JPH0646031A - Spread spectrum demodulator - Google Patents

Spread spectrum demodulator

Info

Publication number
JPH0646031A
JPH0646031A JP19518992A JP19518992A JPH0646031A JP H0646031 A JPH0646031 A JP H0646031A JP 19518992 A JP19518992 A JP 19518992A JP 19518992 A JP19518992 A JP 19518992A JP H0646031 A JPH0646031 A JP H0646031A
Authority
JP
Japan
Prior art keywords
signal
coefficient
weighting coefficient
amplitude
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19518992A
Other languages
Japanese (ja)
Other versions
JP2661471B2 (en
Inventor
Takashi Asahara
隆 浅原
Toshiharu Kojima
年春 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP19518992A priority Critical patent/JP2661471B2/en
Publication of JPH0646031A publication Critical patent/JPH0646031A/en
Application granted granted Critical
Publication of JP2661471B2 publication Critical patent/JP2661471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent time degradation in error rate characteristic of demodulated data with a small hardware scale configuration. CONSTITUTION:Inphase orthogonal base band signals 102 and 103 generated from a reception signal 101 by a complex base band signal generating means 1 are sampled by a sampling means 2 to obtain a sampled complex base band signal 104, and this signal 104 and a pseudo noise signal are subjected to mutual correlation operation by a complex correlation signal generating means 3 to obtain a complex correlation signal 105, and this signal 105 is subjected to polar coordinate transform to generate a phase signal theta and an amplitude signal R. A phase difference signal DELTAtheta is generated by a phase delay device 5 and a subtractor 6, and the signal R is multiplied by the delay amplitude signal by an amplitude delay device 7 and a multiplier 8 to obtain a weighting coefficient (c), and it is corrected in accordance with relations to a prescribed threshold (h) by a correcting circuit 9 to generate a corrected weighting coefficient (w). A weighted inphase base band signal 106 obtained by subjecting the signal DELTAthetaand the coefficient (w) to rectangular coordinate transform by a rectangular coordinate transforming means 10 is discriminated in every symbol period by a discriminating means 12 in accordance with the value of an actual number synthesis signal 107 accumulated by a signal synthesizing means 11 and is outputted as a demodulated data signal 108.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は直接拡散変調をしたス
ペクトラム拡散受信信号から差動符号化されたデータ信
号を復調する特性を改良するスペクトラム拡散復調装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spread spectrum demodulation device for improving the characteristic of demodulating a differentially encoded data signal from a direct spread modulation spread spectrum received signal.

【0002】[0002]

【従来の技術】たとえば文献(横山:スペクトラム拡散
通信方式、科学技術出版社、1988または Proaks:D
igital Communications,Second Edition,McGraw-Hil
l,1989)に示す従来例のスペクトラム拡散復調装
置は図7のように、複素ベースバンド信号生成手段1
は、送信側で搬送波に差動符号化されたデータ信号で2
相位相シフトキーイング(PSK)変調を施し、疑似雑
音(PN)信号で直接拡散変調を施したスペクトラム拡
散信号の受信信号101を局部搬送波と同相関係の同相
ベースバンド信号102と直交関係の直交ベースバンド
信号103とに変換し、複素ベースバンド信号の実数と
虚数成分を生成する。標本化手段2は、複素ベースバン
ド信号生成手段1から同相と直交ベースバンド信号10
2と103をチップ周期Tc (1チップ当たりのPN信
号の繰り返し周期)ごとにそれぞれ標本化し、標本化複
素ベースバンド信号104を生成する。複素相関信号生
成手段3は、標本化手段2から標本化複素ベースバンド
信号104にPN信号との相互相関演算を施し、複素相
関信号105を生成する。係数重み付け手段13は、複
素相関信号生成手段3から複素相関信号105をシンボ
ル周期Td (データ信号の繰り返し周期。2以上の整数
Mチップ数のとき、Td =MTc )だけ遅延した遅延複
素相関信号の複素共役数である重み付け係数をその絶対
2乗値と所定閾値hとの大小関係に応じて修正し、その
修正重み付け係数wを複素相関信号105と乗算して重
み付け複素相関信号106aを生成する。信号合成手段
11aは、係数重み付け手段13から重み付け複素相関
信号106aを累積加算し、Td ごとに複素合成信号1
07aを生成する。データ判定手段12aは、信号合成
手段11aから複素合成信号107aの値に応じて判定
し復調データ信号108として出力する。
2. Description of the Related Art For example, literature (Yokoyama: spread spectrum communication system, Science and Technology Publishing Company, 1988 or Proaks: D
igital Communications, Second Edition, McGraw-Hil
1, 1989), the conventional spread spectrum demodulator has a complex baseband signal generating means 1 as shown in FIG.
Is a data signal that is differentially encoded into a carrier wave on the transmission side.
Phase-phase shift keying (PSK) modulation is performed, and the spread spectrum signal received signal 101 that is directly spread-modulated with a pseudo noise (PN) signal is in-phase baseband signal 102 in quadrature relationship with local carrier and quadrature baseband in quadrature relationship. Signal 103 to generate real and imaginary components of the complex baseband signal. The sampling means 2 includes the in-phase and quadrature baseband signals 10 from the complex baseband signal generation means 1.
2 and 103 are sampled for each chip cycle T c (PN signal repetition cycle per chip) to generate a sampled complex baseband signal 104. The complex correlation signal generation means 3 performs cross-correlation calculation with the PN signal on the sampled complex baseband signal 104 from the sampling means 2 to generate a complex correlation signal 105. The coefficient weighting unit 13 delays the complex correlation signal 105 from the complex correlation signal generation unit 3 by a symbol period T d (repetition period of the data signal. When the number of integer M chips is 2 or more, T d = MT c ), the delay complex. The weighting coefficient, which is the complex conjugate number of the correlation signal, is modified according to the magnitude relationship between the absolute square value and the predetermined threshold value h, and the modified weighting coefficient w is multiplied by the complex correlation signal 105 to obtain the weighted complex correlation signal 106a. To generate. The signal synthesizing means 11a cumulatively adds the weighted complex correlation signals 106a from the coefficient weighting means 13, and outputs the complex synthesized signal 1 for each T d.
07a is generated. The data judging means 12a makes a judgment according to the value of the complex combined signal 107a from the signal combining means 11a and outputs it as a demodulated data signal 108.

【0003】上記従来例のスペクトラム拡散復調装置
は、複素演算で重み付け信号処理をするレイク(rak
e)方式(直接拡散変調をしたスペクトラム拡散信号の
特徴を利用し選択性フェージング通信路に生じる遅延波
のエネルギーを合成する信号合成方式)を採る。
The above-described spread spectrum demodulator of the prior art example uses a rake for performing weighted signal processing by complex operation.
e) method (a signal combining method that uses the characteristics of a spread spectrum signal that has been subjected to direct spread modulation to combine the energy of delayed waves generated in a selective fading channel).

