JPH064505B2 - Method for producing MgO-stabilized beta-alumina solid electrolyte tube - Google Patents

Method for producing MgO-stabilized beta-alumina solid electrolyte tube

Info

Publication number
JPH064505B2
JPH064505B2 JP63275086A JP27508688A JPH064505B2 JP H064505 B2 JPH064505 B2 JP H064505B2 JP 63275086 A JP63275086 A JP 63275086A JP 27508688 A JP27508688 A JP 27508688A JP H064505 B2 JPH064505 B2 JP H064505B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
alumina
beta
electrolyte tube
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63275086A
Other languages
Japanese (ja)
Other versions
JPH02120273A (en
Inventor
幹夫 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP63275086A priority Critical patent/JPH064505B2/en
Publication of JPH02120273A publication Critical patent/JPH02120273A/en
Publication of JPH064505B2 publication Critical patent/JPH064505B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • H01M10/3918Sodium-sulfur cells characterised by the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ベータアルミナ固体電解質管の大規模焼成を
可能とするMgO安定化ベータアルミナ固体電解質管の
製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a MgO-stabilized beta-alumina solid electrolyte tube that enables large-scale firing of a beta-alumina solid electrolyte tube.

[従来の技術] ナトリウム−硫黄電池は、一方に陰極活物質である溶融
金属ナトリウム、他方には陽極活物質である溶融硫黄を
配し、両者をナトリウムイオンに対して選択的な透過性
を有するベータアルミナ固体電解質で隔離し、300〜
350℃で作動させる高温二次電池である。
[Prior Art] A sodium-sulfur battery has molten metal sodium that is a cathode active material on one side and molten sulfur that is an anode active material on the other side, and both have a selective permeability to sodium ions. Isolate with beta-alumina solid electrolyte, 300-
It is a high temperature secondary battery operated at 350 ° C.

このようなナトリウム−硫黄電池の構成は、例えば第1
図に示すように、陽極活物質である溶融硫黄Sを含浸し
たカーボンフェルト等の陽極用導電材1を収容する円筒
状の陽極容器2と、該陽極容器2の上端部と例えばアル
ファアルミナ製の絶縁体リング3を介して連結され、且
つ溶融金属ナトリウムNaの貯留する陰極容器4と、前
記絶縁体リング3の内周部に接合され、且つナトリウム
イオンNa+を選択的に透過させる機能を有する有底円
筒状のベータアルミナ管5とからなっている。また、前
記陰極容器4の上蓋6の中央部には、陰極容器4を通し
て下方向にベータアルミナ管5の底部付近まで延びた陰
極管7が貫通支持されている。
The configuration of such a sodium-sulfur battery is, for example, the first
As shown in the figure, a cylindrical anode container 2 for containing a conductive material 1 for anode such as carbon felt impregnated with molten sulfur S which is an anode active material, an upper end portion of the anode container 2 and, for example, alpha alumina A cathode container 4 which is connected through an insulator ring 3 and stores molten metal sodium Na, is joined to an inner peripheral portion of the insulator ring 3, and has a function of selectively transmitting sodium ions Na +. It consists of a bottomed cylindrical beta-alumina tube 5. A cathode tube 7 extending downward through the cathode container 4 to near the bottom of the beta-alumina tube 5 is penetratingly supported in the central portion of the upper lid 6 of the cathode container 4.

以上の構成を有するナトリウム−硫黄電池において、放
電時には溶融金属ナトリウムは電子を放出してナトリウ
ムイオンとなり、これがベータアルミナ固体電解質中を
透過して陽極側に移動し、陽極の硫黄と外部回路を通っ
てきた電子と反応して多硫化ナトリウムを生成し、2V
程度の電圧を発生する。一方、充電時には放電とは逆に
ナトリウム及び硫黄の生成反応が起こる。
In the sodium-sulfur battery having the above structure, during discharge, molten metal sodium releases an electron to become a sodium ion, which penetrates through the beta-alumina solid electrolyte and moves to the anode side, passing through the sulfur of the anode and an external circuit. Reacts with incoming electrons to produce sodium polysulfide,
Generate a voltage of the order. On the other hand, at the time of charging, the reaction of generating sodium and sulfur occurs contrary to the discharging.

