット値は、まず、記憶部(1)に入り、順次記憶部(
2)、・・・と入る。オフセット値が記憶部(4)まで
入ると、記憶部fl)のデータが消去され、記憶部(2
)〜(4)のデータが順次ひとつ前の記憶部に送られて
、それにより空いた記憶部(4)につぎのデータが入る
。この動作が所定時間(たとえば、1秒だが、これに限
定されない)間隔で繰り返される。
When the power is initially turned on, a large offset current flows as shown in part a of curve C, and as time passes, this decreases and approaches a constant level. After turning on the power, reading of the offset value is started at predetermined time intervals. The read offset value first enters the storage unit (1) and is sequentially stored in the storage unit (1).
2) Enter... When the offset value reaches memory unit (4), the data in memory unit fl) is erased and the data in memory unit (2) is erased.
) to (4) are sequentially sent to the previous storage section, and the next data is then stored in the empty storage section (4). This operation is repeated at predetermined time intervals (for example, but not limited to one second).

つぎに、試料を注入した時点すで、その直前の4つのオ
フセット値から、Δt (たとえば、10秒だが、これ
に限られない。以下同様。)後のオフセット値を直線Q
近似により求め、その値y2を記憶部(5)に記憶して
おく。試料を注入した時点すからΔt (たとえば、1
0秒)後の検出電気信号値(出力値)yを読み込む。こ
の読み込みを2回以上行ってそれらの平均値を求めるよ
うにしても良い。y−Yzを測定値として用いる。
Next, at the time when the sample is injected, the offset value after Δt (for example, 10 seconds, but not limited to this. The same applies hereinafter) is calculated by straight line Q from the four offset values immediately before that.
The value y2 is obtained by approximation and stored in the storage unit (5). From the moment the sample is injected, Δt (for example, 1
Read the detected electrical signal value (output value) y after 0 seconds). This reading may be performed two or more times and the average value may be calculated. y-Yz is used as the measurement value.

今述べた実施例よりもさらに正確に、測定時点(b+Δ
t)における真のオフセット値を推定するためには、試
料を注入した時点すの直前の4つのオフセット値から、
双曲線R近似により外挿するのがよい。この方法により
求めたオフセット値y3を検出電気信号値yから引き、
V  ’!sを測定値として用いる。
Even more precisely than in the example just described, the measurement time point (b+Δ
In order to estimate the true offset value at t), from the four offset values immediately before the sample injection time,
It is preferable to extrapolate using hyperbolic R approximation. Subtracting the offset value y3 obtained by this method from the detected electrical signal value y,
V'! Use s as the measurement value.

上記2つの実施例では、検出電気信号値を較正するため
の、測定時点における真のオフセット値を推定するため
に、試料を注入した時点の直前のオフセット値を4つ用
いていたが、2つ以上であれば、その個数は限定されな
い。前記真のオフセット値を推定するのに、直線近似ま
たは双曲線近似により外挿する方法を採っていたが他の
曲線近似により外挿するようであってもよい。
In the above two embodiments, in order to estimate the true offset value at the time of measurement in order to calibrate the detected electrical signal value, four offset values immediately before the time of sample injection were used. As long as it is above, the number is not limited. In order to estimate the true offset value, a method of extrapolation using linear approximation or hyperbolic approximation has been adopted, but extrapolation may be performed using other curve approximation.

なお、この発明は上記実施例に限られない。Note that this invention is not limited to the above embodiments.

〔発明の効果〕〔Effect of the invention〕

この発明にかかる成分測定法は、以上にみるように、セ
ンサの出力におけるオフセットの変動度を記憶し、その
変動度により次の検出電気信号値を較正して測定値とす
るようにしているので、オフセット値の変動による影響
を少なくでき、精度よく測定できる。また、オフセット
値の不安定な電源投入初期でも測定でき、ウオームアツ
プ時間が少なくてすむ。
As described above, the component measurement method according to the present invention stores the degree of offset variation in the output of the sensor, and uses the degree of variation to calibrate the next detected electric signal value to obtain the measured value. , the influence of offset value fluctuations can be reduced and measurements can be made with high accuracy. Additionally, measurements can be made even when the offset value is unstable at the beginning of power-on, and warm-up time can be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の方法の要部の実施例をあられすフロ
ーチャート、第2図はこの発明の方法を実施するのに用
いる装置の一例をあらゎすブロック図、第3図はバイオ
センサの出力特性をあらゎすグラフである。 1・・・バイオセンサ 代理人 弁理士  松 本 武 彦 、i1図 第2図
Fig. 1 is a flowchart showing an embodiment of the main part of the method of this invention, Fig. 2 is a block diagram showing an example of an apparatus used to carry out the method of this invention, and Fig. 3 is a flowchart showing an example of a device used to carry out the method of this invention. This is a graph showing the output characteristics. 1... Biosensor agent Patent attorney Takehiko Matsumoto, Figure i1 Figure 2

Claims (5)

