JPH0645156A - Gas insulation transformer - Google Patents

Gas insulation transformer

Info

Publication number
JPH0645156A
JPH0645156A JP19732092A JP19732092A JPH0645156A JP H0645156 A JPH0645156 A JP H0645156A JP 19732092 A JP19732092 A JP 19732092A JP 19732092 A JP19732092 A JP 19732092A JP H0645156 A JPH0645156 A JP H0645156A
Authority
JP
Japan
Prior art keywords
gas
transformer
insulating
heat generating
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19732092A
Other languages
Japanese (ja)
Inventor
Kazuyuki Takahashi
和行 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP19732092A priority Critical patent/JPH0645156A/en
Publication of JPH0645156A publication Critical patent/JPH0645156A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transformer Cooling (AREA)

Abstract

PURPOSE:To enhance a gas insulation transformer in natural convection cooling performance by a method wherein insulating gas flowing into a transformer tank as cooled down by a panel radiator is directed into a heat releasing part. CONSTITUTION:A heat releasing part 2 composed of an iron core 3 and a winding wire 4 is housed in a transformer tank 1 together with insulating gas 9, where the transformer tank 1 is equipped with panel radiators 5 linked to an up-flow gas pipe 16 and a down-flow gas pipe 18 through the intermediary of an upper header 7 and a lower header 17. Insulating gas 9 which is heated by the heat releasing part 2 and cooled down by the panel radiator 5 is made to flow into the lower part of the tank 1 as a gas flow 19A through the downflow pipe 18. A gas guide 21 is provided blocking a space between the lower edge of the winding wire 4 and the inner wall of the transformer tank 1 to make the cooled gas flow 19A flow into inner gas ducts 10A and 10B preventing it from branching off toward an outer gas duct 10C. By this setup, a gas insulation transformer is enhanced in cooling capacity by a gas flow of a natural convection rate proportional to an increase in difference between the heights of a cooling center and a heat releasing center.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、発熱部に対して放熱
器を高い位置に配して対流熱伝達性能を向上した自冷式
ガス絶縁変圧器、ことに変圧器タンク内における対流循
環通路の構造の改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a self-cooling gas-insulated transformer in which a radiator is arranged at a high position with respect to a heat generating portion to improve convective heat transfer performance, and more particularly, a convection circulation passage in a transformer tank. Regarding the improvement of the structure of.

【0002】[0002]

【従来の技術】六ふっ化硫黄ガス(SF6 ガス)などの
不活性ガスを冷却媒体を兼ねた絶縁媒体として使用する
ガス絶縁変圧器は、SF6 ガスの優れた耐電圧性能,冷
却性能を活用して高電圧,大容量の変圧器を小型に形成
できるとともに、絶縁油に比べて高いSF6 ガスの遮音
性を利用して変圧器を低騒音化できる特徴があり、かつ
これを自冷式としてブロワや換気ファンの騒音を排除す
ることにより一層低騒音化できるため、自冷式ガス絶縁
変圧器が屋内設置用変圧器として一般に使用されてい
る。
2. Description of the Related Art A gas-insulated transformer that uses an inert gas such as sulfur hexafluoride gas (SF 6 gas) as an insulating medium that also serves as a cooling medium has excellent withstand voltage performance and cooling performance of SF 6 gas. It can be used to form a high-voltage, large-capacity transformer in a small size, and can lower the noise of the transformer by utilizing the sound insulation of SF 6 gas, which is higher than that of insulating oil. Since the noise can be further reduced by eliminating the noise of the blower and the ventilation fan as a formula, a self-cooling type gas insulated transformer is generally used as a transformer for indoor installation.