【0004】複素ベースバンド信号生成手段1は図8の
ように、まず受信信号101を乗算器1aで局部搬送波
を発振する発振器1cからの同相局部搬送波、または局
部搬送波の位相をπ/2ラジアン移相する移相器1dか
らの直交局部搬送波とそれぞれ乗算する。つぎにろ波器
1bでそれぞれ高周波成分を除去し、複素ベースバンド
信号として実数成分の同相ベースバンド信号102(局
部搬送波と同相関係のベースバンド信号)と直交ベース
バンド信号103(局部搬送波と直交関係のベースバン
ド信号)とを生成する。
As shown in FIG. 8, the complex baseband signal generating means 1 first shifts the phase of the in-phase local carrier or the local carrier from the oscillator 1c which oscillates the received signal 101 by the multiplier 1a by π / 2 radians. The orthogonal local carriers from the corresponding phase shifters 1d are respectively multiplied. Next, each high-frequency component is removed by the filter 1b, and the in-phase baseband signal 102 (baseband signal in phase with the local carrier) and the quadrature baseband signal 103 (quadrature with the local carrier as a complex baseband signal) are real components. Baseband signal) and

【0005】標本化手段2は、時刻kTc (kは整数)
に標本化された同相と直交ベースバンド信号ypkとyqk
で標本化複素ベクトル信号yk 104を生成する。 yk =ypk+jyqk ここでjは虚数単位を表す
The sampling means 2 has a time kT c (k is an integer).
In-phase and quadrature baseband signals y pk and y qk sampled at
To generate a sampled complex vector signal y k 104. y k = y pk + jy qk where j represents an imaginary unit

【0006】複素相関信号生成手段3は、時刻(nM+
i)Tc =nTd +iTc (nは整数、i=0、・・
・、M−1)に標本化複素ベクトル信号yk 104とP
N信号um (m=1、・・・、M)との相互相関演算で
複素相関信号znM+i105を生成する。 znM+i=Σm(n-1)M+i+mm m=1〜M =PnM+i+jQnM+i ただし PnM+i=Σmp(n-1)M+i+mm m=1〜M QnM+i=Σmq(n-1)M+i+mm m=1〜M または znM+i=RnM+i exp(jθnM+i) ただし RnM+i=(P2 nM+i+Q2 nM+i1/2 θnM+i=tan-1(QnM+i/PnM+i) 複素相関信号105のエネルギー|znM+i2 は、一般
にPN信号として自己相関係数がインパルス状になるよ
うな系列、たとえばM系列などが選ばれるから、PN信
号の自己相関特性で先行波(最短到達時間の受信信号
波)と各遅延波(先行波以外の受信信号波)のエネルギ
ーに分離され、先行波や遅延波の到達時刻に顕著な極大
を示す。
The complex correlation signal generating means 3 is operated at time (nM +
i) T c = nT d + iT c (n is an integer, i = 0, ...
, M-1) sampled complex vector signals y k 104 and P
A complex correlation signal z nM + i 105 is generated by cross-correlation calculation with the N signal u m (m = 1, ..., M). z nM + i = Σ m y (n-1) M + i + m u m m = 1~M = P nM + i + jQ nM + i proviso P nM + i = Σ m y p (n-1) M + i + m u m m = 1~M Q nM + i = Σ m y q (n-1) M + i + m u m m = 1~M or z nM + i = R nM + i exp (jθ nM + i) provided that the energy of the R nM + i = (P 2 nM + i + Q 2 nM + i) 1/2 θ nM + i = tan -1 (Q nM + i / P nM + i) complex correlation signal 105 Since | z nM + i | 2 is generally selected as a PN signal, a sequence in which the autocorrelation coefficient has an impulse shape, such as an M sequence, so that the preceding wave (reception of the shortest arrival time) is determined by the autocorrelation characteristic of the PN signal. Signal wave) and each delayed wave (received signal wave other than the preceding wave) are separated into energies, and a remarkable maximum appears at the arrival time of the preceding wave or the delayed wave.

【0007】係数重み付け手段13は図9のように、ま
ず複素相関信号105を遅延器7aでTd だけ遅延した
遅延複素相関信号zの複素共役数を共役回路93で重み
付け係数z* として出力する。一般にレイク方式は、対
蹠(antipodal)信号(2相PSK変調信号な
ど)に対してTd だけ遅延した複素相関信号の複素共役
数を重み付け係数として用いる。つぎに修正回路9aで
入力された重み付け係数z* の絶対2乗値と所定閾値h
との大小関係に応じて重み付け係数z* を修正する。さ
らに複素相関信号105を乗算器8bで修正回路9aか
らの修正重み付け係数wと乗算し、重み付け複素相関信
号106aを生成する。時刻(nM+i)Tc=nTd
iTcに遅延複素相関信号z(n-1)M+i と重み付け係数z
* (n-1)M+i (*は複素共役を表す)と修正重み付け係数
nM+i106aとを生成する。 wnM+i=z* (n-1)M+i=R(n-1)M+i exp(−jθ(n-1)M+i) (|z* (n-1)M+i2≧hのとき) =0 (|z* (n-1)M+i2<hのとき) ここで閾値hを適切に選択すれば、先行波や遅延波に対
応しTd だけ遅延した複素相関信号の複素共役数である
重み付け係数のエネルギー|z* (n-1)M+i2の顕著な極
大が存在しない、すなわち遅延複素相関信号に雑音成分
だけ存在すると推定できる時刻に修正重み付け係数w
nM+iを0にでき、信号合成手段11aで生成する複素合
成信号107aの信頼性を向上できる。
As shown in FIG. 9, the coefficient weighting means 13 first outputs the complex conjugate number of the delayed complex correlation signal z obtained by delaying the complex correlation signal 105 by T d by the delay device 7a as the weighting coefficient z * in the conjugate circuit 93. . Generally, the rake method uses a complex conjugate number of a complex correlation signal delayed by T d with respect to an antipodal signal (two-phase PSK modulation signal or the like) as a weighting coefficient. Next, the absolute square value of the weighting coefficient z * input by the correction circuit 9a and the predetermined threshold h
The weighting coefficient z * is corrected according to the magnitude relationship with. Further, the complex correlation signal 105 is multiplied by the correction weighting coefficient w from the correction circuit 9a in the multiplier 8b to generate the weighted complex correlation signal 106a. Time (nM + i) T c = nT d +
The delayed complex correlation signal z (n-1) M + i and the weighting coefficient z are added to iT c.
* (n-1) M + i (* represents a complex conjugate) and a modified weighting coefficient w nM + i 106a are generated. w nM + i = z * (n-1) M + i = R (n-1) M + i exp (-jθ (n-1) M + i ) (| z * (n-1) M + i2 ≧ h) = 0 (| z * (n-1) M + i2 <h) If the threshold value h is appropriately selected, only T d can be applied to the preceding wave and the delayed wave. The time at which the energy of the weighting coefficient, which is the complex conjugate number of the delayed complex correlation signal | z * (n-1) M + i | 2 , does not exist, that is, it can be estimated that only the noise component exists in the delayed complex correlation signal. To the modified weighting factor w
nM + i can be set to 0, and the reliability of the complex synthetic signal 107a generated by the signal synthesizing means 11a can be improved.