以上のように、ナトリウム−硫黄電池において、ベータ
アルミナ固体電解質管は極めて重要な役割を果たすもの
であり、ナトリウムイオン伝導性などの特性を所望の範
囲内とするため、その製造には細心の注意が払われてい
る。
As described above, in the sodium-sulfur battery, the beta-alumina solid electrolyte tube plays an extremely important role, and the characteristics such as sodium ion conductivity are within the desired range. Has been paid.

従来より、ベータアルミナ固体電解質管としてその基本
組成がLi2Oの安定化ベータアルミナ系の固体電解質
管が主として使用され、一部では少量のLi2OとMg
Oとを安定化剤として加えたMgO安定化ベータアルミ
ナ系の固体電解質管も使用されており、その場合、特に
Li2O安定化ベータアルミナ系は上記の特性を有する
ように焼成するためには焼成温度を厳密に制御しなけれ
ばならない。そのため、従来からベータアルミナ管の焼
成には厳密な温度制御が可能な電気炉が主として用いら
れている。
Conventionally, a stabilized beta-alumina-based solid electrolyte tube having a basic composition of Li 2 O is mainly used as a beta-alumina solid electrolyte tube, and in some cases, a small amount of Li 2 O and Mg is used.
A MgO-stabilized beta-alumina-based solid electrolyte tube to which O and O are added as stabilizers is also used. In that case, in particular, the Li 2 O-stabilized beta-alumina-based solid electrolyte tube is used for firing so as to have the above-mentioned characteristics. The firing temperature must be tightly controlled. Therefore, an electric furnace capable of strict temperature control has been mainly used for firing the beta alumina tube.

[発明が解決しようとする課題] 電気炉は、上記のように±5℃程度の厳密な温度制御を
しつつ焼成が可能であるが、均熱帯の制約から大型炉の
使用は困難で、容量が一般的には0.3m2程度と小さ
く、その結果ベータアルミナ管の大規模焼成ができず、
焼成コストが高くなるという問題があった。
[Problems to be Solved by the Invention] Although an electric furnace can be fired while strictly controlling the temperature at about ± 5 ° C as described above, it is difficult to use a large furnace due to the limitation of the soaking zone. Is generally as small as 0.3 m 2, and as a result, beta-alumina tubes cannot be fired on a large scale,
There is a problem that the firing cost becomes high.

[課題を解決するための手段] そこで、本発明者は、電気炉を用いることなく、ガス炉
焼成によってベータアルミナ管の焼成を可能とすべく、
種々検討を重ねた結果、本発明を完成した。
[Means for Solving the Problems] Therefore, the present inventor, in order to enable firing of a beta-alumina tube by gas furnace firing without using an electric furnace,
As a result of various studies, the present invention has been completed.

即ち、本発明によれば、MgOが3.3〜4.9wt
%、Na2Oが8.2〜9.8wt%、残部がAl23
よりなる組成範囲を有するベータアルミナ有底円筒状成
形体を、焼成温度精度が±15℃のガス炉を用いて焼成
することを特徴とするMgO安定化ベータアルミナ固体
電解質の製造方法、が提供される。
That is, according to the present invention, the MgO content is 3.3 to 4.9 wt.
%, Na 2 O is 8.2 to 9.8 wt%, and the balance is Al 2 O 3
A method for producing a MgO-stabilized beta-alumina solid electrolyte, which comprises firing a beta-alumina bottomed cylindrical molded body having a composition range consisting of the following in a gas furnace having a firing temperature accuracy of ± 15 ° C. It

