JPH02120273A - Production of mgo-stabilized beta-alumina solid electrolyte tube - Google Patents

Production of mgo-stabilized beta-alumina solid electrolyte tube

Info

Publication number
JPH02120273A
JPH02120273A JP63275086A JP27508688A JPH02120273A JP H02120273 A JPH02120273 A JP H02120273A JP 63275086 A JP63275086 A JP 63275086A JP 27508688 A JP27508688 A JP 27508688A JP H02120273 A JPH02120273 A JP H02120273A
Authority
JP
Japan
Prior art keywords
mgo
alumina
beta
solid electrolyte
electrolyte tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63275086A
Other languages
Japanese (ja)
Other versions
JPH064505B2 (en
Inventor
Mikio Nakagawa
幹夫 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP63275086A priority Critical patent/JPH064505B2/en
Publication of JPH02120273A publication Critical patent/JPH02120273A/en
Publication of JPH064505B2 publication Critical patent/JPH064505B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • H01M10/3918Sodium-sulfur cells characterised by the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To inexpensively provide the subject solid electrolyte tube suitable for Na-S batteries by adding specific amounts of MgO and Na2O to Al2O3, molding the prepared composition and subsequently calcining the formed beta- alumina bottomed cylindrical molded product in a gas furnace. CONSTITUTION:alpha-Alumina is compounded with MgO and Na2O as stabilizers and heated to form a MgO-stabilized beta-alumina powder, which is molded into a beta-alumina bottomed cylindrical molded product having a composition compris ing 2-6wt.% of MgO, 6-12wt.% of Na2O and the remaining amount of Al2O3. The prepared beta-alumina bottomed cylindrical molded product is calcined in a gas furnace to provide a MgO-stabilized beta-alumina solid electrolyte tube which is suitably used as the solid electrolyte tube 5 of a Na-S battery compris ing an anode container 2 for receiving an anode conductive material 1 containing melted sulfur, cathode container 4 for storing melted metal sodium, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ベータアルミナ固体電解質管の大規模焼成を
可能とするMgO安定化ベータアルミナ固体電解質管の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing MgO-stabilized beta-alumina solid electrolyte tubes that enables large-scale firing of beta-alumina solid electrolyte tubes.

[従来の技術] ナトリウム−硫黄電池は、一方に陰極活物質である溶融
金属ナトリウム、他方には陽極活物質である溶融硫黄を
配し、両者をナトリウムイオンに対して選択的な透過性
を有するベータアルミナ固体電解質で隔離し、300〜
350°Cて作動させる高温二次電池である。
[Prior Art] A sodium-sulfur battery has molten metal sodium as a cathode active material on one side and molten sulfur as an anode active material on the other side, and both have selective permeability to sodium ions. Isolated with beta alumina solid electrolyte, 300 ~
This is a high-temperature secondary battery that operates at 350°C.

このようなナトリウム−硫黄電池の構成は1例えば第1
図に示すように、陽極活物質である溶融硫黄Sを含浸し
たカーボンフェルト等の陽極用導電材lを収容する円筒
状の陽極容器2と、該陽極容器2の上端部と例えばアル
ファアルミナ製の絶縁体リング3を介して連結され、且
つ溶融金属ナトリウムNaを貯留する陰極容器4と、前
記絶縁体リング3の内周部に接合され、且つナトリウム
イオンNa”″を選択的に透過させる機能を有する有底
円筒状のベータアルミナ管5とからなっている。また、
前記陰極容器4の上M6の中央部には、陰極容器4を通
して下方向にベータアルミナ管5の底部付近まで延びた
陰極管7が貫通支持されている。
The configuration of such a sodium-sulfur battery is 1 e.g.
As shown in the figure, there is a cylindrical anode container 2 that accommodates an anode conductive material l such as carbon felt impregnated with molten sulfur S, which is an anode active material, and a cylindrical anode container 2 that accommodates an anode conductive material l such as carbon felt impregnated with molten sulfur S, which is an anode active material. A cathode container 4 is connected via an insulator ring 3 and stores molten metal sodium Na, and a cathode container 4 is connected to the inner circumference of the insulator ring 3 and has a function of selectively permeating sodium ions Na''. It consists of a cylindrical beta alumina tube 5 with a bottom. Also,
A cathode tube 7 extending downward through the cathode container 4 to near the bottom of the beta alumina tube 5 is supported through the center of the upper M6 of the cathode container 4.