【0008】信号合成手段11aは、時刻nMTc=n
dに各重み付け複素相関信号106aの累積加算で複
素合成信号dn-1 107aを生成し、レイク方式による
パスダイバーシチ(信号合成)を実現する。 dn-1 =Σk(n-1)M+k(n-1)M+k k=0〜L(Lは1以上M未満の整数) =Σk(n-2)M+k(n-1)M+kexp[j(θ(n-1)M+k−θ(n-2)M+k)] k=0〜L
The signal synthesizing means 11a detects the time nMT c = n.
The complex combined signal d n-1 107a is generated by cumulative addition of each weighted complex correlation signal 106a to T d, and path diversity (signal combining) by the rake method is realized. d n-1 = Σ k w (n-1) M + k z (n-1) M + k k = 0 to L (L is an integer of 1 or more and less than M) = Σ k R (n-2) M + k R (n-1) M + k exp [j (θ (n-1) M + k −θ (n-2) M + k )] k = 0 to L

【0009】データ判定手段12は、時刻nMTc =n
d に先行波の複素合成信号dn-1107aの極性を判
定し、(n−1)番目のデータ信号an-1 に対応する復
調データa^n-1∈{−1、1}を得る。先行波だけでな
く遅延波が存在するときも同様に適用できる。 dn-1 =R(n-2)M(n-1)M exp[j(θ(n-1)M−θ(n-2)M)] a^n-1=1(0≦θ(n-1)M−θ(n-2)M<π/2、 または3π/2≦θ(n-1)M−θ(n-2)M<2π、 すなわちRe[dn-1 ]≧0のとき) =−1(π/2≦θ(n-1)M−θ(n-2)M<3π/2、 すなわちRe[dn-1 ]<0のとき) ここでRe [・]は複素数の実数部を表す
The data judging means 12 determines the time nMT c = n.
The polarity of the complex composite signal d n-1 107a of the preceding wave is determined at T d, and the demodulation data a ^ n-1 ε {-1,1} corresponding to the (n-1) th data signal a n-1 is determined. To get The same can be applied when not only the preceding wave but also the delayed wave exists. d n-1 = R (n-2) M R (n-1) M exp [j (θ (n-1) M −θ (n-2) M )] a ^ n-1 = 1 (0 ≦ θ (n-1) M(n-2) M <π / 2, or 3π / 2 ≤ θ (n-1) M(n-2) M <2π, that is, Re [d n-1 ] ≧ 0) = -1 (π / 2 ≤ θ (n-1) M(n-2) M <3π / 2, that is, when Re [dn -1 ] <0) where R e [•] represents the real part of a complex number

【0010】[0010]

【発明が解決しようとする課題】上記のような従来のス
ペクトラム拡散復調装置では、シンボル周期だけ遅延し
た複素相関信号の複素共役数を重み付け係数とするか
ら、複素演算による信号処理が必要でありハードウエア
規模が大きくなる。また受信信号の搬送波対雑音電力比
が低いときは複素相関信号の信号対雑音電力比も低くな
り重み付け係数の雑音誤差が大きくなるから、正確に重
み付けされた信号を合成できず復調データの誤り率特性
を劣化する問題点があった。
In the conventional spread spectrum demodulation device as described above, since the complex conjugate number of the complex correlation signal delayed by the symbol period is used as the weighting coefficient, signal processing by complex operation is required and hardware is required. Wear scale increases. In addition, when the carrier-to-noise power ratio of the received signal is low, the signal-to-noise power ratio of the complex correlation signal is also low and the noise error of the weighting coefficient is large, so that the accurately weighted signal cannot be synthesized and the error rate of the demodulated data There was a problem that the characteristics were deteriorated.

【0011】この発明が解決しようとする課題は、スペ
クトラム拡散復調装置でハードウエア規模の小さい構成
で復調データの誤り率特性を劣化しないように、実数演
算だけで重み付け信号処理をするレイク方式を提供する
ことにある。
The problem to be solved by the present invention is to provide a rake system for performing weighted signal processing only by real number arithmetic so as not to deteriorate the error rate characteristic of demodulated data in a spread spectrum demodulation device having a small hardware scale. To do.

【0012】[0012]

【課題を解決するための手段】この発明のスペクトラム
拡散復調装置は、上記課題を解決するため、直接拡散変
調をしたスペクトラム拡散受信信号を複素ベースバンド
信号生成手段で複素ベースバンド信号の実数と虚数成分
として局部搬送波と同相および直交関係の同相と直交ベ
ースバンド信号を生成し、チップ速度の自然数倍ごとに
それぞれ標準化手段で標本化した標本化複素ベースバン
ド信号に対し、複素相関信号生成手段で疑似雑音信号と
の相互相関演算を施して複素相関信号を生成し、係数重
み付け手段でさらに係数重み付け信号処理を施し生成し
た重み付け信号を、信号合成手段で累積加算しシンボル
周期ごとに出力する合成信号の値に応じて、データ判定
手段で判定し復調データ信号を出力するものであって、
係数重み付け手段でつぎの手段を設け、実数演算で重み
付け信号処理をするレイク方式を採ることを特徴とす
る。
In order to solve the above-mentioned problems, the spread spectrum demodulation device of the present invention uses a complex base band signal generating means to generate a real number and an imaginary number of a complex base band signal from a spread spectrum received signal which has been subjected to direct spread modulation. In-phase and quadrature baseband signals in-phase and in quadrature relationship with the local carrier are generated as components, and the complex-correlation signal generation means compares the sampled complex base-band signals sampled by the normalization means for each natural multiple of the chip speed. A composite signal in which a cross correlation calculation with a pseudo noise signal is performed to generate a complex correlation signal, the coefficient weighting means further performs coefficient weighting signal processing, and the generated weighting signals are cumulatively added by the signal combining means and output for each symbol period. According to the value of, the data determination means determines and outputs a demodulated data signal,
The coefficient weighting means is provided with the following means, and a rake method for performing weighted signal processing by real number calculation is adopted.

【0013】極座標変換手段は、複素相関信号生成手段
から複素相関信号に対し極座標変換を施して位相信号と
振幅信号を生成する。
The polar coordinate transforming means polarizes the complex correlation signal from the complex correlation signal generating means to generate a phase signal and an amplitude signal.

【0014】位相遅延器と減算器は、極座標変換手段か
ら位相信号をシンボル周期だけ遅延した位相信号と減算
し位相差信号を生成する。
The phase delay device and the subtracter subtract the phase signal from the polar coordinate conversion means with the phase signal delayed by the symbol period to generate a phase difference signal.