[作用] 本発明では、ベータアルミナ固体電解質管の焼成を、電
気炉に比べエネルギーコストが安価でかつ大規模焼成が
可能なガス炉を用いて行なうものである。その場合、ガ
ス炉の焼成温度精度は±15℃程度であるため、従来ベ
ータアルミナ固体電解質管として主に用いられているL
2O安定化ベータアルミナ系の固体電解質管は用いる
ことができない。そのため、本発明では、Li2O安定
化ベータアルミナ系ではなく、MgO安定化ベータアル
ミナ系の固体電解質管を用いることとし、ガス炉におけ
る±15℃程度の焼成温度精度であっても固体電解質管
の必要特性を保持した焼成が可能であるかどうかを種々
の観点から検討し、下記組成範囲のMgO安定化ベータ
アルミナ系の固体電解質管が適当であることを見出し
た。
[Operation] In the present invention, the beta-alumina solid electrolyte tube is fired using a gas furnace which has a lower energy cost than an electric furnace and is capable of large-scale firing. In that case, since the firing temperature accuracy of the gas furnace is about ± 15 ° C., the L type that has been mainly used as a beta-alumina solid electrolyte tube in the related art.
An i 2 O-stabilized beta alumina-based solid electrolyte tube cannot be used. Therefore, in the present invention, a solid electrolyte tube of MgO-stabilized beta-alumina system is used instead of Li 2 O-stabilized beta-alumina system, and even if the firing temperature accuracy is about ± 15 ° C. in a gas furnace, the solid electrolyte tube is not used. From various points of view, it was examined whether or not the calcination while maintaining the required characteristics of (1) is possible, and it was found that the MgO-stabilized beta-alumina-based solid electrolyte tube having the following composition range is suitable.

即ち、MgOが3.3〜4.9wt%、Na2Oが8.
2〜9.8wt%、残部がAl23よりなる組成範囲を
有するMgO安定化ベータアルミナ系固体電解質管をガ
ス炉にて焼成することより成るものである。
That is, MgO is 3.3 to 4.9 wt% and Na 2 O is 8.
The MgO-stabilized beta-alumina solid electrolyte tube having a composition range of 2 to 9.8 wt% and the balance being Al 2 O 3 is fired in a gas furnace.

なお、後述するように上記組成範囲外の場合には、ナト
リウム−硫黄電池に用いるためのベータアルミナ固体電
解質管としてより好ましい特性を有するものが製造でき
ない。
As will be described later, when the composition is out of the above range, a beta-alumina solid electrolyte tube having more preferable properties for use in a sodium-sulfur battery cannot be manufactured.

このように、本発明では特定組成範囲内のMgO安定化
ベータアルミナ固体電解質管をガス炉を用いて焼成を行
なうので、大規模焼成が可能であってコストが低減でき
る。
As described above, in the present invention, the MgO-stabilized beta-alumina solid electrolyte tube within the specific composition range is fired using the gas furnace, so that large-scale firing is possible and the cost can be reduced.

なお、ガス炉における焼成は、通常昇温速度50〜30
0℃/hrで1450〜1700℃まで昇温して約10分
〜2時間保持することにより行なうことが好ましい。
The firing rate in the gas furnace is usually 50 to 30
It is preferable to perform the heating at 0 ° C./hr to 1450 to 1700 ° C. and holding for about 10 minutes to 2 hours.

[実施例] 以下、本発明を実施例に基き、更に詳細に説明するが、
本発明はこれら実施例に限られるものではない。
[Examples] Hereinafter, the present invention will be described in more detail with reference to Examples.
The present invention is not limited to these examples.

(実施例1) 出発原料として粒径10μm以下の微細なα−アルミナ
とNa2CO3(試薬一級)およびMgO(試薬特級)を
用い、Na2OおよびMgOに換算して第2図にプロッ
トした11種類の組成について均一に混合した、その粉
末を1300℃の炉内で4時間保持して、MgO安定化
ベータアルミナ粉末を合成した。
Example 1 As starting materials, fine α-alumina having a particle size of 10 μm or less and Na 2 CO 3 (first-grade reagent) and MgO (special-grade reagent) were used and converted into Na 2 O and MgO and plotted in FIG. The obtained 11 kinds of compositions were uniformly mixed, and the powders were held in a furnace at 1300 ° C. for 4 hours to synthesize MgO-stabilized beta-alumina powder.

この合成粉末に成形助剤を加え、アルミナ製ポットミル
を用いて湿式粉砕を20時間行なった。各々の湿式粉砕
物を噴霧式造粒乾燥処理することにより、成形用粉末を
得た。
A molding aid was added to this synthetic powder, and wet milling was carried out for 20 hours using an alumina pot mill. Each wet pulverized product was subjected to a spray-type granulation drying treatment to obtain a molding powder.