以上の構成を有するナトリウム−硫黄電池において、放
電時には溶融金属ナトリウムは電子を放出してナトリウ
ムイオンとなり、これがベータアルミナ固体電解質中を
透過して陽極側に移動し、陽極の硫黄と外部回路を通っ
てきた電子と反応して多硫化ナトリウムを生成し、2V
程度の電圧を発生する。一方、充電時には放電とは逆に
ナトリウム及び硫黄の生成反応が起こる。
In a sodium-sulfur battery with the above configuration, during discharge, molten metal sodium releases electrons and becomes sodium ions, which pass through the beta alumina solid electrolyte and move to the anode side, passing through the sulfur of the anode and an external circuit. Reacts with the incoming electrons to produce sodium polysulfide, which generates 2V
Generates a voltage of approximately On the other hand, during charging, sodium and sulfur production reactions occur, contrary to discharging.

以上のように、ナトリウム−硫黄電池において、ベータ
アルミナ固体電解質管は極めて重要な役割を果たすもの
であり、ナトリウムイオン伝導性などの特性を所望の範
囲内とするため、その製造には細心の注意が払われてい
る。
As mentioned above, beta-alumina solid electrolyte tubes play an extremely important role in sodium-sulfur batteries, and great care must be taken in their manufacture to keep properties such as sodium ion conductivity within the desired range. is being paid.

従来より、ベータアルミナ固体電解質管としてその基本
組成がLi、O安定化ベータアルミナ系の固体電解質管
が主として使用され、一部では少量のLi2OとMgO
とを安定化剤として加えたMgO安定化ベータアルミナ
系の固体電解質管も使用されており、その場合、特にL
i2O安定化ベータアルミナ系は上記の特性を有するよ
うに焼成するためには焼成温度を厳密に制御しなければ
ならない。そのため、従来からベータアルミナ管の焼成
には厳密な温度制御が可能な電気炉が主として用いられ
ている。
Conventionally, solid electrolyte tubes whose basic composition is Li and O stabilized beta alumina have been mainly used as beta alumina solid electrolyte tubes, and in some cases, small amounts of Li2O and MgO have been used.
Solid electrolyte tubes based on MgO stabilized beta alumina have also been used, with the addition of L as a stabilizer.
In order for the i2O stabilized beta alumina system to be fired to have the above properties, the firing temperature must be strictly controlled. Therefore, conventionally, electric furnaces capable of precise temperature control have been mainly used for firing beta alumina tubes.

[発明が解決しようとする課題] 電気炉は、上記のように±5°C程度の厳密な温度制御
をしつつ焼成が可能であるが、均熱帯の制約から大型炉
の使用は困難で、容量が一般的には0.3m”程度と小
さく、その結果ベータアルミナ管の大規模焼成ができず
、焼成コストが高くなるという問題があった。
[Problem to be solved by the invention] As mentioned above, electric furnaces are capable of firing with strict temperature control of about ±5°C, but it is difficult to use large furnaces due to restrictions on the soaking zone. The capacity is generally as small as about 0.3 m'', and as a result, large-scale firing of beta alumina tubes is not possible and the firing cost is high.

[課題を解決するための手段] そこで、本発明者は、電気炉を用いることなく、ガス炉
焼成によってベータアルミナ管の焼成を可能とすべく、
種々検討を重ねた結果、本発明を完成した。
[Means for Solving the Problems] Therefore, the present inventors aimed to make it possible to fire a beta alumina tube by firing in a gas furnace without using an electric furnace.
As a result of various studies, the present invention was completed.

即ち、本発明によれば、MgOが2.0〜6.0wt%
、Na、Oか6.0〜12.Owt%、残部がA l 
20 :Iよりなる組成範囲を有するベータアルミナ有
底円筒状成形体を、ガス炉を用いて焼成することを特徴
とするMgO安定化ベータアルミナ固体電解質管の製造
方法、が提供される。
That is, according to the present invention, MgO is 2.0 to 6.0 wt%
, Na, O or 6.0 to 12. Owt%, the remainder is Al
Provided is a method for producing an MgO-stabilized beta-alumina solid electrolyte tube, which comprises firing a beta-alumina bottomed cylindrical molded body having a composition range of 20:I using a gas furnace.