【0015】振幅遅延器は、極座標変換手段から振幅信
号をシンボル周期だけ遅延し遅延振幅信号を生成する。
The amplitude delay device delays the amplitude signal from the polar coordinate conversion means by a symbol period to generate a delayed amplitude signal.

【0016】乗算器は、極座標変換手段から振幅信号
を、振幅遅延器からの遅延振幅信号または修正回路から
の修正係数と乗算し、それぞれ重み付け係数または修正
重み付け係数を生成する。
The multiplier multiplies the amplitude signal from the polar coordinate conversion means with the delayed amplitude signal from the amplitude delay device or the correction coefficient from the correction circuit to generate a weighting coefficient or a correction weighting coefficient, respectively.

【0017】修正回路は、乗算器からの重み付け係数、
または移動平均回路もしくは加重平均回路からの移動平
均重み付け係数もしくは加重平均重み付け係数に対し、
所定閾値との大小関係に応じて修正し、それぞれ修正重
み付け係数または修正係数を生成する。
The correction circuit comprises a weighting factor from the multiplier,
Or for the moving average weighting coefficient or the weighted average weighting coefficient from the moving average circuit or the weighted average circuit,
The correction weighting coefficient or the correction coefficient is generated according to the magnitude relationship with the predetermined threshold value.

【0018】移動平均回路は、乗算器からの重み付け係
数または振幅遅延器からの遅延振幅信号のシンボル間隔
N回(Nは2以上の整数)の移動平均値をN倍し、移動
平均重み付け係数を生成する。
The moving average circuit multiplies the weighting coefficient from the multiplier or the moving average value of the symbol interval N times (N is an integer of 2 or more) of the delayed amplitude signal from the amplitude delayer by N times to obtain the moving average weighting coefficient. To generate.

【0019】加重平均回路は、乗算器からの重み付け係
数または振幅遅延器からの遅延振幅信号に忘却係数(0
以上1未満の係数)で加重平均を施し、加重平均重み付
け係数を生成する。
The weighted averaging circuit adds a weighting coefficient from the multiplier or a forgetting coefficient (0
A weighted average is applied to the weighted average weighting coefficient to generate a weighted average weighting coefficient.

【0020】直交座標変換手段は、減算器からの位相差
信号と修正回路または乗算器からの修正重み付け係数と
に対し直交座標変換を施して重み付け信号を生成する。
The Cartesian coordinate transformation means performs Cartesian coordinate transformation on the phase difference signal from the subtractor and the modified weighting coefficient from the correction circuit or multiplier to generate a weighted signal.

【0021】[0021]

【作用】この発明のスペクトラム拡散復調装置は上記手
段で、スペクトラム拡散受信信号から生成した複素相関
信号に対し、まず極座標変換を施し位相信号と振幅信号
を生成する。つぎに位相信号とシンボル周期だけ遅延し
た位相信号とから位相差信号を生成する。また振幅信号
とシンボル周期だけ遅延した振幅信号との乗積振幅信号
を直接にもしくは移動平均しもしくは加重平均して、所
定閾値との大小関係に応じ修正することにより、または
シンボル周期だけ遅延した振幅信号を移動平均しもしく
は加重平均して所定閾値との大小関係に応じ修正し、振
幅信号と乗算することにより、修正重み付け係数を生成
する。さらに生成した位相差信号と修正重み付け係数に
対し、直交座標変換を施し重み付け信号を生成する。重
み付け信号は累積加算されシンボル周期ごとに判定され
復調データ信号として出力される。
In the spread spectrum demodulation device of the present invention, polar coordinate conversion is first performed on the complex correlation signal generated from the spread spectrum received signal by the above means to generate a phase signal and an amplitude signal. Next, a phase difference signal is generated from the phase signal and the phase signal delayed by the symbol period. In addition, the product of the amplitude signal and the amplitude signal delayed by the symbol period is directly or moving averaged or weighted averaged, and is corrected according to the magnitude relationship with the predetermined threshold, or the amplitude delayed by the symbol period is used. The signal is subjected to moving average or weighted average to be corrected according to the magnitude relation with a predetermined threshold value, and is multiplied by the amplitude signal to generate a modified weighting coefficient. Further, Cartesian coordinate transformation is performed on the generated phase difference signal and the modified weighting coefficient to generate a weighting signal. The weighted signals are cumulatively added, determined for each symbol period, and output as a demodulated data signal.

【0022】[0022]

【実施例】この発明を示す一実施例のスペクトラム拡散
復調装置は図1のように、複素ベースバンド信号生成手
段1と標本化手段2と複素相関信号生成手段3は、上記
従来例の図7に対応する。極座標変換手段4は、複素相
関信号生成手段3から複素相関信号105に極座標変換
を施し、位相信号θと振幅信号Rを生成する。位相遅延
器5と減算器6は、極座標変換手段4から位相信号θを
シンボル周期Td だけ遅延した位相信号と減算し、位相
差信号Δθを生成する。振幅遅延器7と乗算器8と修正
回路9は、極座標変換手段4から振幅信号RをTd だけ
遅延した振幅信号と乗算し、生成した重み付け係数cを
所定閾値hとの大小関係に応じて修正し、修正重み付け
係数wとして出力する。直交座標変換手段10は、減算
器6からの位相差信号Δθと修正回路9からの修正重み
付け係数wとに直交座標変換を施し、重み付け同相ベー
スバンド信号106を生成する。信号合成手段11は、
直交座標変換手段10から重み付け同相ベースバンド信
号106を累積加算し、Td ごとに実数合成信号107
を生成する。データ判定手段12は、信号合成手段11
から実数合成信号107の値に応じて判定し復調データ
信号108として出力する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 1, a spread spectrum demodulating apparatus according to an embodiment of the present invention has a complex baseband signal generating means 1, a sampling means 2 and a complex correlation signal generating means 3 as shown in FIG. Corresponding to. The polar coordinate transforming means 4 polarizes the complex correlation signal 105 from the complex correlation signal generating means 3 to generate a phase signal θ and an amplitude signal R. The phase delay device 5 and the subtracter 6 subtract the phase signal θ from the polar coordinate conversion means 4 with the phase signal delayed by the symbol period T d to generate the phase difference signal Δθ. The amplitude delay unit 7, the multiplier 8, and the correction circuit 9 multiply the amplitude signal R from the polar coordinate conversion unit 4 by the amplitude signal delayed by T d , and the generated weighting coefficient c is determined according to the magnitude relationship with the predetermined threshold value h. It is corrected and output as a modified weighting coefficient w. The Cartesian coordinate transformation means 10 performs Cartesian coordinate transformation on the phase difference signal Δθ from the subtractor 6 and the modified weighting coefficient w from the modification circuit 9 to generate a weighted in-phase baseband signal 106. The signal synthesizing means 11 is
The weighted in-phase baseband signal 106 is cumulatively added from the Cartesian coordinate transformation means 10, and the real number composite signal 107 is obtained for each T d.
To generate. The data determining means 12 is the signal synthesizing means 11
Is determined according to the value of the real number composite signal 107 and output as a demodulated data signal 108.