各成形用粉末をそれぞれ成形圧力1500kg/cm2にて、
ラバープレス法によって18(φ)×15(φ)×18
0()mmの有底試験管状の成形体を各20本ずつ得
た。
Each molding powder at a molding pressure of 1500 kg / cm 2 ,
18 (φ) × 15 (φ) × 18 by rubber press method
Twenty pieces of 0 () mm bottomed test tubular molded bodies were obtained.

これらの成形体を酸化マグネシウムよりなる耐アルカリ
材質からなる容器で覆って焼成温度精度±15℃のガス
焼成炉中に設置し、室温から1000℃迄200℃/h
r、1000℃から1650℃まで300℃/hrで加熱
し、1650℃で30分間保持後1100℃まで120
℃/hrで徐冷した後自然冷却を行なった。このような方
法によってそれぞれ11種類の組成のベータアルミナ管
焼結体を各20本ずつ得ることができた。
These molded bodies are covered with a container made of alkali-resistant material made of magnesium oxide and placed in a gas firing furnace with a firing temperature accuracy of ± 15 ° C, and the temperature is 200 ° C / h from room temperature to 1000 ° C.
r, heat from 1000 ℃ to 1650 ℃ at 300 ℃ / hr, hold at 1650 ℃ for 30 minutes, and then hold at 1100 ℃ for 120 minutes.
After slow cooling at ° C / hr, natural cooling was performed. By this method, 20 beta-alumina tube sintered bodies each having 11 types of compositions could be obtained.

これらの焼結体を用い、ナトリウム−硫黄電池に用いる
固体電解質管として必要な特性である密度、強度及びナ
トリウムイオン伝導抵抗率を測定した。その結果、第2
図および第3図に示すように試料、およびの3種
が従来の電気炉(温度精度±5℃程度)で得られる固体
電解質の特性を満足した。すなわち、温度精度±5℃程
度の電気炉焼成と同レベルの特性が得られる組成範囲
は、MgOが2.0〜6.0wt%、Na2Oが6.0
〜12.0wt%、Al23が残部であることが判明し
た。上位組成範囲外の場合には、第3図の残りの8種類
の組成のように、いずれかの特性を満足しておらず、ナ
トリウム−硫黄電池用の固体電解質管として好ましくな
いものである。
Using these sintered bodies, the density, strength, and sodium ion conductive resistivity, which are the properties required for a solid electrolyte tube used in a sodium-sulfur battery, were measured. As a result, the second
As shown in the figures and FIG. 3, the three kinds of samples, and the three kinds, satisfied the characteristics of the solid electrolyte obtained in the conventional electric furnace (temperature accuracy: ± 5 ° C.). That is, the composition range in which the same level of characteristics as in the electric furnace firing with a temperature accuracy of about ± 5 ° C. is obtained is 2.0 to 6.0 wt% for MgO and 6.0 for Na 2 O.
˜12.0 wt%, Al 2 O 3 was found to be the balance. When the composition is out of the upper composition range, one of the characteristics is not satisfied like the remaining eight compositions in FIG. 3, and it is not preferable as a solid electrolyte tube for a sodium-sulfur battery.