[作用] 本発明では、ベータアルミナ固体電解質管の焼成を、電
気炉に比ベエネルギーコストが安価でかつ大規模焼成か
可能なガス炉を用いて行なうものである。その場合、ガ
ス炉の焼成温度精度は±15℃程度であるため、従来ベ
ータアルミナ固体電解質管として主に用いられているL
i2O安定化ベータアルミナ系の固体電解質管は用いる
ことができない。そのため、本発明では、Li、O安定
化ベータアルミナ系ではなく、MgO安定化ベータアル
ミナ系の固体電解質管を用いることとし、ガス炉におけ
る±15℃程度の焼成温度精度であっても固体電解質管
の必要特性を保持した焼成が可能であるかどうかを種々
の観点から検討し、下記組成範囲のMgO安定化ベータ
アルミナ系の固体電解質管が適当であることを見出した
[Function] In the present invention, the beta-alumina solid electrolyte tube is fired using a gas furnace, which has lower energy cost than an electric furnace and is capable of large-scale firing. In that case, the firing temperature accuracy of the gas furnace is approximately ±15°C, so L
Solid electrolyte tubes based on i2O stabilized beta alumina cannot be used. Therefore, in the present invention, a MgO-stabilized beta-alumina solid electrolyte tube is used instead of a Li, O-stabilized beta-alumina-based solid electrolyte tube, and even if the firing temperature accuracy in a gas furnace is about ±15°C, the solid electrolyte tube We investigated from various viewpoints whether it is possible to perform firing while maintaining the necessary characteristics, and found that MgO-stabilized beta-alumina solid electrolyte tubes having the following composition range are suitable.

即ち、MgOが2.0〜6.0wt%、好ましくは:1
3〜4.9wt%、Na2Oが6.0〜12.0wt%
、好ましくは8−2〜9.8wt%、残部がA文203
よりなる組*i囲を有するMgO安定化ベータアルミナ
系固体電解質管をガス炉にて焼成することより成るもの
である。
That is, MgO is 2.0 to 6.0 wt%, preferably: 1
3 to 4.9 wt%, Na2O is 6.0 to 12.0 wt%
, preferably 8-2 to 9.8 wt%, the balance being A sentence 203
This method consists of firing an MgO-stabilized beta-alumina solid electrolyte tube having a group *i radius in a gas furnace.

なお、後述するように上記組成範囲外の場合には、ナト
リウム−硫黄電池に用いるためのベータアルミナ固体電
解質管として必要な特性を有するものが製造てきない。
As will be described later, if the composition is outside the above range, a beta-alumina solid electrolyte tube having the necessary characteristics for use in a sodium-sulfur battery cannot be manufactured.

このように、本発明では特定組成範囲内のMgO安定化
ベータアルミナ固体電解質管をガス炉を用いて焼成を行
なうので、大規模焼成が可能であってコストが低減でき
る。
As described above, in the present invention, since the MgO-stabilized beta-alumina solid electrolyte tube within a specific composition range is fired using a gas furnace, large-scale firing is possible and costs can be reduced.

なお、ガス炉における焼成は1通常昇温速度50〜30
0℃/hrで1450〜1700°Cまて昇温して約1
0分〜2時間保持することにより行なうことが好ましい
Note that firing in a gas furnace usually has a heating rate of 50 to 30
Raise the temperature to 1450-1700°C at 0°C/hr for about 1
This is preferably carried out by holding for 0 minutes to 2 hours.

[実施例] 以下、本発明を実施例に基き、更に詳細に説明するが、
本発明はこれら実施例に限られるものではない。
[Examples] Hereinafter, the present invention will be explained in more detail based on Examples.
The present invention is not limited to these examples.

(実施例1) 出発原料として粒径10pm以下の微細なα−アルミナ
とN a 2 CO−(試薬−級)およびMg0(試薬
特級)を用い、Na2OおよびMgOに換算して第2図
にプロットした11種類の組成について均一に混合した
後、その粉末を1300°Cの炉内で4時間保持して、
MgO安定化ベータアルミナ粉末を合成した。
(Example 1) Using fine α-alumina with a particle size of 10 pm or less, Na 2 CO- (reagent-grade) and Mg0 (special reagent grade) as starting materials, the results are plotted in Figure 2 in terms of Na2O and MgO. After uniformly mixing the 11 different compositions, the powder was held in a 1300°C furnace for 4 hours.
MgO stabilized beta alumina powder was synthesized.

この合成粉末に成形助剤を加え、アルミナ製ボットミル
を用いて湿式粉砕を20時間行なった。
A molding aid was added to this synthetic powder, and wet pulverization was performed for 20 hours using an alumina bot mill.

各々の湿式粉砕物を噴霧式造粒乾燥処理することにより
、成形用粉末を得た。
A powder for molding was obtained by subjecting each of the wet-pulverized products to a spray-type granulation drying process.

各成形用粉末をそれぞれ成形圧力1500kg/cra
2にて、ラバープレス法によって18(φ)×15(φ
)x180(文) amの有底試験管状の成形体を各2
0本ずつ得た。
Each molding powder has a molding pressure of 1500 kg/cra.
2, 18(φ)×15(φ
) x 180 (text) 2 am bottomed test tube shaped molded bodies each
I got 0 each.

これらの成形体を酸化マグネシウムよりなる耐アルカリ
材質からなる容器で覆って焼成温度精度±15°Cのガ
ス焼成炉中に設置し、室温から1ooo℃迄200℃/
hr、  l OOO’Cから1650°Cまで300
 ”C/hrで加熱し、16500Cで30分間保持後
1100℃まで120℃/hrで徐冷した後自然冷却を
行なった。このような方法によってそれぞれ11種類の
組成のベータアルミナ管焼結体を各20本ずつ得ること
かできた。
These compacts were covered with a container made of an alkali-resistant material made of magnesium oxide, placed in a gas firing furnace with a firing temperature accuracy of ±15°C, and heated at 200°C/200°C from room temperature to 100°C.
hr, l OOO'C to 1650°C 300
After heating at 16500C/hr for 30 minutes, slow cooling to 1100℃ at 120℃/hr, and then natural cooling. I was able to get 20 pieces of each.

これらの焼結体を用い、ナトリウム−硫黄電池に用いる
固体電解質管として必要な特性である密度、強度及びナ
トリウムイオイン伝導抵抗率を測定した。その結果、第
2図および第3図に示すように試料■、■および■の3
種が従来の電気炉(温度精度±5°C程度)で得られる
固体電解質の特性を満足した。すなわち、温度精度±5
°C程度の電気炉焼成と同レベルの特性が得られる組成
範囲は、MgOが2.0〜6.0wt%、Na2Oが6
.0〜12.0wt%、A文、03が残部であることが
判明した。上位組成範囲外の場合には、第3図の残りの
8種類の組成のように、いずれかの特性を満足しておら
ず、ナトリウム−硫黄電池用の固体電解質管として好ま
しくないものである。
Using these sintered bodies, the density, strength, and sodium ion conduction resistivity, which are characteristics necessary for solid electrolyte tubes used in sodium-sulfur batteries, were measured. As a result, as shown in Fig. 2 and Fig. 3, three of the samples ■, ■, and ■
The seed satisfied the characteristics of a solid electrolyte obtained in a conventional electric furnace (temperature accuracy of approximately ±5°C). That is, temperature accuracy ±5
The composition range that provides the same level of properties as electric furnace firing at around °C is 2.0 to 6.0 wt% MgO and 6 wt% Na2O.
.. It was found that 0 to 12.0 wt%, A text, and 03 were the remainder. If the composition is outside the upper composition range, like the remaining eight compositions in FIG. 3, it does not satisfy any of the characteristics and is not preferred as a solid electrolyte tube for a sodium-sulfur battery.

[発明の効果] 以上説明したように、本発明は特定組成のMgO安定化
ベータアルミナ有底円筒状成形体を用いてガス炉焼成し
ているので、ナトリウム−硫黄電池として必要な固体電
解質管の特性を維持しつつ大型ガス炉あるいはトンネル
式ガス焼成炉のような大規模焼成が可能となり、ナトリ
ウム−硫黄電池として有用な固体電解質管のコストを大
幅に低減することができる。
[Effects of the Invention] As explained above, the present invention uses an MgO-stabilized beta alumina bottomed cylindrical molded body having a specific composition and fires it in a gas furnace. It becomes possible to perform large-scale firing in a large gas furnace or tunnel type gas firing furnace while maintaining the characteristics, and the cost of solid electrolyte tubes useful as sodium-sulfur batteries can be significantly reduced.