【0023】上記実施例のスペクトラム拡散復調装置
は、実数演算で重み付け信号処理をするレイク方式を採
る。
The spread spectrum demodulation device of the above embodiment adopts a rake system in which weighted signal processing is performed by real number calculation.

【0024】極座標変換手段4は、時刻(nM+i)T
c =nTd +iTc に複素相関信号znM+i105の極座
標演算で位相信号θnM+iと振幅信号RnM+iとを生成す
る。 θnM+i=tan-1(QnM+i/PnM+i) RnM+i=(P2 nM+i+Q2 nM+i1/2
The polar coordinate transformation means 4 is operated at time (nM + i) T.
The phase signal θ nM + i and the amplitude signal R nM + i are generated by polar coordinate calculation of the complex correlation signal z nM + i 105 at c = nT d + iT c . θ nM + i = tan -1 (Q nM + i / P nM + i ) R nM + i = (P 2 nM + i + Q 2 nM + i ) 1/2

【0025】位相遅延器5と減算器6は、時刻(nM+
i)Tc =nTd +iTc に遅延位相信号θ(n-1)M+i
位相差信号ΔθnM+iとを生成する。 ΔθnM+i=θnM+i−θ(n-1)M+i
The phase delay unit 5 and the subtractor 6 are operated at the time (nM +
i) The delayed phase signal θ (n-1) M + i and the phase difference signal Δθ nM + i are generated at T c = nT d + iT c . Δθ nM + i = θ nM + i −θ (n-1) M + i

【0026】振幅遅延器7と乗算器8と修正回路9は、
時刻(nM+i)Tc =nTd +iTc に遅延振幅信号
(n-1)M+iと重み付け係数cnM+iと修正重み付け係数w
nM+iとを生成する。 cnM+i=RnM+i(n-1)M+inM+i=cnM+i(cnM+i≧hのとき) =0 (cnM+i<hのとき)
The amplitude delay unit 7, the multiplier 8 and the correction circuit 9 are
Time (nM + i) T c = nT d + delay iT c amplitude signal R (n-1) M + i and the weighting factor c nM + i and correction weighting coefficient w
Generate nM + i and. c nM + i = R nM + i R (n-1) M + i w nM + i = c nM + i (when c nM + i ≧ h) = 0 (when c nM + i <h)

【0027】信号合成手段11は、時刻nMTc =nT
d に各重み付け同相ベースバンド信号106の累積加算
で実数合成信号dn-1 107を生成し、レイク方式によ
るバスダイバーシチを実現する。 dn-1 =Σk(n-1)M+kcosΔθ(n-1)M+k k=0〜L
The signal synthesizing means 11 detects the time nMT c = nT.
A real number composite signal d n-1 107 is generated by cumulative addition of each weighted in-phase baseband signal 106 to d to realize bus diversity by the rake method. d n-1 = Σ k w (n-1) M + k cos Δθ (n-1) M + k k = 0 to L

【0028】データ判定手段12は、時刻nMTc =n
d に先行波の実数合成信号dn-1107の極性を判定
し、(n−1)番目のデータ信号an-1 に対応する復調
データa^n-1∈{−1、1}を得る。先行波だけでなく
遅延波が存在するときも同様に適用できる。 dn-1 =w(n-1)McosΔθ(n-1)M a^n-1= 1(0≦Δθ(n-1)M<π/2、3π/2≦Δθ(n-1)M<2π、 すなわちdn-1≧0のとき) −1(π/2≦Δθ(n-1)M<3π/2、すなわちdn-1 <0の とき) 従来例のように複素乗算でなく実数乗算だけの簡単な構
成で従来例と同じ結果を得る効果がある。
The data judging means 12 determines the time nMT c = n.
The polarity of the real wave composite signal d n-1 107 of the preceding wave is determined at T d, and the demodulation data a ^ n-1 ε {-1,1} corresponding to the (n-1) th data signal a n-1 is determined. To get The same can be applied when not only the preceding wave but also the delayed wave exists. d n-1 = w (n -1) M cosΔθ (n-1) M a ^ n-1 = 1 (0 ≦ Δθ (n-1) M <π / 2,3π / 2 ≦ Δθ (n-1 ) M <2π, that is, when d n-1 ≧ 0) −1 (when π / 2 ≦ Δθ (n-1) M <3π / 2, that is, d n-1 <0) Complex as in the conventional example There is an effect that the same result as the conventional example can be obtained by a simple configuration of only real number multiplication, not multiplication.

【0029】なお上記実施例で修正回路9は、乗算器8
からの重み付け係数cを直接入力するとして説明した
が、図2のように移動平均回路91を設け、重み付け係
数cのシンボル間隔N回(Nは2以上の整数)の移動平
均値をN倍した移動平均重み付け係数vとして入力して
もよい。移動平均重み付け係数vは、重み付け係数cよ
り信号対雑音電力比を向上できる。時刻(nM+i)T
c =nTd +iTc に移動平均重み付け係数vnM+iと修
正移動平均重み付け係数wnM+iとを実数演算だけで生成
する。 vnM+i=Σk(n-k)M+i k=0〜N wnM+i=vnM+i(vnM+i≧hのとき) =0 (vnM+i<hのとき)
In the above embodiment, the correction circuit 9 includes the multiplier 8
Although the weighting coefficient c is directly input, the moving average circuit 91 is provided as shown in FIG. 2 to multiply the moving average value of the weighting coefficient c N times (N is an integer of 2 or more) by N times. You may input as a moving average weighting coefficient v. The moving average weighting coefficient v can improve the signal-to-noise power ratio more than the weighting coefficient c. Time (nM + i) T
The moving average weighting coefficient v nM + i and the modified moving average weighting coefficient w nM + i are generated by c = nT d + iT c only by real number calculation. v nM + i = Σ k c (nk) M + i k = 0 to N w nM + i = v nM + i (when v nM + i ≧ h) = 0 (when v nM + i <h)