【特許請求の範囲】[Claims] (1)被検出成分をセンサで検出して電気信号に変換し
、被検出成分の測定を行う方法において、前記センサの
出力におけるオフセットの変動度を検出して記憶し、そ
の変動度により次の検出電気信号値を較正して測定値と
することを特徴とする成分測定法。
(1) In a method of measuring the detected component by detecting the detected component with a sensor and converting it into an electrical signal, the degree of offset variation in the output of the sensor is detected and stored, and the degree of variation determines the following: A component measurement method characterized by calibrating a detected electrical signal value to obtain a measured value.
(2)検出電気信号値を較正することが、測定開始直前
のセンサの出力におけるオフセット値複数個から測定時
のセンサの出力におけるオフセット値を外挿し、前記検
出電気信号値からその外挿値を引くことにより行われる
特許請求の範囲第1項記載の成分測定法。
(2) Calibrating the detected electrical signal value involves extrapolating the offset value in the sensor output at the time of measurement from a plurality of offset values in the sensor output immediately before the start of measurement, and calculating the extrapolated value from the detected electrical signal value. A component measuring method according to claim 1, which is carried out by subtracting.
(3)外挿することが、直線近似により行われる特許請
求の範囲第2項記載の成分測定法。
(3) The component measuring method according to claim 2, wherein the extrapolation is performed by linear approximation.
(4)外挿することが、双曲線近似により行われる特許
請求の範囲第2項記載の成分測定法。
(4) The component measuring method according to claim 2, wherein the extrapolation is performed by hyperbolic approximation.
(5)センサがバイオセンサである特許請求の範囲第1
項ないし第4項のいずれかに記載の成分測定法。
(5) Claim 1 in which the sensor is a biosensor
Component measurement method according to any one of Items 1 to 4.
JP61008696A 1986-01-18 1986-01-18 Component measuring method Pending JPS62168045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61008696A JPS62168045A (en) 1986-01-18 1986-01-18 Component measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61008696A JPS62168045A (en) 1986-01-18 1986-01-18 Component measuring method

Publications (1)

Publication Number Publication Date
JPS62168045A true JPS62168045A (en) 1987-07-24

Family

ID=11700083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61008696A Pending JPS62168045A (en) 1986-01-18 1986-01-18 Component measuring method

Country Status (1)

Country Link
JP (1) JPS62168045A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994028396A1 (en) * 1993-05-28 1994-12-08 Fisons Plc Analytical apparatus
WO2003036285A1 (en) * 2001-10-26 2003-05-01 Arkray, Inc. Specific component concentration measuring method and concentration measuring instrument
JP2006010413A (en) * 2004-06-23 2006-01-12 Tanita Corp Polarographic concentration meter
JP2011174722A (en) * 2010-02-23 2011-09-08 Riken Keiki Co Ltd Gas detector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179655A (en) * 1981-04-30 1982-11-05 Fuji Electric Co Ltd Compensating method for background in quantification of composite constituent wherein enzyme electrode is used

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179655A (en) * 1981-04-30 1982-11-05 Fuji Electric Co Ltd Compensating method for background in quantification of composite constituent wherein enzyme electrode is used

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994028396A1 (en) * 1993-05-28 1994-12-08 Fisons Plc Analytical apparatus
US6245578B1 (en) * 1993-05-28 2001-06-12 Fisons Plc Analytical apparatus
WO2003036285A1 (en) * 2001-10-26 2003-05-01 Arkray, Inc. Specific component concentration measuring method and concentration measuring instrument
CN1311233C (en) * 2001-10-26 2007-04-18 爱科来株式会社 Method and apparatus for measuring specific component
US7347926B2 (en) 2001-10-26 2008-03-25 Arkray, Inc. Method and apparatus for measuring specific component
JP2006010413A (en) * 2004-06-23 2006-01-12 Tanita Corp Polarographic concentration meter
JP2011174722A (en) * 2010-02-23 2011-09-08 Riken Keiki Co Ltd Gas detector

Similar Documents

Publication Publication Date Title
JP2800981B2 (en) Biosensing meter with fail-safe function to prevent false display
US6193873B1 (en) Sample detection to initiate timing of an electrochemical assay
EP0702787B1 (en) Biosensing meter with ambient temperature estimation method and system
US7083712B2 (en) Fail judging method for analysis and analyzer
EP2085779B1 (en) Meter
JP2702286B2 (en) Biosensing meter with pluggable memory key
EP1447660B1 (en) Specific component concentration measuring method and concentration measuring instrument
KR20150036605A (en) System and method for detecting used and dried sensors
EP2193367A2 (en) Method for correcting erroneous results of measurement in biosensors and apparatus using the same
TW200914820A (en) System and methods for determination of analyte concentration using time resolved amperometry
US20150053576A1 (en) Measuring Arrangement
KR20080069572A (en) Bio-sensor measuring device, bio-sensor measuring system, and bio-sensor measuring method
JPS62168045A (en) Component measuring method
US20040132204A1 (en) Portable pH detector
JPH11230934A (en) Sample discriminating method
US5246863A (en) Karl Fischer titration techniques
JP2869610B2 (en) Calibration method of electrolyte analyzer
JPS62240848A (en) Humor component assaymeter
JPS61271424A (en) Blood component quantitative measuring device
JPS62294954A (en) Apparatus for determining component in liquid
CA2481622C (en) An apparatus and method for determining the concentration of a component in a fluid
HU194407B (en) Device for detecting end point of titration
JPS62214341A (en) Measuring instrument for component in liquid
JPS60131451A (en) Meter for determining blood component
JPH0646187B2 (en) Analysis equipment