JPH0645899B2 - Method for producing metal-coated inorganic powder - Google Patents

Method for producing metal-coated inorganic powder

Info

Publication number
JPH0645899B2
JPH0645899B2 JP24421787A JP24421787A JPH0645899B2 JP H0645899 B2 JPH0645899 B2 JP H0645899B2 JP 24421787 A JP24421787 A JP 24421787A JP 24421787 A JP24421787 A JP 24421787A JP H0645899 B2 JPH0645899 B2 JP H0645899B2
Authority
JP
Japan
Prior art keywords
inorganic powder
metal
ion
treatment
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24421787A
Other languages
Japanese (ja)
Other versions
JPS6487509A (en
Inventor
充 須田
邦夫 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP24421787A priority Critical patent/JPH0645899B2/en
Publication of JPS6487509A publication Critical patent/JPS6487509A/en
Publication of JPH0645899B2 publication Critical patent/JPH0645899B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1855Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by mechanical pretreatment, e.g. grinding, sanding
    • C23C18/1858Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by mechanical pretreatment, e.g. grinding, sanding by formation of electrostatic charges, e.g. tribofriction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • C23C18/1893Multistep pretreatment with use of organic or inorganic compounds other than metals, first

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)
  • Chemically Coating (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は金属被覆無機粉体の製造方法に関する。更に、
詳細には、本発明は帯電防止フィラー、電磁波シールド
材、磁性材料及び触媒等に適した金属被覆無機粉体の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Field of Industrial Application> The present invention relates to a method for producing a metal-coated inorganic powder. Furthermore,
More specifically, the present invention relates to a method for producing a metal-coated inorganic powder suitable for an antistatic filler, an electromagnetic wave shielding material, a magnetic material, a catalyst and the like.

〈従来の技術〉 従来、帯電防止フィラーや電磁波シールド材等に使用す
る導電性粉末としては、Al、Ni及びCu等の金属粉
末が公知である。しかしながら、軽量性、分散性、安全
性、更には価格等の観点から、最近では雲母等の無機粉
体表面に金属を形成させた金属被覆無機粉体が使用され
るようになってきている。
<Prior Art> Conventionally, metal powders such as Al, Ni, and Cu have been known as conductive powders used for antistatic fillers, electromagnetic shielding materials, and the like. However, from the viewpoints of lightness, dispersibility, safety, price, etc., recently, metal-coated inorganic powder in which a metal is formed on the surface of the inorganic powder such as mica has come to be used.

かような無機粉体表面に金属被膜を形成する方法として
は、無電解メッキ法が広く使用されている。無電解メッ
キ法においては無機粉体をPdやAgを含有する貴金属
溶液にて処理して表面に触媒核となる貴金属微粒子を担
持させる触媒化処理を施した後、所望の金属を含有する
無電解メッキ溶液を浸漬して処理し、メッキ被膜を形成
させる。上記の処理のうち、触媒化処理は均一なメッキ
被膜を形成するために重要な意義を有する前処理工程で
あり、貴金属微粒子を強固かつ安定に無機粉体表面に分
散担持させる。
As a method for forming a metal coating on the surface of such inorganic powder, electroless plating is widely used. In the electroless plating method, an inorganic powder is treated with a noble metal solution containing Pd or Ag to carry out a catalyzation treatment of supporting noble metal fine particles to be catalytic nuclei on the surface, and then electroless plating containing a desired metal. The plating solution is immersed and processed to form a plating film. Among the above treatments, the catalyzation treatment is a pretreatment step which has an important meaning in order to form a uniform plating film, and the precious metal fine particles are strongly and stably dispersed and supported on the surface of the inorganic powder.

触媒化処理の方法としては、無機粉体を表面洗浄してか
らSn2+塩溶液に浸漬し、次いでPd2+塩溶液に浸漬し
て金属パラジウムを均一に還元析出させる方法が一般的
である。又、この一般法の改良方法として、無機粉体を
pH2以下の塩化パラジウム水溶液中に懸濁させた後、
徐々にpHを4〜7に上げて金属パラジウムを均一に担
持させる方法も公知である(例えば、特開昭60−13
3,066号公報)。更に、予め無機粉体表面にエポキ
シ樹脂を用いて貴金属捕捉性表面処理を施した後、銀イ
オン含有溶液にて処理して金属銀を担持させる方法も公
知である(例えば、特開昭61−257,479号公
報)。
As a method of catalyzing treatment, a method is generally used in which the surface of the inorganic powder is washed and then immersed in a Sn 2+ salt solution, and then immersed in a Pd 2+ salt solution to uniformly reduce and deposit metallic palladium. . As an improved method of this general method, after suspending the inorganic powder in an aqueous solution of palladium chloride having a pH of 2 or less,
A method is also known in which the pH is gradually raised to 4 to 7 so that metallic palladium is uniformly supported (for example, JP-A-60-13).
No. 3,066). Further, a method is also known in which the surface of the inorganic powder is subjected to a noble metal-capturing surface treatment using an epoxy resin and then treated with a silver ion-containing solution to support metallic silver (for example, JP-A-61-161). 257,479).

〈発明が解決しようとする問題点〉 しかしながら、公知の触媒化処理法においてはパラジウ
ムや銀のような貴金属を使用するためコストが高く、
又、Sn2+やPd2+塩溶液が強酸性であるために耐酸性
の低い無機粉体には適用できないという問題点があっ
た。更に、主として無機粉体表面の微小凹凸への投錨効
果の如き物理的吸着による無機粉体表面への触媒核の分
散担持を、均一かつ強固とするためには、前処理として
の脱脂、粗面化、洗浄等の表面処理により上記投錨効果
を向上させる必要があり、従って、全体の製造プロセス
が煩雑である。
<Problems to be Solved by the Invention> However, in the known catalytic treatment method, the cost is high because a noble metal such as palladium or silver is used,
In addition, since the Sn 2+ or Pd 2+ salt solution is strongly acidic, it cannot be applied to inorganic powder having low acid resistance. Furthermore, in order to make the dispersion and carrying of the catalyst nuclei on the surface of the inorganic powder by physical adsorption such as anchoring effect on the fine irregularities of the surface of the inorganic powder uniform and strong, degreasing and roughening as a pretreatment are required. It is necessary to improve the anchoring effect by surface treatment such as aging and washing, and therefore the entire manufacturing process is complicated.

〈発明の目的〉 従って、本発明の第一の目的は、簡単なプロセスで安価
に金属被覆無機粉体を製造する方法を提供することであ
る。
<Object of the Invention> Therefore, a first object of the present invention is to provide a method for producing a metal-coated inorganic powder at low cost by a simple process.

本発明の別の目的は、耐酸性の低い無機粉体にも容易に
適用の可能な金属被覆無機粉体を製造する方法を提供す
ることである。
Another object of the present invention is to provide a method for producing a metal-coated inorganic powder which can be easily applied to an inorganic powder having low acid resistance.

本発明の更に別の目的は、密着性及び平滑性に極めて優
れた金属被覆無機粉体を製造する方法を提供することで
ある。
Still another object of the present invention is to provide a method for producing a metal-coated inorganic powder having extremely excellent adhesion and smoothness.

本発明の更に別の目的は、以下の記載から明らかとなろ
う。
Further objects of the present invention will be apparent from the following description.

〈問題点を解決するための手段〉 本発明によれば、イオン交換性を有する無機粉体を、金
属イオン含有溶液にて処理して、金属イオンを無機粉体
に固定するイオン交換処理工程と、前記金属イオン固定
無機粉体を還元処理して、無機粉体表面に金属微粒子を
析出させる還元工程と、前記金属微粒子析出無機粉体
を、金属イオン含有無電解メッキ液にて処理して、無機
粉体表面に金属被膜を形成させるメッキ処理工程とを前
記の工程順に含む金属被覆無機粉体の製造方法が提供さ
れる。
<Means for Solving Problems> According to the present invention, an ion-exchange treatment step of treating an inorganic powder having ion-exchange properties with a metal ion-containing solution to fix the metal ions to the inorganic powder. The metal ion-fixed inorganic powder is subjected to a reduction treatment, a reduction step of depositing metal fine particles on the surface of the inorganic powder, and the metal fine particle-deposited inorganic powder is treated with a metal ion-containing electroless plating solution, Provided is a method for producing a metal-coated inorganic powder, which includes a plating treatment step of forming a metal coating on the surface of the inorganic powder, in the order of the steps described above.

〈発明の説明〉 次に、本発明の製造方法について詳細に説明する。<Description of the Invention> Next, the manufacturing method of the present invention will be described in detail.

イオン交換処理工程において使用できるイオン交換性を
有する無機粉体としては、例えば、シリカゲル、アルミ
ナゲル等の非晶質含水化合物;ゼオライト、モンモリロ
ナイト、ヘクトライト、ふっ素雲母等のけい酸塩鉱物;
及びりん酸ジルコニウム等の広範囲の結晶質化合物等が
好ましく挙げられる。上記の化合物のうち、帯電防止フ
ィラーや電磁波シールド材等の導電性付与の目的に対し
ては、特に、モンモリロナイト、ヘクトライト及びふっ
素雲母のようなフレーク状のものが好ましい。
Examples of the ion-exchangeable inorganic powder that can be used in the ion-exchange treatment step include amorphous hydrous compounds such as silica gel and alumina gel; silicate minerals such as zeolite, montmorillonite, hectorite, and fluoromica;
And a wide range of crystalline compounds such as zirconium phosphate are preferred. Among the above compounds, flaky ones such as montmorillonite, hectorite and fluoromica are particularly preferable for the purpose of imparting conductivity to antistatic fillers, electromagnetic wave shielding materials and the like.

無機粉体中のイオンとイオン交換して粉体に固定される
金属イオンとしては、水溶性であって、後述する還元処
理工程で金属に還元される限り任意の金属イオンが使用
できる。還元の容易性、メッキすべき金属との親密性及
び価格等を考慮すると、Ni2+、Co2+、Fe2+、及び
Cu2+等が好ましく、特に、メッキする金属と同種類の
金属イオンを使用すると、被膜の純度及び密着性が向上
するので好ましい。イオン交換させる金属イオンは、一
種類であっても良く、又、二種類以上であっても良い。
本発明において好ましく使用できる上記金属イオン含有
可溶性金属化合物としては、硝酸塩、硫酸塩、塩化物等
の無機塩類の他、酢酸塩、ぎ酸塩等の有機塩類やアンミ
ン錯体等の錯化合物を挙げることができる。
As the metal ion that is ion-exchanged with the ion in the inorganic powder and fixed to the powder, any metal ion can be used as long as it is water-soluble and can be reduced to a metal in the reduction treatment step described later. Ni 2+ , Co 2+ , Fe 2+ , Cu 2+ and the like are preferable in view of ease of reduction, intimacy with a metal to be plated, price, and the like, and particularly, the same kind of metal as the metal to be plated. The use of ions is preferable because the purity and adhesion of the coating are improved. The number of kinds of metal ions to be ion-exchanged may be one or two or more.
Examples of the metal ion-containing soluble metal compound that can be preferably used in the present invention include inorganic salts such as nitrates, sulfates and chlorides, as well as organic salts such as acetates and formates and complex compounds such as ammine complexes. You can

本発明におけるイオン交換処理は、例えば、前記金属イ
オン溶液に前記無機粉体を浸漬することによって実施で
きる。イオン交換処理にあたっては必要に応じて、攪拌
又は加温を行って処理の促進を図っても良い。イオン交
換量は使用する無機粉体のイオン交換容量(CEC)に
より決定することができるが、本発明においては金属イ
オン担持量が増加すると触媒核も増加するので好まし
く、かかる目的から、浸漬処理後に更に水酸化ナトリウ
ム等のアルカリ溶液を徐々に添加して金属水酸化物の形
で固定させるという、いわゆる滴定法を用いて金属担持
量を増加しても良い。
The ion exchange treatment in the present invention can be carried out, for example, by immersing the inorganic powder in the metal ion solution. In the ion exchange treatment, stirring or heating may be carried out to accelerate the treatment, if necessary. The amount of ion exchange can be determined by the ion exchange capacity (CEC) of the inorganic powder used, but in the present invention, it is preferable that the amount of metal ions supported increases because the number of catalyst nuclei also increases. Further, the amount of metal supported may be increased by using a so-called titration method in which an alkaline solution such as sodium hydroxide is gradually added to fix the metal hydroxide in the form of metal hydroxide.

前記のイオン交換処理により、所望の金属イオンが無機
粉体の内部及び表面のいずれのイオン交換点においても
極めて均一に分布して固定化される。
By the above-mentioned ion exchange treatment, desired metal ions are extremely uniformly distributed and fixed at any ion exchange points inside and on the surface of the inorganic powder.

なお、本発明においては、イオン交換処理後の無機粉体
は、遠心分離又はろ過等の方法により母液から分離する
ことができる。分離にあたって、母液中に金属イオンが
残留している場合には、水洗して無機粉体表面上の金属
イオンを除去すると良い。
In the present invention, the inorganic powder after the ion exchange treatment can be separated from the mother liquor by a method such as centrifugation or filtration. In the separation, if metal ions remain in the mother liquor, it may be washed with water to remove the metal ions on the surface of the inorganic powder.

次に上記の金属イオン固定無機粉体の還元処理について
説明する。
Next, the reduction treatment of the above-mentioned metal ion-fixed inorganic powder will be described.

還元処理は気相又は液相中のいずれで行なっても良く、
例えば、水素、一酸化炭素等の還元性ガス中で加熱する
方法や次亜りん酸ナトリウム、水素化ほう素等の還元剤
の水溶液中に浸漬し、必要に応じては加熱する方法等が
好ましく採用できる。
The reduction treatment may be carried out in either the gas phase or the liquid phase,
For example, a method of heating in a reducing gas such as hydrogen or carbon monoxide, a method of immersing in an aqueous solution of a reducing agent such as sodium hypophosphite, or boron hydride, and a method of heating if necessary are preferable. Can be adopted.

このような還元処理により、無機粉体の内部及び表面に
固定された金属イオンの一部又は全部が金属微粒子とし
て無機粉体表面に析出する。従って、上記の如く金属イ
オンは極めて均一に分布しているから、触媒核も極めて
均一に析出する。更に、従来公知の方法とは相違して、
触媒核を液相からではなく、無機粉体自身から析出させ
るので、その担持力は強固であり、生成するメッキ被膜
の密着性も極めて大きい。
By such reduction treatment, some or all of the metal ions fixed inside and on the surface of the inorganic powder are deposited on the surface of the inorganic powder as metal fine particles. Therefore, since the metal ions are extremely uniformly distributed as described above, the catalyst nuclei are also extremely uniformly deposited. Furthermore, unlike the conventionally known method,
Since the catalyst nuclei are precipitated not from the liquid phase but from the inorganic powder itself, the supporting power is strong and the adhesion of the resulting plated coating is extremely large.

本発明においては、触媒核の析出状態は、主として、還
元の条件の調整により制御することができ、目的及び用
途に応じて適宜に還元条件を選択することが好ましい。
例えば、還元温度を低下させるか、及び/又は還元時間
を短縮すると、触媒核の粒径が小さくなって密に分布す
るので、メッキ処理を施すと平滑性の特に優れたメッキ
被膜を得ることができ、このようなメッキ被膜を有する
無機粉体は導電性材料等に好適である。逆に、還元温度
を上昇させるか、及び/又は還元時間を延長すると、触
媒核は粒成長し、粒径が大きくなって粗に分布する。こ
の結果、メッキ後のメッキ被膜は粒状となり、触媒等に
適する。
In the present invention, the deposition state of the catalyst nuclei can be controlled mainly by adjusting the reduction conditions, and it is preferable to appropriately select the reduction conditions according to the purpose and application.
For example, when the reduction temperature is lowered and / or the reduction time is shortened, the particle size of the catalyst nuclei becomes small and the catalyst nuclei are densely distributed. Therefore, it is possible to obtain a plated film having particularly excellent smoothness by performing the plating treatment. Inorganic powder having such a plated coating is suitable for conductive materials and the like. On the contrary, when the reduction temperature is raised and / or the reduction time is extended, the catalyst nuclei grow into grains, and the grain size becomes large and the grains are coarsely distributed. As a result, the plated film after plating becomes granular and is suitable for a catalyst or the like.

本発明においては、還元処理工程において触媒核が析出
した無機粉体を、次いで所望の金属イオン含有無電解メ
ッキ液にて処理して、無機粉体表面に金属被膜を形成す
る。処理方法としては無電解メッキ液浴中に浸漬するの
が好ましい。
In the present invention, the inorganic powder on which catalyst nuclei have been deposited in the reduction treatment step is then treated with a desired metal ion-containing electroless plating solution to form a metal coating on the surface of the inorganic powder. As a treatment method, it is preferable to immerse the sheet in an electroless plating solution bath.

本発明において好ましく使用できる無電解メッキ浴は、
酸性浴及びアルカリ浴のいずれであっても良いが、不純
物の共析量が少ないという点においてはアルカリ浴が好
ましい。又、メッキ処理にあたっては、攪拌を行って無
機粉体とメッキ液とを均等に接触させることが望まし
い。メッキする金属としては、単独の金属のみならず、
合金であっても良い。本発明の方法によってメッキでき
る単独金属としては、Ni、Co、Fe、Cu及びW等
が好ましく挙げられ、二種以上の金属の合金としては、
Ni−Co、Ni−Fe、Co−Fe、Cu−W等の合
金が好ましく挙げられる。
The electroless plating bath that can be preferably used in the present invention is
Either an acidic bath or an alkaline bath may be used, but an alkaline bath is preferable in that the amount of co-deposition of impurities is small. Further, in the plating treatment, it is desirable that the inorganic powder and the plating liquid are evenly contacted by stirring. As the metal to be plated, not only a single metal,
It may be an alloy. As the single metal that can be plated by the method of the present invention, Ni, Co, Fe, Cu, W and the like are preferably mentioned, and as the alloy of two or more kinds of metals,
Alloys such as Ni-Co, Ni-Fe, Co-Fe, and Cu-W are preferable.

無電解メッキ浴の調整は従来公知の方法により、実施で
きる。即ち、例えば、金属塩、還元剤、錯化剤、pH調
節剤及び安定剤等を所望の金属イオンの他に、添加して
浴を調整する方法が採用できる。本発明においては、還
元剤としては、次亜りん酸ナトリウム、水素化ほう素ナ
トリウム、ヒドラジン、ホルマリン及びアミノボラン等
が好ましく使用できる。本発明において好ましく使用で
きる錯化剤としては、アンモニア、クエン酸塩、酒石酸
塩、コハク酸塩、リンゴ酸塩、グリシン及びエチレンジ
アミン四酢酸(EDTA)等を挙げることができる。メ
ッキ浴の成分は、所望の金属被膜組成及び性状に応じ
て、当業者が任意に選択できる。又、メッキされる金属
の量は、主として、メッキ処理の温度及び時間により変
化し、高温下で長時間メッキ処理すれば、メッキされる
金属量は増加し、逆に、低温下で短時間メッキ処理すれ
ば金属量は減少する。
The electroless plating bath can be adjusted by a conventionally known method. That is, for example, a method of adjusting the bath by adding a metal salt, a reducing agent, a complexing agent, a pH adjusting agent, a stabilizer and the like in addition to the desired metal ion can be adopted. In the present invention, as the reducing agent, sodium hypophosphite, sodium borohydride, hydrazine, formalin, aminoborane and the like can be preferably used. Examples of complexing agents that can be preferably used in the present invention include ammonia, citrate, tartrate, succinate, malate, glycine and ethylenediaminetetraacetic acid (EDTA). The components of the plating bath can be arbitrarily selected by those skilled in the art depending on the desired metal coating composition and properties. Also, the amount of metal to be plated changes mainly depending on the temperature and time of the plating process, and if the plating process is performed at a high temperature for a long time, the amount of the metal to be plated will increase. The amount of metal decreases when treated.

上記のメッキ処理により、無機粉体表面に金属被膜が形
成され、本発明においては、無機粉体表面に触媒核が極
めて均一かつ強固に分散担持されているため、金属被膜
の平滑性及び密着性は著しく優れている。
By the above plating treatment, a metal coating is formed on the surface of the inorganic powder, and in the present invention, the catalyst nuclei are extremely uniformly and strongly dispersed and carried on the surface of the inorganic powder, so that the smoothness and adhesion of the metal coating are obtained. Is significantly better.

本発明においては、メッキ処理後の金属被覆無機粉体を
ろ過、遠心分離等の方法によってメッキ液から分離し、
水洗し、必要に応じて乾燥することができる。
In the present invention, the metal-coated inorganic powder after the plating treatment is filtered, separated from the plating solution by a method such as centrifugation,
It can be washed with water and dried if necessary.

〈実施例〉 次に本発明の具体的態様を示すために、本発明を実施例
に基づいて説明するが、以下に述べる実施例は本発明の
技術的範囲を限定するものではない。
<Examples> Next, the present invention will be described based on Examples to show specific modes of the present invention, but the Examples described below do not limit the technical scope of the present invention.

実施例1 天然産の精製Na−モンモリロナイト粉末(山形県左沢
鉱山産、CEC=115ミリ当量/100g)を10.0g
を0.1M硫酸銅水溶液500ml中に添加し、室温で3時
間攪拌してモンモリロナイト中のNa+をCu2+とイオン交
換させた後、ろ過、水洗し、110℃で乾燥した。
Example 1 10.0 g of naturally occurring purified Na-montmorillonite powder (Yamagata Prefecture Sazawa Mine, CEC = 115 meq / 100 g)
Was added to 500 ml of a 0.1 M copper sulfate aqueous solution, and the mixture was stirred at room temperature for 3 hours to ion exchange Na + in the montmorillonite with Cu 2+ , then filtered, washed with water, and dried at 110 ° C.

この乾燥物を雰囲気焼成炉にて、一酸化炭素気流中(約
100ml/分)、250℃で30分間還元加熱処理を行
ない、モンモリロナイト表面にCu微粒子を析出させ
た。透過型電子顕微鏡にて観察したところ、Cu微粒子
の粒径はおよそ200Å前後と非常に細かいものであっ
た。
This dried product was subjected to reduction heat treatment in a carbon monoxide gas stream (about 100 ml / min) at 250 ° C. for 30 minutes in an atmosphere firing furnace to deposit Cu fine particles on the surface of montmorillonite. Observation with a transmission electron microscope revealed that the Cu fine particles had a very small particle size of about 200Å.

次にこのモンモリロナイトを下記組成の無電解メッ浴1
中に添加し、20分間攪拌してCuメッキを行なっ
た。
Next, this montmorillonite is used as an electroless mesh bath 1 having the following composition.
It was added to the inside and stirred for 20 minutes to perform Cu plating.

硫酸銅 30g/1 ホルマリン(37%) 65ml/1 EDTA 20g/1 8-ヒドロキシ-7-ヨ-ド-5-キノリンスルホン酸 0.34g/1 pH(NaOHで調整) 13.0 浴温 50℃ このCu被覆モンモリロナイトは光沢があり、Cu被覆
量は約35wt%であった。また、走査型電子顕微鏡で表
面を観察したところ、表面全体が均質にムラなくメッキ
されており、平滑性に優れているものであった。加圧成
型(1ton/cm2)後、体積固有抵抗を測定した結果、1.5
×10-3Ω・cmであり、良好な導電性が示された。
Copper sulfate 30 g / 1 formalin (37%) 65 ml / 1 EDTA 20 g / 1 8-hydroxy-7-iodo-5-quinolinesulfonic acid 0.34 g / 1 pH (adjusted with NaOH) 13.0 Bath temperature 50 ° C. Cu coating The montmorillonite was shiny and had a Cu coverage of about 35 wt%. Also, when the surface was observed with a scanning electron microscope, it was found that the entire surface was uniformly and uniformly plated, and was excellent in smoothness. After pressure molding (1 ton / cm 2 ), the volume resistivity was measured and found to be 1.5
It was × 10 -3 Ω · cm, indicating good conductivity.

実施例2 人工ふっ素雲母の一種であるNa型四けい素ふっ素雲母
(トビー工業(株)製、CEC=210ミリ当量/10
0g)の10%ゾル500mlを0.1M硝酸ニッケル水溶
液2中に添加し、ホモジナイザーで分散後、60℃で
5時間加熱攪拌を行ない、雲母中のNa+をNi2+とイオン
交換させた。ろ過、水洗後、110℃で乾燥した。
Example 2 Na-type tetrasilicon fluoromica (manufactured by Toby Industries, Ltd., CEC = 210 meq / 10), which is a type of artificial fluoromica
0 g) of 10% sol (500 ml) was added to 0.1 M nickel nitrate aqueous solution 2, dispersed with a homogenizer, and heated and stirred at 60 ° C. for 5 hours to ion exchange Na + in the mica with Ni 2+ . After filtration and washing with water, it was dried at 110 ° C.

この乾燥物を雰囲気焼成炉にて水素気流(約100ml/
分)中、400℃で1時間還元加熱処理を行ない、雲母
表面にNi微粒子を析出させた。透過型電子顕微鏡観察
によるNi微粒子の粒径は80Å前後であり、非常に細
かいものであった。
This dried product was heated in an atmosphere firing furnace with a hydrogen flow (about 100 ml /
Min), a reduction heat treatment was performed at 400 ° C. for 1 hour to deposit Ni fine particles on the surface of the mica. The particle size of Ni fine particles observed by a transmission electron microscope was about 80 Å, which was very fine.

次にこの雲母粉末を下記組成の無電解メッキ浴3中に
添加し、20分間攪拌することによりNiメッキを行なっ
た。
Next, this mica powder was added to the electroless plating bath 3 having the following composition, and Ni plating was performed by stirring for 20 minutes.

硫酸ニッケル 45g/1 次亜りん酸ナトリウム 30g/1 クエン酸ナトリウム 100g/1 塩化アンモニウム 50g/1 pH 11.0 浴温 90℃ Ni被覆量は約30wt%であり、表面状態は均質で平滑
であった。また、このNi被覆雲母を体積分率で25%
となるようアクリル塗料ベース(関西ペイント(株)
製、No.2026)と混練して塗料化し、ABS基板上に4
0μmの厚さで塗布し、表面抵抗と電磁波シールド特性
(4GHz)を測定した。その結果、表面抵抗は0.5Ω
/□、電磁シールド特性は50dB以上(測定値検出限
界)であり、優れた導電性と電磁シールド特性が示され
た。
Nickel sulfate 45 g / 1 sodium hypophosphite 30 g / 1 sodium citrate 100 g / 1 ammonium chloride 50 g / 1 pH 11.0 bath temperature 90 ° C. The Ni coating amount was about 30 wt%, and the surface condition was homogeneous and smooth. In addition, this Ni-coated mica has a volume fraction of 25%.
Acrylic paint base (Kansai Paint Co., Ltd.)
No.2026) made into a paint and put on the ABS substrate.
It was applied in a thickness of 0 μm, and the surface resistance and electromagnetic wave shielding characteristics (4 GHz) were measured. As a result, the surface resistance is 0.5Ω
/ □, the electromagnetic shield property was 50 dB or more (measurement value detection limit), and excellent conductivity and electromagnetic shield property were shown.

実施例3 クロマトグラフ用シリカゲル(和光純薬(株)製、ワコ
ーゲルC-200,100〜200 mesh)20.0gを0.1M塩化ニッケ
ル水溶液200ml中に添加し、室温にて一日攪拌してN
2+をイオン交換させた。続いて次亜りん酸ナトリウム
10.0gを添加して、95℃にて5時間還流することによ
り、シリカゲル表面にNi微粒子を還元析出させた。水
洗後、下記組成の無電解メッキ浴2中に添加し、一時
間攪拌することにより、Niメッキを行なった。
Example 3 20.0 g of silica gel for chromatography (manufactured by Wako Pure Chemical Industries, Ltd., Wakogel C-200, 100-200 mesh) was added to 200 ml of 0.1 M nickel chloride aqueous solution, and the mixture was stirred at room temperature for one day to obtain N.
i 2+ was ion-exchanged. Then sodium hypophosphite
Ni particles were reduced and deposited on the silica gel surface by adding 10.0 g and refluxing at 95 ° C. for 5 hours. After washing with water, it was added to the electroless plating bath 2 having the following composition and stirred for 1 hour to perform Ni plating.

硫酸ニッケル 70g/1 アンモニア水(28%) 350ml/1 ヒドラジン(80%) 60ml/1 pH 11.5 浴温 70℃ Ni被覆量は約95wt%であった。また、走査型電子顕
微鏡で観察したところ、Niは粉状であり、その粒径は
400〜2000Åであった。
Nickel sulfate 70 g / 1 Ammonia water (28%) 350 ml / 1 Hydrazine (80%) 60 ml / 1 pH 11.5 Bath temperature 70 ° C. Ni coating amount was about 95 wt%. Further, when observed with a scanning electron microscope, Ni was in the form of powder and its particle size was 400 to 2000 Å.

上記Niシリカゲルについて、固定床流通式触媒反応装
置を用い、トルエン蒸気を含む水素ガスを流通させるこ
とにより、トルエンの水素化反応の触媒活性を調べた。
なお、反応条件は、反応温度:175℃、全圧:2kg/c
m2、GHSV:1300/hr、トルエン濃度:121
ppmで、反応生成物はガスクロマトグラフ(カラム:PEG
-20M10% Chromosorb WAW 60/80,検出器:FID)によ
り定量した。その結果、トルエンの転換率及びメチルシ
クロヘキサンの選択率は共に100%であり、極めて良
好な触媒特性が示された。
With respect to the Ni silica gel, the catalytic activity of the hydrogenation reaction of toluene was examined by circulating a hydrogen gas containing toluene vapor using a fixed bed circulation type catalytic reactor.
The reaction conditions are: reaction temperature: 175 ° C, total pressure: 2 kg / c
m 2 , GHSV: 1300 / hr, toluene concentration: 121
ppm, the reaction product is a gas chromatograph (column: PEG
-20M 10% Chromosorb WAW 60/80, detector: FID). As a result, both the conversion of toluene and the selectivity of methylcyclohexane were 100%, indicating extremely good catalytic properties.

〈発明の効果〉 以上のように、本発明の方法によれば、従来法の如く高
価な貴金属や強酸を全く用いずに、簡単なプロセスで安
価に、密着性及び平滑性が極めて優れた金属被覆無機粉
体が製造できる。更に、本発明の方法は、従来公知の方
法では使用できなかった耐酸性の低い無機粉体の金属被
覆にも使用できる。
<Effects of the Invention> As described above, according to the method of the present invention, a metal having excellent adhesion and smoothness can be produced inexpensively by a simple process without using any expensive precious metal or strong acid as in the conventional method. A coated inorganic powder can be produced. Furthermore, the method of the present invention can also be used for metal coating of inorganic powder having low acid resistance, which could not be used by the conventionally known method.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】イオン交換性を有する無機粉体を、金属イ
オン含有溶液にて処理して、金属イオンを無機粉体に固
定するイオン交換処理工程と、 前記金属イオン固定無機粉体を還元処理して、無機粉体
表面に金属微粒子を析出させる還元工程と、 前記金属微粒子析出無機粉体を、金属イオン含有無電解
メッキ液にて処理して、無機粉体表面に金属被膜を形成
させるメッキ処理工程と、 を前記の工程順に含む金属被覆無機粉体の製造方法。
1. An ion exchange treatment step of treating an inorganic powder having ion exchangeability with a metal ion-containing solution to fix metal ions to the inorganic powder, and a reduction treatment of the metal ion-fixed inorganic powder. Then, a reduction step of depositing metal fine particles on the surface of the inorganic powder, and a plating for treating the inorganic fine particle-deposited inorganic powder with an electroless plating solution containing metal ions to form a metal film on the surface of the inorganic powder. A method for producing a metal-coated inorganic powder, which comprises a treatment step and the order of the above steps.
JP24421787A 1987-09-30 1987-09-30 Method for producing metal-coated inorganic powder Expired - Lifetime JPH0645899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24421787A JPH0645899B2 (en) 1987-09-30 1987-09-30 Method for producing metal-coated inorganic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24421787A JPH0645899B2 (en) 1987-09-30 1987-09-30 Method for producing metal-coated inorganic powder

Publications (2)

Publication Number Publication Date
JPS6487509A JPS6487509A (en) 1989-03-31
JPH0645899B2 true JPH0645899B2 (en) 1994-06-15

Family

ID=17115487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24421787A Expired - Lifetime JPH0645899B2 (en) 1987-09-30 1987-09-30 Method for producing metal-coated inorganic powder

Country Status (1)

Country Link
JP (1) JPH0645899B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256615A (en) * 1989-06-21 1993-10-26 Toagosei Chemical Industry, Co., Ltd. Granular inorganic exchangers
JPH0676244B2 (en) * 1989-07-19 1994-09-28 三菱マテリアル株式会社 Ceramic composite powder and method for producing the same
CN101760055B (en) * 2009-11-30 2013-08-07 北方涂料工业研究设计院 Inorganic high-temperature resistant and antistatic coating

Also Published As

Publication number Publication date
JPS6487509A (en) 1989-03-31

Similar Documents

Publication Publication Date Title
JP4351736B2 (en) Plating structure
JP4864195B2 (en) Coated copper powder
He et al. Electroless nickel–phosphorus plating on silicon carbide particles for metal matrix composites
CN109423637A (en) A kind of preparation method of high conductive material
CN1286557C (en) Catalyst for porous support carried NiB amorphous alloy and preparation method thereof
Wang et al. Preparation and characterization of nanodiamond cores coated with a thin Ni–Zn–P alloy film
Lin et al. Effect of chelating agents on the structure of electroless copper coating on alumina powder
Froment et al. Structural and Analytical Characteristics of Adsorbed Pd‐Sn Colloids
JPH0645899B2 (en) Method for producing metal-coated inorganic powder
US4261747A (en) Dispersions for activating non-conductors for electroless plating
US5232952A (en) Finely dispersed metal-carrying compounds and method for preparing the same
JPH02125881A (en) Resin granular particles coated with metallic film
KR20000035984A (en) Substrates seeded with precious metal salts, process for producing the same and their use
Warshawsky et al. Zerovalent metal polymer composites. III. Metallization of metal oxide surfaces with the aid of metallized functional polymer microdispersions
JP2500936B2 (en) Powder plating method
US4132832A (en) Method of applying dispersions for activating non-conductors for electroless plating and article
JPS6237301A (en) Production of metal holding particle
JPS62207875A (en) Production of metal plated inorganic particles
JPH0360766B2 (en)
JPH02111883A (en) Electroless metal plating method
JPH06103816A (en) Conductive filler consisting of palladium-coated metal powder
JP2736666B2 (en) Palladium hydrosol catalyst for electroless plating and method for producing the same
JP3028972B2 (en) Aluminum-based electroless plating powder, conductive filler and method for producing the same
JPS6146553B2 (en)
JPH0235031B2 (en) PARAJIUMUORUGANOZORUOMOCHIITAKINZOKUMETSUKIHOHO