【0030】また上記実施例で修正回路9は図3のよう
に、加重平均回路92を設け、乗算器8からの重み付け
係数cを忘却係数(0以上1未満の係数)λで加重平均
した加重平均重み付け係数xとして入力してもよい。加
重平均重み付け係数xは、重み付け係数cより信号対雑
音電力比を向上でき、忘却係数λを0以上1未満とする
から発散しない。加重平均回路92は図4のように、重
み付け係数cを加算器92aで乗算器92cからの忘却
係数λを乗じた遅延加重平均重み付け係数と加算し、加
重平均重み付け係数xとして出力する。遅延器92bで
加算器92aからの加重平均重み付け係数xをTd だけ
遅延し、その遅延加重平均重み付け係数を乗算器92c
で所定の忘却係数λ(0≦λ<1)と乗算する。時刻
(nM+i)Tc =nTd +iTc に加重平均重み付け
係数xnM+iと修正加重平均重み付け係数wnM+iとを実数
演算だけで生成する。 xnM+i=cnM+i+λx(n-1)M+i(xnM+iに関する漸化
式) xnM+i=Σkλk(n+k)M+i k=−∞〜0 wnM+i=xnM+i(xnM+i≧hのとき) =0 (xnM+i<hのとき)
Further, in the above embodiment, the correction circuit 9 is provided with the weighted average circuit 92 as shown in FIG. 3, and the weighted coefficient c from the multiplier 8 is weighted averaged by the forgetting coefficient (coefficient of 0 or more and less than 1) λ. You may input as an average weighting coefficient x. The weighted average weighting coefficient x can improve the signal-to-noise power ratio more than the weighting coefficient c, and does not diverge because the forgetting coefficient λ is 0 or more and less than 1. As shown in FIG. 4, the weighted average circuit 92 adds the weighting coefficient c to the delayed weighted average weighting coefficient obtained by multiplying the forgetting coefficient λ from the multiplier 92c by the adder 92a, and outputs the weighted average weighting coefficient x. The delayer 92b delays the weighted average weighting coefficient x from the adder 92a by T d , and the delayed weighted average weighting coefficient is multiplied by the multiplier 92c.
Is multiplied by a predetermined forgetting factor λ (0 ≦ λ <1). Time (nM + i) T c = nT d + iT c to produce a weighted average with weighting coefficients x nM + i and modified weighted average weighting factor w nM + i only real number operation. x nM + i = c nM + i + λx (n-1) ( recurrence formula regarding x nM + i) M + i x nM + i = Σ k λ k c (n + k) M + i k = -∞ ~ 0 w nM + i = x nM + i (when x nM + i ≥h) = 0 (when x nM + i <h)

【0031】また上記実施例で図5のように、極座標変
換手段4から振幅信号Rを振幅遅延器7でTd だけ遅延
した振幅信号cを、図2と同じ移動平均回路91と修正
回路9とを設け、そのシンボル間隔N回の移動平均値を
N倍した移動平均重み付け係数vに対する修正係数uと
乗算する乗算器8aから、修正移動平均重み付け係数w
として直交座標変換手段11に入力してもよい。移動平
均重み付け係数vは、遅延振幅信号cより信号対雑音電
力比を向上でき、vに対する修正係数uは実数演算だけ
で生成できる。時刻(nM+i)Tc =nTd +iTc
に遅延振幅信号cnM+iと移動平均重み付け係数vnM+i
vに対する修正係数unM+iと修正移動平均重み付け係数
nM+iとを生成する。 cnM+i=R(n-1)M+inM+i=Σk(n-k)M+i k=0〜N unM+i=vnM+i(v2 nM+i ≧hのとき) =0 (v2 nM+i <hのとき) wnM+i=RnM+inM+i
In the above embodiment, as shown in FIG. 5, the amplitude signal c obtained by delaying the amplitude signal R from the polar coordinate converting means 4 by the amplitude delay device 7 by T d is used as the moving average circuit 91 and the correction circuit 9 shown in FIG. And a modified moving average weighting coefficient w from a multiplier 8a for multiplying the moving average weighting coefficient v obtained by multiplying the moving average value N times the symbol interval by a correction coefficient u.
Alternatively, it may be input to the orthogonal coordinate conversion means 11. The moving average weighting coefficient v can improve the signal-to-noise power ratio compared to the delay amplitude signal c, and the correction coefficient u for v can be generated only by a real number calculation. Time (nM + i) T c = nT d + iT c
To generate a delay amplitude signal c nM + i , a moving average weighting coefficient v nM + i , a correction coefficient u nM + i for v, and a modified moving average weighting coefficient w nM + i . c nM + i = R (n-1) M + i v nM + i = Σ k c (nk) M + i k = 0 to N u nM + i = v nM + i (v 2 nM + i ≧ h = 0 (when v 2 nM + i <h) w nM + i = R nM + i u nM + i

【0032】また上記実施例で図6のように、極座標変
換手段4から振幅信号Rを振幅遅延器7でTd だけ遅延
した振幅信号cを、図3と同じ加重平均回路92と修正
回路9とを設け、忘却係数λで加重平均した加重平均重
み付け係数xに対する修正係数uと乗算する乗算器8a
から、修正加重平均重み付け係数wとして直交座標変換
手段11に入力してもよい。加重平均重み付け係数x
は、遅延振幅信号cより信号対雑音電力比を向上でき、
忘却係数λを0以上1未満とするから発散しない。また
xに対する修正係数uは実数演算だけで生成できる。時
刻(nM+i)Tc =nTd +iTc に遅延振幅信号c
nM+iと加重平均重み付け係数xnM+iとxに対する修正係
数unM+iと修正加重平均重み付け係数wnM+iとを生成す
る。 cnM+i=R(n-1)M+inM+i=cnM+i+λx(n-1)M+i(xnM+iに関する漸化
式) xnM+i=Σkλk(n+k)+i k=−∞〜0 unM+i=xnM+i(x2 nM+i ≧hのとき) =0 (x2 nM+i <hのとき) wnM+i=RnM+inM+i
In the above embodiment, as shown in FIG. 6, the amplitude signal c obtained by delaying the amplitude signal R from the polar coordinate conversion means 4 by the amplitude delay device 7 by T d is used as the weighted average circuit 92 and the correction circuit 9 shown in FIG. And a multiplier 8a for multiplying the correction coefficient u with respect to the weighted average weighting coefficient x weighted by the forgetting coefficient λ.
Therefore, the modified weighted average weighting coefficient w may be input to the orthogonal coordinate transformation means 11. Weighted average weighting coefficient x
Can improve the signal-to-noise power ratio over the delayed amplitude signal c,
Since the forgetting factor λ is set to 0 or more and less than 1, it does not diverge. Further, the correction coefficient u for x can be generated only by a real number operation. At time (nM + i) T c = nT d + iT c , the delay amplitude signal c
nM + i , a weighted average weighting coefficient x nM + i , a correction coefficient u nM + i for x, and a modified weighted average weighting coefficient w nM + i are generated. c nM + i = R (n -1) M + i x nM + i = c nM + i + λx (n-1) M + i ( recurrence formulas regarding x nM + i) x nM + i = Σ k λ k c (n + k) + i k = −∞ to 0 u nM + i = x nM + i (when x 2 nM + i ≧ h) = 0 (when x 2 nM + i <h) w nM + i = R nM + i u nM + i

【0033】また上記実施例で搬送波変調方式は、2相
PSK変調方式で説明したが、他の多相PSK変調方式
(4相PSK変調方式など)であってもよいのはいうま
でもない。また標本化手段2の標本化間隔は、チップ周
期に等しいとして説明したが、チップ周期の1/K(K
は自然数)であればよい(たとえばチップ周期の1/2
や1/4)。すなわちチップ速度の自然数倍であればよ
い。
In the above embodiment, the carrier wave modulation method has been described as the two-phase PSK modulation method, but it goes without saying that another multi-phase PSK modulation method (four-phase PSK modulation method or the like) may be used. Further, although the sampling interval of the sampling means 2 is described as being equal to the chip period, it is 1 / K (K
Is a natural number) (for example, 1/2 of the chip period)
Or 1/4). That is, it may be a natural multiple of the chip speed.