[発明の効果] 以上説明したように、本発明は特定組成のMgO安定化
ベータアルミナ有底円筒状成形体を用いてガス炉焼成し
ているので、ナトリウム−硫黄電池として必要な固体電
解質管の特性を維持しつつ大型ガス炉あるいはトンネル
式ガス焼成炉のような大規模焼成が可能となり、ナトリ
ウム−硫黄電池として有用な固体電解質管のコストを大
幅に低減することができる。
[Effects of the Invention] As described above, according to the present invention, the MgO-stabilized beta-alumina bottomed cylindrical molded body having a specific composition is used for gas furnace firing, so that the solid electrolyte tube required for the sodium-sulfur battery is Large-scale firing such as a large-scale gas furnace or a tunnel-type gas firing furnace can be performed while maintaining the characteristics, and the cost of the solid electrolyte tube useful as a sodium-sulfur battery can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図はナトリウム−硫黄電池の基本構成を示す概略断
面図、第2図は実施例中の11種類の組成を示すダイヤ
グラム、第3図は11種類の焼結体における特性を示す
グラフである。 1…陽極用導電材1、2…陽極容器、3…絶縁体リン
グ、4…陰極容器、5…ベータアルミナ管。
FIG. 1 is a schematic cross-sectional view showing the basic structure of a sodium-sulfur battery, FIG. 2 is a diagram showing the composition of 11 kinds of examples, and FIG. 3 is a graph showing the characteristics of 11 kinds of sintered bodies. . 1 ... Anode conductive material 1, 2 ... Anode container, 3 ... Insulator ring, 4 ... Cathode container, 5 ... Beta-alumina tube.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】MgOが3.3〜4.9wt%、Na2
が8.2〜9.8wt%、残部がAl23よりなる組成
範囲を有するベータアルミナ有底円筒状成形体を、焼成
温度精度が±15℃のガス炉を用いて焼成することを特
徴とするMgO安定化ベータアルミナ固体電解質管の製
造方法。
1. MgO 3.3-4.9 wt%, Na 2 O
Is characterized by firing a beta-alumina bottomed cylindrical shaped body having a composition range of 8.2 to 9.8 wt% and the balance being Al 2 O 3 using a gas furnace with a firing temperature accuracy of ± 15 ° C. And a method for producing a MgO-stabilized beta-alumina solid electrolyte tube.
JP63275086A 1988-10-31 1988-10-31 Method for producing MgO-stabilized beta-alumina solid electrolyte tube Expired - Lifetime JPH064505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63275086A JPH064505B2 (en) 1988-10-31 1988-10-31 Method for producing MgO-stabilized beta-alumina solid electrolyte tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63275086A JPH064505B2 (en) 1988-10-31 1988-10-31 Method for producing MgO-stabilized beta-alumina solid electrolyte tube

Publications (2)

Publication Number Publication Date
JPH02120273A JPH02120273A (en) 1990-05-08
JPH064505B2 true JPH064505B2 (en) 1994-01-19

Family

ID=17550610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63275086A Expired - Lifetime JPH064505B2 (en) 1988-10-31 1988-10-31 Method for producing MgO-stabilized beta-alumina solid electrolyte tube

Country Status (1)

Country Link
JP (1) JPH064505B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54149709A (en) * 1978-05-16 1979-11-24 Chloride Silent Power Ltd Production of polycrystalline betaaalumina ceramics

Also Published As

Publication number Publication date
JPH02120273A (en) 1990-05-08

Similar Documents

Publication Publication Date Title
US3468719A (en) Solid state ionic conductor and method of making
US3410728A (en) Electrical device comprising metal oxide-containing solid electrolyte and electrode
US3475225A (en) Method for preparing solid state ionic conductor
US3446677A (en) Method of making a solid ionic conductor
US4021255A (en) Sintered beta-alumina article permeable to sodium and potassium ions and methods for producing same
US3655845A (en) Heating a sintered alumina article in atmosphere containing sodium or potassium ions
KR100294467B1 (en) Process for producing solid electrolyte for sodium-sulfur battery
JPH064505B2 (en) Method for producing MgO-stabilized beta-alumina solid electrolyte tube
US20020113344A1 (en) Method for producing beta-alumina solid electrolyte
US5510210A (en) Solid electrolyte for sodium-sulfur secondary cell and process for preparing the same
Heavens Strength improvement in beta ″alumina by incorporation of zirconia
JPH04240155A (en) Beta-alumina-based sintered body and production thereof
JP2634674B2 (en) Mold for isostatic pressing of ceramics tubes
US3416967A (en) Electrical device comprising metal oxide containing solid electrolyte and electrode
US745958A (en) Manufacture of sodium.
JPH0388279A (en) Sintering method of beta alumina tube for sodium-sulfur battery
JP2719352B2 (en) Method for manufacturing solid electrolyte tube for sodium-sulfur battery
JP2763487B2 (en) Method for producing beta alumina-based sintered body
JP2763486B2 (en) Raw material powder of beta-alumina sintered body and method for producing sintered body using the same
JPH0665069B2 (en) Method of firing beta-alumina tube for sodium-sulfur battery
US3437524A (en) Solid electrolyte alkali metal voltaic cell
JP3034883B2 (en) Solid electrolyte for sodium-sulfur battery and method for producing the same
GB2052462A (en) Improvements in or relating to the preparation of ion conductors
JPH0624149B2 (en) Beta-alumina solid electrolyte
JP2685736B2 (en) Method of firing beta-alumina tube for sodium-sulfur battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 15