【0003】図4は従来の自冷式ガス絶縁変圧器を模式
化して示す断面図であり、鉄心3とその主脚に1次巻線
4A,2次巻線4B等巻線4を互いに同軸状に巻装した
変圧器の発熱部2は、変圧器タンク1内に収納され、所
定の圧力で封入された絶縁ガス9により巻線4の耐電圧
性能が保持される。また、変圧器タンク1の周囲には複
数のパネル放熱器5が配置され、その上部がヘッダ−7
および上部接続管6を介して変圧器タンク1の上部に連
通し、その下部が下部接続管8を介して変圧器タンク1
の下部に連通することにより、複数のパネル放熱器5が
変圧器タンク1に互いに並列接続される。一方、発熱部
2内部の鉄心3と巻線4Aとの間、および巻線4A,4
B相互間には、ガス絶縁空間と冷却ガス通路とを兼ねた
内部ガスダクト10A,10Bが形成され、また巻線4
Bと変圧器タンク1との間にはガス絶縁空間としての外
周ガスダクト10Cが形成され、これらガスダクト10
とパネル放熱器5とで絶縁ガス9の循環冷却通路が形成
される。
FIG. 4 is a cross-sectional view schematically showing a conventional self-cooling type gas insulated transformer, in which an iron core 3 and a main winding thereof are provided with a winding 4 such as a primary winding 4A and a secondary winding 4B coaxial with each other. The heat generating portion 2 of the transformer wound in a circular shape is housed in the transformer tank 1 and the withstand voltage performance of the winding 4 is maintained by the insulating gas 9 sealed at a predetermined pressure. Further, a plurality of panel radiators 5 are arranged around the transformer tank 1, and an upper portion thereof is a header-7.
And the upper part of the transformer tank 1 via the upper connecting pipe 6, and the lower part thereof communicates via the lower connecting pipe 8 with the transformer tank 1.
The plurality of panel radiators 5 are connected in parallel to the transformer tank 1 by communicating with the lower part of the. On the other hand, between the iron core 3 inside the heat generating part 2 and the winding 4A, and between the windings 4A and 4A.
Internal gas ducts 10A and 10B that also serve as a gas insulating space and a cooling gas passage are formed between the two Bs, and the winding 4
An outer peripheral gas duct 10C as a gas insulating space is formed between B and the transformer tank 1.
The panel radiator 5 forms a circulating cooling passage for the insulating gas 9.

【0004】すなわち、発熱部2で発生した損失熱が冷
却ダクト内の絶縁ガス9に熱伝達され、絶縁ガス9の温
度が上昇することによりダクト内に自然対流が発生し、
対流により上昇した絶縁ガスが上部接続管6を介してパ
ネル放熱器5に導かれて外気との間で熱交換が行われ、
温度が低下して比重が増加した絶縁ガスが下部接続管8
を介して変圧器タンク1の下部に導かれ、再び冷却ダク
ト内に還流することにより対流ガス循環路が形成され、
発熱部2の冷却が行われる。
That is, the heat loss generated in the heat generating portion 2 is transferred to the insulating gas 9 in the cooling duct, and the temperature of the insulating gas 9 rises, whereby natural convection occurs in the duct.
The insulating gas that has risen due to convection is guided to the panel radiator 5 through the upper connecting pipe 6 to perform heat exchange with the outside air,
Insulating gas whose temperature has decreased and specific gravity has increased is lower connecting pipe 8
Is guided to the lower part of the transformer tank 1 via the flow path and is returned to the cooling duct again to form a convection gas circulation path,
The heat generating part 2 is cooled.

【0005】ところで、鉄心および巻線表面の熱伝達率
は、冷却ダクト10A,10B内での自然対流速度に比
例することが知られており、かつこの自然対流速度は放
熱器の中心高さ(冷却中心高さ)と発熱部の中心高さ
(発熱中心高さ)との差に比例することが知られてい
る。ところが、変圧器タンク1の周囲にパネル放熱器5
を並べて配した上述の自冷式ガス絶縁変圧器では、冷却
中心高さと発熱中心高さとの差が小さく発熱部内での熱
伝達率を大きく取れないため、巻線の小型化が阻害され
るばかりか、巻線温度の上昇を抑制するためにパネル放
熱器5の設置台数を増やすなどの対策が必要になり、そ
の結果パネル放熱器を含むガス絶縁変圧器の設置スペ−
スが増大するという問題があった。
By the way, it is known that the heat transfer coefficient of the iron core and the surface of the winding is proportional to the natural convection velocity in the cooling ducts 10A and 10B, and this natural convection velocity is the center height of the radiator ( It is known that it is proportional to the difference between the cooling center height) and the heating center height (heating center height). However, the panel radiator 5 is installed around the transformer tank 1.
In the above self-cooling gas-insulated transformer, which is arranged side by side, the difference between the cooling center height and the heat generation center height is small, and the heat transfer coefficient in the heat generation part cannot be made large. Alternatively, it is necessary to take measures such as increasing the number of panel radiators 5 installed in order to suppress the rise in the winding temperature, and as a result, the installation space of the gas insulated transformer including the panel radiators.
There was a problem that the space increased.

【0006】図5は改良された従来の自冷式ガス絶縁変
圧器を模式化して示す断面図であり、パネル放熱器5を
変圧器タンク1の上方に配置し、その上部を上部ヘッダ
−7および上昇ガス管16を介して変圧器タンク1の上
部に連通させ、パネル放熱器の下部を下部ヘッダ−17
および下降ガス管18を介して変圧器タンク1の下部に
連通させることにより、冷却中心高さと発熱中心高さと
の差を大幅に大きくし、これにより内部冷却ダクト10
A,10B内での自然対流速度および熱伝達率を高める
よう構成するとともに、併せてパネル放熱器5に遮蔽フ
−ドを付加して外気との熱交換効率を改善した自冷式ガ
ス絶縁変圧器が既に知られている(特公昭64−652
7号公報)。
FIG. 5 is a schematic cross-sectional view showing an improved conventional self-cooling type gas-insulated transformer, in which a panel radiator 5 is arranged above a transformer tank 1 and an upper portion thereof is an upper header-7. And the rising gas pipe 16 to communicate with the upper part of the transformer tank 1, and the lower part of the panel radiator is connected to the lower header-17.
By communicating with the lower part of the transformer tank 1 through the descending gas pipe 18 and the descending gas pipe 18, the difference between the height of the cooling center and the height of the heat generating center is significantly increased.
A self-cooling gas-insulated transformer that is configured to increase the natural convection velocity and heat transfer coefficient in A and 10B, and at the same time, adds a shielding hood to the panel radiator 5 to improve the heat exchange efficiency with the outside air. The vessels are already known (Japanese Patent Publication No. 64-652)
7 publication).

【0007】[0007]

【発明が解決しようとする課題】改良された従来の自冷
式ガス絶縁変圧器では、パネル放熱器5を変圧器タンク
1の上方に配することによりガス絶縁変圧器の設置面積
を大幅に縮小できるとともに、発熱部における自然対流
速度および熱伝達率の向上効果が期待される。ところ
が、冷却中心高さと発熱中心高さとの差の増大に伴って
パネル放熱器5と変圧器タンク1との間を循環する絶縁
ガス量が増加すると、パネル放熱器5で冷却され下降ガ
ス管18から変圧器タンク1に流入した絶縁ガス9が、
内部ガスダクト10A,10Bに流入するガス流9A
と、外周ガスダクト10Cを通って上昇ガス管に流入す
るガス流9Bとに分流してしまい、巻線との接触面積が
小さく冷却に寄与する程度の低いガス流9Bの発生によ
り、内部ガスダクト内の自然対流速度が期待した程上昇
せず、したがって発熱部2における熱伝達率も期待する
程には改善できないことが判明した。
In the improved conventional self-cooling type gas-insulated transformer, the installation area of the gas-insulated transformer is greatly reduced by disposing the panel radiator 5 above the transformer tank 1. At the same time, the effect of improving the natural convection velocity and the heat transfer coefficient in the heat generating part is expected. However, when the amount of insulating gas circulating between the panel radiator 5 and the transformer tank 1 increases as the difference between the cooling center height and the heat generation center height increases, the panel radiator 5 cools and the descending gas pipe 18 Insulating gas 9 flowing into the transformer tank 1 from
Gas flow 9A flowing into the internal gas ducts 10A and 10B
And a gas flow 9B that flows into the rising gas pipe through the outer peripheral gas duct 10C and has a small contact area with the winding and a low gas flow 9B that contributes to cooling. It was found that the natural convection velocity did not increase as much as expected, and therefore the heat transfer coefficient in the heat generating part 2 could not be improved as much as expected.

【0008】すなわち、発熱部2の外側と変圧器タンク
1の側壁との間にガス絶縁空間,または高電圧リ−ド等
の配設空間として保持された外周ガスダクト10Cの水
平方向の断面積は、内部ガスダクト10A,10Bの断
面積に比べて通常かなり大きく流体抵抗が低いため、例
えば絶縁ガスを強制循環した場合には、抵抗の低い外周
ガスダクトに多量の絶縁ガスが流れ、発熱部内のガス流
量が低下することが知られている。しかしながら、冷却
中心高さと発熱中心高さとの差が小さい従来のガス絶縁
変圧器では、内部ガスダクト10A,10Bでの絶縁ガ
スの昇温による上昇ガス流と、パネル放熱器5での絶縁
ガスの降温による降下ガス流とが互いに直列に作用し、
自然対流による絶縁ガスの循環が生ずるものであり、外
周ガスダクトでは流体抵抗は低いものの絶縁ガスへの熱
伝達量が少ないため発生する上昇ガス流が小さく、外周
ガスダクトに分流するガス量も少ないことが知られてい
る。これに対して冷却中心高さと発熱中心高さとの差を
大きくした後者においては、絶縁ガスの循環量の増大に
伴ってダクトの流体抵抗の影響が顕著となり、抵抗の低
い外周ガスダクトを通ってパネル放熱器に還流してしま
う絶縁ガス量が多く、これが発熱部2の冷却に充分寄与
しないため、期待する程の冷却性能の向上効果が得られ
ないことが判明した。
That is, the cross-sectional area in the horizontal direction of the outer peripheral gas duct 10C, which is held between the outside of the heat generating portion 2 and the side wall of the transformer tank 1 as a gas insulating space or a space for disposing a high voltage lead or the like, is Since the cross-sectional area of the internal gas ducts 10A and 10B is usually considerably large and the fluid resistance is low, for example, when the insulating gas is forcedly circulated, a large amount of the insulating gas flows in the outer peripheral gas duct having a low resistance, and the gas flow rate in the heat generating portion is increased. Is known to decrease. However, in the conventional gas insulation transformer in which the difference between the height of the cooling center and the height of the heat generation center is small, the rising gas flow due to the temperature rise of the insulating gas in the internal gas ducts 10A and 10B and the temperature decrease of the insulating gas in the panel radiator 5 are performed. And the descending gas flow due to act on each other in series,
Circulation of insulating gas occurs due to natural convection, and although the fluid resistance is low in the outer peripheral gas duct, the amount of heat transfer to the insulating gas is small, so the rising gas flow that is generated is small and the amount of gas diverted to the outer peripheral gas duct is also small. Are known. On the other hand, in the latter case where the difference between the height of the cooling center and the height of the heat generating center is increased, the influence of the fluid resistance of the duct becomes more noticeable as the circulation amount of the insulating gas increases, and the panel is passed through the peripheral gas duct with low resistance. It was found that the amount of insulating gas flowing back to the radiator is large and does not sufficiently contribute to the cooling of the heat generating portion 2, so that the expected improvement effect of the cooling performance cannot be obtained.

【0009】この発明の目的は、パネル放熱器で冷却さ
れて変圧器タンクに流入する絶縁ガスを、発熱部内に導
くことにより、自然対流冷却性能を向上することにあ
る。
An object of the present invention is to improve the natural convection cooling performance by guiding the insulating gas cooled by the panel radiator and flowing into the transformer tank into the heat generating portion.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、鉄心とこれに巻装された巻線と
を含む発熱部を絶縁ガスとともに収納した変圧器タンク
が、その上部から分岐した上昇ガス管および下部から分
岐した下降ガス管にそれぞれ上部ヘッダ−および下部ヘ
ッダ−を介して連結された複数のパネル放熱器を備え、
前記発熱部を自然対流冷却した絶縁ガスがパネル放熱器
で冷却され、下降ガス管を介して発熱部に還流して冷却
を行うものにおいて、前記下降ガス管を介して変圧器タ
ンクの下部に流入する絶縁ガスを前記発熱部内に導くガ
スガイドを、前記巻線の下縁近傍と変圧器タンクの内壁
面との間を閉塞する形で配してなるものとする。
In order to solve the above problems, according to the present invention, there is provided a transformer tank in which a heat generating portion including an iron core and a winding wound around the iron core is housed together with an insulating gas. A plurality of panel radiators connected to an ascending gas pipe branched from the upper part and a descending gas pipe branched from the lower part through an upper header and a lower header, respectively,
Insulation gas that naturally cools the heat-generating part by natural convection is cooled by the panel radiator and flows back to the heat-generating part through the descending gas pipe for cooling, and flows into the lower part of the transformer tank through the descending gas pipe. A gas guide that guides the insulating gas into the heat generating portion is arranged so as to close between the lower edge of the winding and the inner wall surface of the transformer tank.

【0011】また、ガスガイドが、発熱部内に連通する
通気孔を有する板状の絶縁材からなるものとする。さら
に、ガスガイドが、鉄心の下部フレ−ムを変圧器タンク
の内壁面に向けて拡張した部分からなり、発熱部内に連
通する通気孔を有するとともに、巻線の下縁との間に絶
縁材からなる閉塞材を設けてなるものとする。
Further, the gas guide is made of a plate-shaped insulating material having a vent hole communicating with the inside of the heat generating portion. Further, the gas guide is composed of a portion in which the lower frame of the iron core is expanded toward the inner wall surface of the transformer tank, has a vent hole communicating with the heat generating portion, and has an insulating material between the lower edge of the winding. It is assumed that an occluding material consisting of is provided.

【0012】[0012]

【作用】この発明の構成において、パネル放熱器で冷却
され、下降ガス管を介して変圧器タンクの下部に流入す
る絶縁ガスを発熱部内に導くガスガイドを、巻線の下縁
近傍と変圧器タンクの内壁面との間を閉塞する形で配設
したことにより、外周ガスダクトに分流する絶縁ガスが
ガスガイドにより遮断され、ガス流を発熱部内に導くこ
とができるので、内部ガスダクト内に冷却中心高さと発
熱中心高さとの差の増大に比例した自然対流速度の絶縁
ガス流を発生させることが可能となり、発熱部内におけ
る熱伝達率を冷却中心高さと発熱中心高さとの差に比例
して増大し、冷却性能を向上する機能が得られる。
In the structure of the present invention, the gas guide for guiding the insulating gas, which is cooled by the panel radiator and flows into the lower portion of the transformer tank through the descending gas pipe, into the heat generating portion, is provided near the lower edge of the winding and the transformer. By arranging the inner wall surface of the tank so as to be closed, the insulating gas diverted to the outer gas duct is blocked by the gas guide, and the gas flow can be guided into the heat generating part, so that the cooling center in the inner gas duct It is possible to generate an insulating gas flow with a natural convection velocity that is proportional to the increase in the difference between the height and the height of the heat generation center, and the heat transfer coefficient in the heat generation part is increased in proportion to the difference between the height of the cooling center and the height of the heat generation center. However, the function of improving the cooling performance can be obtained.

【0013】[0013]

【実施例】以下、この発明を実施例に基づいて説明す
る。図1はこの発明の実施例になる自冷式ガス絶縁変圧
器を模式化して示す断面図であり、従来技術と同じ構成
部分には同一参照符号を付すことにより、重複した説明
を省略する。図において、鉄心3とこれに巻装された巻
線4とを含む発熱部2を絶縁ガス9とともに収納した変
圧器タンク1が、その上部から分岐した上昇ガス管16
および下部から分岐した下降ガス管18にそれぞれ上部
ヘッダ−7および下部ヘッダ−17を介して連結された
複数のパネル放熱器5を備え、発熱部2で加熱され,パ
ネル放熱器5で冷却された絶縁ガス9が、下降ガス管1
8を介してガス流19Aとして変圧器タンク1の下部に
流入するよう構成される。また、巻線4の下縁近傍と変
圧器タンク1の内壁面との間を閉塞する形でガスガイド
21が設けられ、降温したガス流19Aが外周ガスダク
ト10C側に分流することを阻止し、内部ガスダクト1
0A,10Bに流入するよう構成される。
EXAMPLES The present invention will be described below based on examples. FIG. 1 is a schematic cross-sectional view showing a self-cooling type gas insulated transformer according to an embodiment of the present invention. The same components as those of the conventional art are designated by the same reference numerals, and a duplicate description will be omitted. In the figure, a transformer tank 1 containing a heat generating portion 2 including an iron core 3 and a winding 4 wound around the iron core 3 together with an insulating gas 9 has a rising gas pipe 16 branched from an upper portion thereof.
And a plurality of panel radiators 5 connected to the descending gas pipes 18 branched from the lower portion via upper headers-7 and lower headers-17, respectively, which are heated by the heat generating portion 2 and cooled by the panel radiators 5. Insulating gas 9 is descending gas pipe 1
It is configured to flow into the lower portion of the transformer tank 1 via 8 as a gas flow 19A. Further, the gas guide 21 is provided so as to close the vicinity of the lower edge of the winding wire 4 and the inner wall surface of the transformer tank 1 to prevent the cooled gas flow 19A from being diverted to the outer peripheral gas duct 10C side. Internal gas duct 1
It is configured to flow into 0A and 10B.

【0014】このように構成された自冷式ガス絶縁変圧
器においては、変圧器タンク1の下部に流入した絶縁ガ
ス流19Aの全てが内部ガスダクト10A,10Bに流
入し、冷却中心高さと発熱中心高さとの差に比例した自
然対流速度のガス流が内部ガスダクト10A,10Bに
形成され、自然対流速度の増加に対応した対流熱伝達が
鉄心および巻線と絶縁ガスとの間で行われる。熱伝達に
より昇温したガス流19Bは上昇ガス管16を経由して
パネル放熱器5で冷却され、下降ガス管18を介して再
び発熱部に循環する。その結果、自然対流速度の上昇に
比例して鉄心および巻線から絶縁ガスへの熱伝達率が改
善され、冷却中心高さと発熱中心高さとの差を大きくし
ただけの従来技術では得られなかった優れた冷却性能を
有する自冷式ガス絶縁変圧器が得られる。なお、巻線4
が円板巻線である場合、内部ガスダクト10A,10B
に下方から流入したガス流19Aは、上記内部ガスダク
トに直交する図示しない水平方向のダクトにガス流19
Cとして分流し、その一部は外周ガスダクト10Cに流
れ出すが、これにより巻線との熱伝達面積が増大するの
で、より良好な冷却性能が得られる。
In the self-cooling type gas insulated transformer constructed as described above, all of the insulating gas flow 19A flowing into the lower portion of the transformer tank 1 flows into the internal gas ducts 10A and 10B, and the cooling center height and the heat generation center are increased. A gas flow having a natural convection velocity proportional to the difference with the height is formed in the internal gas ducts 10A and 10B, and convection heat transfer corresponding to the increase in the natural convection velocity is performed between the iron core and the winding and the insulating gas. The gas flow 19B heated by the heat transfer is cooled by the panel radiator 5 via the rising gas pipe 16 and is circulated again to the heat generating portion via the descending gas pipe 18. As a result, the heat transfer coefficient from the iron core and windings to the insulating gas was improved in proportion to the increase in the natural convection velocity, which was not possible with the conventional technology that merely increased the difference between the cooling center height and the heat generation center height. A self-cooling type gas insulated transformer having excellent cooling performance can be obtained. In addition, winding 4
If the is a disk winding, the internal gas ducts 10A, 10B
The gas flow 19A flowing in from below into the horizontal gas duct (not shown) orthogonal to the internal gas duct described above.
Although it is diverted as C and a part of it flows out to the outer peripheral gas duct 10C, this increases the heat transfer area with the windings, so that better cooling performance can be obtained.

【0015】図2は、この発明の実施例におけるガスガ
イドを示す斜視図であり、図1を参照しつつその構造を
説明する。ガスガイド21は外径寸法が変圧器タンクの
内法に相応する大きさの板状の絶縁材からなり、鉄心3
の主脚,および巻線4の下面に対応する位置には、ガス
流19Aを内部ガスダクト10A,10Bに案内する通
気孔22が形成され、発熱部2側に支持される。このよ
うに構成されたガスガイド21は、巻線4の対地絶縁材
の一部としても機能するので、特別の設置スペ−スを必
要とせず、外周ガスダクト10Cへの絶縁ガスの分流を
遮断することができる。
FIG. 2 is a perspective view showing a gas guide in the embodiment of the present invention, and the structure thereof will be described with reference to FIG. The gas guide 21 is made of a plate-shaped insulating material having an outer diameter corresponding to the inner diameter of the transformer tank.
Vent holes 22 for guiding the gas flow 19A to the internal gas ducts 10A, 10B are formed at positions corresponding to the main legs of the and the lower surface of the winding 4, and are supported on the heat generating portion 2 side. Since the gas guide 21 configured as described above also functions as a part of the ground insulating material of the winding 4, it does not require a special installation space and shuts off the shunting of the insulating gas to the outer peripheral gas duct 10C. be able to.

【0016】図3はこの発明の異なる実施例を示す要部
の断面図であり、ガスガイド31が、鉄心3を支持する
下部フレ−ム32を変圧器タンク1の側壁に向けて水平
方向に棚状に拡張した部分からなり、内部ガスダクト1
0A,10Bに連通する通気孔33を備えるとともに、
巻線4Bとガスガイド31との隙間を塞ぐ絶縁材からな
る閉塞材34を設けた点が前述の実施例と異なってお
り、ガスガイド31の部分は薄い金属板で構成してもよ
く、また板状の絶縁材で構成してもよい。このように構
成されたガスガイド31は、機械的に強固なフレ−ムが
支持材を兼ねるとともに、閉塞材34が巻線4の対地絶
縁の一部を兼ねるので、簡素化されたガスガイドにより
外周ガスダクトへの絶縁ガスの分流を遮断することがで
きる。
FIG. 3 is a cross-sectional view of an essential part showing a different embodiment of the present invention, in which the gas guide 31 horizontally extends the lower frame 32 supporting the iron core 3 toward the side wall of the transformer tank 1. Internal gas duct consisting of a shelf-like expanded part 1
In addition to having a vent hole 33 communicating with 0A and 10B,
The present embodiment is different from the above-described embodiment in that a blocking member 34 made of an insulating material is provided to close the gap between the winding 4B and the gas guide 31, and the gas guide 31 may be formed of a thin metal plate. It may be made of a plate-shaped insulating material. In the gas guide 31 configured as described above, the mechanically strong frame also serves as a supporting member, and the closing member 34 also serves as a part of the ground insulation of the winding 4, so that the simplified gas guide is used. It is possible to block the split flow of the insulating gas to the peripheral gas duct.

【0017】[0017]

【発明の効果】この発明は前述のように、パネル放熱器
で冷却され、下降ガス管を介して変圧器タンクの下部に
流入する絶縁ガスを発熱部内に導くガスガイドを、巻線
の下縁近傍と変圧器タンクの内壁面との間を閉塞する形
で配設した。その結果、冷却中心高さと発熱中心高さと
の差を大きくした従来の自冷式ガス絶縁変圧器で問題に
なった、発熱部をバイパスして外周ガスダクトに流れて
しまうガス流が遮断され、冷却中心高さと発熱中心高さ
との差の増大に比例した自然対流速度の絶縁ガス流を内
部ガスダクト内に発生させることが可能となり、冷却性
能に優れた自冷式ガス絶縁変圧器を提供することができ
る。また、冷却性能の向上は、巻線の電流密度の増大を
可能にするので、変圧器の大きさをそのままに保持すれ
ば出力容量を増大でき、また逆に容量を一定に保持して
ガス絶縁変圧器を小型化できる利点が得られる。さら
に、パネル放熱器を変圧器タンクの上方に配したことに
よる冷却性能の向上効果と、設置面積の縮小効果との相
乗効果により、小型大容量で設置面積が小さく、かつ低
騒音の屋内用ガス絶縁変圧器を経済的にも有利に提供す
ることができる。
As described above, according to the present invention, the gas guide which is cooled by the panel radiator and guides the insulating gas flowing into the lower part of the transformer tank through the descending gas pipe into the heat generating portion is provided at the lower edge of the winding. It was arranged so as to block the vicinity and the inner wall surface of the transformer tank. As a result, the gas flow that bypasses the heat generating part and flows to the outer peripheral gas duct, which was a problem with the conventional self-cooling gas insulation transformer in which the difference between the height of the cooling center and the height of the heat generating center is increased, is blocked. It is possible to generate an insulating gas flow with a natural convection velocity in the internal gas duct in proportion to the increase in the difference between the center height and the heat generating center height, and to provide a self-cooling gas insulated transformer with excellent cooling performance. it can. In addition, the improved cooling performance enables the current density of the windings to be increased, so that the output capacity can be increased by keeping the size of the transformer as it is. There is an advantage that the transformer can be miniaturized. Furthermore, due to the synergistic effect of improving the cooling performance by arranging the panel radiator above the transformer tank and the effect of reducing the installation area, it is a small-sized, large-capacity, small-footprint, low-noise indoor gas. The insulating transformer can be provided economically and advantageously.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例になる自冷式ガス絶縁変圧器
を模式化して示す断面図
FIG. 1 is a sectional view schematically showing a self-cooling type gas insulated transformer according to an embodiment of the present invention.

【図2】この発明の実施例におけるガスガイドを示す斜
視図
FIG. 2 is a perspective view showing a gas guide in the embodiment of the present invention.

【図3】この発明の異なる実施例を示す要部の断面図FIG. 3 is a sectional view of a main part showing a different embodiment of the present invention.

【図4】従来の自冷式ガス絶縁変圧器を模式化して示す
断面図
FIG. 4 is a cross-sectional view schematically showing a conventional self-cooling type gas insulation transformer.

【図5】改良された従来の自冷式ガス絶縁変圧器を模式
化して示す断面図
FIG. 5 is a sectional view schematically showing an improved conventional self-cooling type gas insulation transformer.

【符号の説明】[Explanation of symbols]

1 変圧器タンク 2 発熱部 3 鉄心 4 巻線 5 パネル放熱器 7 上部ヘッダ− 9 絶縁ガス 10A 内部ガスダクト 10B 内部ガスダクト 10C 外周ガスダクト 16 上昇ガス管 17 下部ヘッダ− 18 下降ガス管 19A 降温したガス流 19B 昇温したガス流 21 ガスガイド 22 通気孔 31 ガスガイド 32 下部フレ−ム 33 通気孔 34 閉塞材 DESCRIPTION OF SYMBOLS 1 Transformer tank 2 Heat generating part 3 Iron core 4 Winding 5 Panel radiator 7 Upper header-9 Insulating gas 10A Internal gas duct 10B Internal gas duct 10C Peripheral gas duct 16 Rising gas pipe 17 Lower header-18 Down gas pipe 19A Cooled gas flow 19B Heated gas flow 21 Gas guide 22 Vent hole 31 Gas guide 32 Lower frame 33 Vent hole 34 Closing material

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】鉄心とこれに巻装された巻線とを含む発熱
部を絶縁ガスとともに収納した変圧器タンクが、その上
部から分岐した上昇ガス管および下部から分岐した下降
ガス管にそれぞれ上部ヘッダ−および下部ヘッダ−を介
して連結された複数のパネル放熱器を備え、前記発熱部
を自然対流冷却した絶縁ガスがパネル放熱器で冷却さ
れ、下降ガス管を介して発熱部に還流して冷却を行うも
のにおいて、前記下降ガス管を介して変圧器タンクの下
部に流入する絶縁ガスを前記発熱部内に導くガスガイド
を、前記巻線の下縁近傍と変圧器タンクの内壁面との間
を閉塞する形で配してなることを特徴とするガス絶縁変
圧器。
1. A transformer tank containing a heat generating portion including an iron core and a winding wound around the iron core together with an insulating gas, and a rising gas pipe branched from an upper portion thereof and a descending gas pipe branched from a lower portion thereof, respectively. A plurality of panel radiators connected through a header and a lower header are provided, and the insulating gas that naturally cools the heat generating portion by convection is cooled by the panel radiator and is returned to the heat generating portion through a descending gas pipe. For cooling, a gas guide for guiding the insulating gas flowing into the lower part of the transformer tank into the heat generating part through the descending gas pipe is provided between the lower edge of the winding and the inner wall surface of the transformer tank. A gas-insulated transformer characterized in that it is arranged in a closed form.
【請求項2】ガスガイドが、発熱部内に連通する通気孔
を有する板状の絶縁材からなることを特徴とする請求項
1記載のガス絶縁変圧器
2. The gas-insulated transformer according to claim 1, wherein the gas guide is made of a plate-shaped insulating material having a vent hole communicating with the inside of the heat generating portion.
【請求項3】ガスガイドが、鉄心の下部フレ−ムを変圧
器タンクの内壁面に向けて拡張した部分からなり、発熱
部内に連通する通気孔を有するとともに、巻線の下縁と
の間に絶縁材からなる閉塞材を設けてなることを特徴と
する請求項1記載のガス絶縁変圧器。
3. The gas guide comprises a portion obtained by expanding the lower frame of the iron core toward the inner wall surface of the transformer tank, has a vent hole communicating with the inside of the heat generating portion, and is provided between the lower edge of the winding and the lower edge of the winding. The gas-insulated transformer according to claim 1, characterized in that a blocking member made of an insulating material is provided in the.
JP19732092A 1992-07-24 1992-07-24 Gas insulation transformer Pending JPH0645156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19732092A JPH0645156A (en) 1992-07-24 1992-07-24 Gas insulation transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19732092A JPH0645156A (en) 1992-07-24 1992-07-24 Gas insulation transformer

Publications (1)

Publication Number Publication Date
JPH0645156A true JPH0645156A (en) 1994-02-18

Family

ID=16372501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19732092A Pending JPH0645156A (en) 1992-07-24 1992-07-24 Gas insulation transformer

Country Status (1)

Country Link
JP (1) JPH0645156A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112970078A (en) * 2018-11-19 2021-06-15 三菱电机株式会社 Static inductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112970078A (en) * 2018-11-19 2021-06-15 三菱电机株式会社 Static inductor

Similar Documents

Publication Publication Date Title
US8049587B2 (en) Cooling system for a dry-type air-core reactor
US3551863A (en) Transformer with heat dissipator
JP7228377B2 (en) static induction electric machine
JPH0645156A (en) Gas insulation transformer
JP5404293B2 (en) Gas insulated transformer
JPH04354312A (en) Gas insulation transformer
JP6946218B2 (en) Static inducer
JP2559506Y2 (en) Induction machine
WO2023132047A1 (en) Stationary inductor unit
CN110491640B (en) Method for accelerating oil cooling of oil-immersed self-cooling transformer
JP2020161582A (en) Stationary induction apparatus
JP3148044B2 (en) Gas cooled stationary electrical equipment
CN215772219U (en) Semi-open type transformer substation structure
JPH10116737A (en) Gas insulated transformer
JPH04124804A (en) Self-cooled gas-insulated induction electric apparatus
JP3321588B2 (en) Gas insulated transformer
JP2021158293A (en) Static induction electric device
JPH08111321A (en) Forced convection cooling transformer
JPH11126718A (en) Transformer
JPH0249408A (en) Self-cooled stationary electromagnetic induction apparatus
JPH05166639A (en) External cooler of gas-insulated transformer
JPH08222444A (en) Heat radiator of oil-filled electric apparatus
JP3936623B2 (en) Oil-filled electrical equipment cooling system
JPH02144904A (en) Heat sink device
JP2004172639A (en) Heat pipe type cooling device for power converter