【0034】[0034]

【発明の効果】上記のようなこの発明のスペクトラム拡
散復調装置では、実数演算で重み付け信号処理をするレ
イク方式を採るから、従来のように複素演算によるレイ
ク方式と比べ、ハードウエア構成を小さくできる効果が
ある。また受信信号の搬送波対雑音電力比が低いときで
も雑音誤差の小さい重み付け係数を求めることができる
から、正確な重み付けをした信号合成ができ復調データ
の誤り率特性劣化を防止できる効果がある。
The spread spectrum demodulator of the present invention as described above adopts the rake system in which the weighted signal processing is performed by the real number operation, and therefore the hardware configuration can be made smaller than the conventional rake system by the complex operation. effective. Further, even when the carrier-to-noise power ratio of the received signal is low, a weighting coefficient with a small noise error can be obtained, so that there is an effect that accurate weighted signal synthesis can be performed and the error rate characteristic deterioration of demodulated data can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明を示す一実施例のスペクトラム拡散復
調装置の機能ブロック図。
FIG. 1 is a functional block diagram of a spread spectrum demodulator according to an embodiment of the present invention.

【図2】図1に示す修正回路の移動平均機能付加を説明
する図。
FIG. 2 is a diagram illustrating addition of a moving average function of the correction circuit shown in FIG.

【図3】図1に示す修正回路の加重平均機能付加を説明
する図。
FIG. 3 is a diagram for explaining addition of a weighted average function of the correction circuit shown in FIG.

【図4】図3に示す加重平均回路の機能ブロック図。FIG. 4 is a functional block diagram of the weighted average circuit shown in FIG.

【図5】図1に示す振幅信号系の他の一実施例の機能ブ
ロック図。
5 is a functional block diagram of another embodiment of the amplitude signal system shown in FIG.

【図6】図1に示す振幅信号系の他の一実施例の機能ブ
ロック図。
6 is a functional block diagram of another embodiment of the amplitude signal system shown in FIG.

【図7】従来例のスペクトラム拡散復調装置の機能ブロ
ック図。
FIG. 7 is a functional block diagram of a conventional spread spectrum demodulation device.

【図8】図7に示す複素ベースバンド信号生成手段の機
能ブロック図。
FIG. 8 is a functional block diagram of the complex baseband signal generation means shown in FIG.

【図9】図7に示す係数重み付け手段の機能ブロック
図。
9 is a functional block diagram of the coefficient weighting unit shown in FIG. 7.

【符号の説明】[Explanation of symbols]