第1図Figure 1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はナトリウム−硫黄電池の基本構成を示す概略断
面図、第2図は実施例中の11種類の組成を示すダイヤ
グラム、第3図は11種類の焼結体における特性を示す
グラフである。 1・・・陽極用導電材l、2・・・陽極容器、3・・・
絶縁体リング、4・・・陰極容器、5−・・ベータアル
ミナ管。
Figure 1 is a schematic cross-sectional view showing the basic structure of a sodium-sulfur battery, Figure 2 is a diagram showing 11 types of compositions in the example, and Figure 3 is a graph showing the characteristics of 11 types of sintered bodies. . 1... Anode conductive material l, 2... Anode container, 3...
Insulator ring, 4... cathode container, 5-... beta alumina tube.

Claims (1)

【特許請求の範囲】[Claims] (1)MgOが2.0〜6.0wt%、Na_2Oが6
.0〜12.0wt%、残部がAl_2O_3よりなる
組成範囲を有するベータアルミナ有底円筒状成形体を、
ガス炉を用いて焼成することを特徴とするMgO安定化
ベータアルミナ固体電解質管の製造方法。
(1) MgO is 2.0 to 6.0 wt%, Na_2O is 6
.. A beta alumina bottomed cylindrical molded body having a composition range of 0 to 12.0 wt%, the balance being Al_2O_3,
1. A method for producing an MgO-stabilized beta-alumina solid electrolyte tube, which comprises firing using a gas furnace.
JP63275086A 1988-10-31 1988-10-31 Method for producing MgO-stabilized beta-alumina solid electrolyte tube Expired - Lifetime JPH064505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63275086A JPH064505B2 (en) 1988-10-31 1988-10-31 Method for producing MgO-stabilized beta-alumina solid electrolyte tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63275086A JPH064505B2 (en) 1988-10-31 1988-10-31 Method for producing MgO-stabilized beta-alumina solid electrolyte tube

Publications (2)

Publication Number Publication Date
JPH02120273A true JPH02120273A (en) 1990-05-08
JPH064505B2 JPH064505B2 (en) 1994-01-19

Family

ID=17550610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63275086A Expired - Lifetime JPH064505B2 (en) 1988-10-31 1988-10-31 Method for producing MgO-stabilized beta-alumina solid electrolyte tube

Country Status (1)

Country Link
JP (1) JPH064505B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54149709A (en) * 1978-05-16 1979-11-24 Chloride Silent Power Ltd Production of polycrystalline betaaalumina ceramics

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54149709A (en) * 1978-05-16 1979-11-24 Chloride Silent Power Ltd Production of polycrystalline betaaalumina ceramics

Also Published As

Publication number Publication date
JPH064505B2 (en) 1994-01-19

Similar Documents

Publication Publication Date Title
Stevens et al. Structure, properties and production of β-alumina
US3404035A (en) Secondary battery employing molten alkali metal reactant
JPH0357060B2 (en)
US3829331A (en) Sodium borate glass compositions and batteries containing same
US3446677A (en) Method of making a solid ionic conductor
US4021255A (en) Sintered beta-alumina article permeable to sodium and potassium ions and methods for producing same
JPH02120273A (en) Production of mgo-stabilized beta-alumina solid electrolyte tube
US3877995A (en) Potassium borate glass compositions
KR100294467B1 (en) Process for producing solid electrolyte for sodium-sulfur battery
US3655845A (en) Heating a sintered alumina article in atmosphere containing sodium or potassium ions
JPH04240155A (en) Beta-alumina-based sintered body and production thereof
US3607435A (en) Method of making sintered beta-alumina bodies
US5510210A (en) Solid electrolyte for sodium-sulfur secondary cell and process for preparing the same
US4073711A (en) Method of producing lithiated beta-alumina articles
JPH0388279A (en) Sintering method of beta alumina tube for sodium-sulfur battery
JPH0680462A (en) Solid electrolyte
JP2719352B2 (en) Method for manufacturing solid electrolyte tube for sodium-sulfur battery
JP2763487B2 (en) Method for producing beta alumina-based sintered body
US3437524A (en) Solid electrolyte alkali metal voltaic cell
JPH02123671A (en) Baking method for beta-alumina tube for sodium-sulfur battery
JP2763486B2 (en) Raw material powder of beta-alumina sintered body and method for producing sintered body using the same
Pershina et al. Influence of Li3BO3 on the stability of Li1. 5Al0. 5Ge1. 5 (PO4) 3 glass-ceramics with Li4Ti5O12 anode
JPH05147929A (en) Production of powdery starting material for beta-alumna
JPH02120222A (en) Mgo stabilized beta alumina and production thereof
JP2685736B2 (en) Method of firing beta-alumina tube for sodium-sulfur battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 15