1 複素ベースバンド信号生成手段 2 標本化手段 3 複素相関信号生成手段 4 極座標変換手段 5 位相遅延器 6 減算器 7 振幅遅延器 8、8a 乗算器 9 修正回路 91 移動平均回路 92 加重平均回路 10 直交座標変換手段 11 信号合成手段 12 データ判定手段 101 受信信号 102 同相ベースバンド信号 103 直交ベースバンド信号 104 標本化複素ベースバンド信号 105 複素相関信号 106 重み付け同相ベースバンド信号 107 実数合成信号 108 複調データ信号 なお図中、同一符号は同一または相当部分を示す。 1 Complex Baseband Signal Generation Means 2 Sampling Means 3 Complex Correlation Signal Generation Means 4 Polar Coordinate Transformation Means 5 Phase Delayers 6 Subtractors 7 Amplitude Delayers 8, 8a Multipliers 9 Correction Circuits 91 Moving Average Circuits 92 Weighted Average Circuits 10 Orthogonal Coordinate transforming means 11 Signal combining means 12 Data judging means 101 Received signal 102 In-phase baseband signal 103 Quadrature baseband signal 104 Sampling complex baseband signal 105 Complex correlation signal 106 Weighted in-phase baseband signal 107 Real number composite signal 108 Multitone data signal In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 直接拡散変調をしたスペクトラム拡散受
信信号から複素ベースバンド信号の実数と虚数成分とし
て生成した、局部搬送波と同相および直交関係の同相と
直交ベースバンド信号をチップ速度の自然数倍ごとにそ
れぞれ標本化した標本化複素ベースバンド信号に対し疑
似雑音信号と相互相関演算を施して複素相関信号を生成
する、複素ベースバンド信号生成手段と標本化手段およ
び複素相関信号生成手段と、複素相関信号生成手段から
複素相関信号に対し係数重み付け信号処理を施す係数重
み付け手段と、係数重み付け手段から重み付け信号を累
積加算しシンボル周期ごとに出力する合成信号の値に応
じて判定し復調データ信号を出力する、信号合成手段お
よびデータ判定手段とを備えるスペクトラム拡散復調装
置において、前記係数重み付け手段で前記複素相関信号
生成手段から複素相関信号に対し極座標変換を施して位
相と振幅信号を生成する極座標変換手段と、極座標変換
手段から前記位相信号をシンボル周期だけ遅延した位相
信号と減算し位相差信号を生成する位相遅延器および減
算器と、前記極座標変換手段から前記振幅信号をシンボ
ル周期だけ遅延した振幅信号と乗算した重み付け係数に
対し、所定閾値との大小関係に応じて修正し修正重み付
け係数として出力する振幅遅延器と乗算器および修正回
路と、前記減算器からの位相差信号と前記修正回路から
の修正重み付け係数とに対し、直交座標変換を施して前
記重み付け信号を生成し前記信号合成手段に出力する直
交座標変換手段とを設けることを特徴とするスペクトラ
ム拡散復調装置。
1. An in-phase and quadrature baseband signal having an in-phase and quadrature relationship with a local carrier, which is generated as a real number and an imaginary number component of a complex baseband signal from a spread-spectrum received signal subjected to direct sequence modulation, at every natural multiple of the chip rate. A complex baseband signal generating means, a sampling means, a complex correlation signal generating means, and a complex correlation A coefficient weighting means for subjecting the complex correlation signal to the coefficient weighting signal processing from the signal generating means, and a weighting signal from the coefficient weighting means are cumulatively added and determined according to the value of the combined signal output for each symbol period, and a demodulated data signal is output. In the spread spectrum demodulating device including a signal synthesizing means and a data judging means, A polar coordinate conversion unit that performs a polar coordinate conversion on the complex correlation signal from the complex correlation signal generation unit by the number weighting unit to generate a phase and amplitude signal, and a phase signal obtained by delaying the phase signal by a symbol period from the polar coordinate conversion unit A phase delay unit and a subtracter that generate a phase difference signal, and a weighting coefficient obtained by multiplying the amplitude signal obtained by delaying the amplitude signal from the polar coordinate conversion unit by a symbol period are corrected according to the magnitude relationship with a predetermined threshold value. The amplitude delay unit, the multiplier, and the correction circuit that output as the modified weighting coefficient, the phase difference signal from the subtractor and the modified weighting coefficient from the modification circuit are subjected to Cartesian coordinate transformation to generate the weighted signal. A spread spectrum demodulation device, comprising: a rectangular coordinate transformation means for outputting to the signal synthesizing means.
【請求項2】 修正回路で移動平均回路を設け、乗算器
から重み付け係数のシンボル間隔N回(Nは2以上の整
数)の移動平均値をN倍した移動平均重み付け係数を前
記修正回路に入力することを特徴とする請求項1記載の
スペクトラム拡散復調装置。
2. A moving average circuit is provided in the correction circuit, and a moving average weighting coefficient obtained by multiplying a moving average value N times (N is an integer of 2 or more) of symbol intervals of the weighting coefficient from the multiplier is input to the correction circuit. The spread spectrum demodulation device according to claim 1, wherein
【請求項3】 修正回路で加重平均回路を設け、乗算器
から重み付け係数に忘却係数(0以上1未満の係数)で
加重平均を施した加重平均重み付け係数を前記修正回路
に入力することを特徴とする請求項1記載のスペクトラ
ム拡散復調装置。
3. A weighted average circuit is provided in the correction circuit, and a weighted average weighting coefficient obtained by weighting the weighting coefficient with a forgetting coefficient (a coefficient of 0 or more and less than 1) is input from the multiplier to the correction circuit. The spread spectrum demodulation device according to claim 1.
【請求項4】 極座標変換手段から振幅信号を振幅遅延
器でシンボル周期だけ遅延した振幅信号のシンボル間隔
N回(Nは2以上の整数)の移動平均値をN倍する移動
平均回路からの移動平均重み付け係数に対し、所定閾値
との大小関係に応じて修正する修正回路からの修正係数
と前記振幅信号とを乗算する乗算器から修正移動平均重
み付け係数として直交座標変換手段に出力することを特
徴とする請求項1記載のスペクトラム拡散復調装置。
4. A moving average circuit for multiplying a moving average value N times (N is an integer of 2 or more) of symbol intervals of an amplitude signal obtained by delaying the amplitude signal from the polar coordinate conversion means by a symbol period by an amplitude delayer by a moving average circuit. The average weighting coefficient is output to the orthogonal coordinate conversion means as a modified moving average weighting coefficient from a multiplier that multiplies the amplitude signal by the correction coefficient from the correction circuit that corrects the average weighting coefficient according to the magnitude relation with a predetermined threshold value. The spread spectrum demodulation device according to claim 1.
【請求項5】 極座標変換手段から振幅信号を振幅遅延
器でシンボル周期だけ遅延した振幅信号に忘却係数(0
以上1未満の係数)で加重平均を施す加重平均回路から
の加重平均重み付け係数に対し、所定閾値との大小関係
に応じて修正する修正回路からの修正係数と前記振幅信
号とを乗算する乗算器から修正加重平均重み付け係数と
して直交座標変換手段に出力することを特徴とする請求
項1記載のスペクトラム拡散復調装置。
5. The forgetting factor (0) is added to the amplitude signal obtained by delaying the amplitude signal from the polar coordinate conversion means by a symbol period by an amplitude delay device.
A multiplier for multiplying the amplitude signal by a correction coefficient from a correction circuit that corrects a weighted average weighting coefficient from a weighted average circuit that performs a weighted average with a coefficient less than 1). 2. The spread spectrum demodulation device according to claim 1, wherein the modified weighted average weighting coefficient is output to the Cartesian coordinate transformation means.
JP19518992A 1992-07-22 1992-07-22 Spread spectrum demodulator Expired - Fee Related JP2661471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19518992A JP2661471B2 (en) 1992-07-22 1992-07-22 Spread spectrum demodulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19518992A JP2661471B2 (en) 1992-07-22 1992-07-22 Spread spectrum demodulator

Publications (2)

Publication Number Publication Date
JPH0646031A true JPH0646031A (en) 1994-02-18
JP2661471B2 JP2661471B2 (en) 1997-10-08

Family

ID=16336936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19518992A Expired - Fee Related JP2661471B2 (en) 1992-07-22 1992-07-22 Spread spectrum demodulator

Country Status (1)

Country Link
JP (1) JP2661471B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7483680B2 (en) 2005-12-20 2009-01-27 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for modulation path delay mismatch compensation in a polar modulation transmitter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7483680B2 (en) 2005-12-20 2009-01-27 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for modulation path delay mismatch compensation in a polar modulation transmitter

Also Published As

Publication number Publication date
JP2661471B2 (en) 1997-10-08

Similar Documents

Publication Publication Date Title
US5787123A (en) Receiver for orthogonal frequency division multiplexed signals
JP2705623B2 (en) Diversity transmission / reception method and transceiver
EP1158739B1 (en) Timing reproducer and demodulator comprising the same
US7889782B2 (en) Joint de-spreading and frequency correction using a correlator
US6363106B1 (en) Method and apparatus for despreading OQPSK spread signals
US20030081562A1 (en) Apparatus for estimating propagation path characteristics
JP3846546B2 (en) Frequency offset estimator
JP2009071876A (en) Channel gain estimation in rake receiver
WO2007016219A1 (en) Enhanced qpsk or dqpsk data demodulation for direct sequence spreading (dss) system waveforms using orthogonal or near-orthogonal spreading sequences
JPH07202750A (en) Spread spectrum reception method and receiver
JP3179267B2 (en) Filter and carrier phase estimating apparatus using the filter
US20020159505A1 (en) Receiver and receiving method fro spread spectrum communication
JP2973416B1 (en) RAKE receiving circuit
JP4511714B2 (en) OFDM receiver
JPH0646031A (en) Spread spectrum demodulator
JPH07231285A (en) Propagation path estimate equipment and mobile communication receiver
JP2687783B2 (en) Spread spectrum demodulator
JP2894381B2 (en) Spread spectrum communication equipment
JP3379636B2 (en) Differential detection method for spread spectrum signal demodulation
JP3091634B2 (en) Diversity device
JPH08172419A (en) Cdma transmitter-receiver
JP3231249B2 (en) Channel estimator
JPH05292139A (en) Receiver estimating maximum likelihood series
JP2782395B2 (en) Spread spectrum receiver
JP3576075B2 (en) Interference canceller, wireless terminal device, and interference canceling method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees