JPH0680462A - Solid electrolyte - Google Patents

Solid electrolyte

Info

Publication number
JPH0680462A
JPH0680462A JP4231856A JP23185692A JPH0680462A JP H0680462 A JPH0680462 A JP H0680462A JP 4231856 A JP4231856 A JP 4231856A JP 23185692 A JP23185692 A JP 23185692A JP H0680462 A JPH0680462 A JP H0680462A
Authority
JP
Japan
Prior art keywords
electrolyte
conductivity
solid electrolyte
powder
ionic conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4231856A
Other languages
Japanese (ja)
Inventor
Susumu Nakayama
享 中山
Hiroshi Kuroshima
浩 黒島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP4231856A priority Critical patent/JPH0680462A/en
Publication of JPH0680462A publication Critical patent/JPH0680462A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To provide a solid electrolyte having dense structure and high electrical conductivity. CONSTITUTION:Powder produced by finely pulverizing sintered ceramic electrolytes having high ionic conductivity such as Li1.4Ti1.6In0.4P3O12, Li2Zr(PO4)2 Na3Zr2Si2PO12, Na2Zr(PO4)2, Ag3Zr2Si2 and Ag2Zr(po4 is mixed <=40wt.% of powder produced by finely pulverizing the same kind of sintered electrolyte such as li4Sm2Si2O9, Na4Gd2Si2O9 and Ag2SiO3 having ionic conductivity and high content of vitreous component and the mixed powder is calcined at a relatively low temperature (900-1100 deg.C) to obtain the objective solid electrolyte.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質に関し、と
くに焼結によって製造する組織の緻密なセラミックスか
らなる固体電解質に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolyte, and more particularly to a solid electrolyte composed of a dense ceramic having a structure produced by sintering.

【0002】[0002]

【従来技術】イオンによる電気伝導を利用した各種の固
体電解質が知られており、アルカリ金属イオン及びAg
イオンの伝導を利用した固体電解質としては、従来Li
1.4Ti1.6 In0.4312、Li2 Zr(PO42
、β−Al23 、Na3Zr2 Si2 PO12、Na2
Zr(PO42 、Ag3 Zr2 Si2 PO12、Ag2
Zr(PO42 などが知られており、センサ、電池な
どの各種の用途に使用されている。
2. Description of the Related Art Various solid electrolytes utilizing electric conduction by ions are known and include alkali metal ions and Ag.
Conventional solid electrolytes utilizing the conduction of ions include Li
1.4 Ti 1.6 In 0.4 P 3 O 12 , Li 2 Zr (PO 4 ) 2
, Β-Al 2 O 3 , Na 3 Zr 2 Si 2 PO 12 , Na 2
Zr (PO 4 ) 2 , Ag 3 Zr 2 Si 2 PO 12 , Ag 2
Zr (PO 4 ) 2 and the like are known and used for various applications such as sensors and batteries.

【0003】[0003]

【発明が解決しようとする課題】アルカリ金属イオン及
びAgイオンを伝導する固体電解質のうち、高いイオン
導電率を示す上記のような組成のセラミックス電解質
は、焼結性が悪いうえに、高温にするとアルカリ金属イ
オンの飛散、ガラス化による焼成治具との反応およびA
gイオンの金属Agとしての遊離などの問題が起こり、
緻密で高いイオン導電率を有する固体電解質が得られ難
いという欠点があった。
Among the solid electrolytes that conduct alkali metal ions and Ag ions, the ceramic electrolytes having the above-described compositions that exhibit high ionic conductivity have poor sinterability and, when heated to high temperatures, Alkali metal ion scattering, reaction with firing jig due to vitrification and A
Problems such as liberation of g ions as metallic Ag occur,
There is a drawback that it is difficult to obtain a solid electrolyte having a high density and a high ionic conductivity.

【0004】[0004]

【課題を解決するための手段】本発明は、主成分である
導電率の高いセラミックス電解質に、同種のイオンの導
電体からなるガラス成分の多い電解質を40重量%以下
添加して焼結した固体電解質である。本発明におけるガ
ラス成分の多いセラミックスは、CuKα線によるX線
回折による測定によって2θ=20〜40°付近に、ガ
ラス成分の存在によるブロードなピークが観測され、さ
らに電子顕微鏡による観察で、粒子の粒界がはっきり判
別できないようなガラス質成分が多く観察されるものを
いう。
The present invention is a solid obtained by adding 40 wt% or less of an electrolyte containing a large amount of a glass component, which is a conductor of the same type of ion, to a ceramic electrolyte having a high conductivity as a main component and sintering the solid. It is an electrolyte. In the ceramics having a large glass component in the present invention, a broad peak due to the presence of the glass component is observed at around 2θ = 20 to 40 ° by measurement by X-ray diffraction using CuKα ray, and further by an electron microscope, the grain size of the particles is It is a substance in which many glassy components whose fields cannot be clearly distinguished are observed.

【0005】本発明の固体電解質を製造するには、高い
イオン導電率を有するセラミックス電解質焼結体を微粉
砕した粉末に同種のイオン導電体からなるガラス成分の
多いセラミックスを微粉砕した粉末を40重量%以下添
加混合した後、900〜1100℃で焼成することによ
って得られる。
In order to produce the solid electrolyte of the present invention, 40 powders obtained by finely pulverizing a ceramic electrolyte sintered body having a high ionic conductivity and finely pulverizing ceramics containing a glass component of the same kind as the ionic conductor are used. It is obtained by adding and mixing in an amount of not more than wt% and then firing at 900 to 1100 ° C.

【0006】[0006]

【作用】高いイオン導電率を有するセラミックス電解質
焼結体であるLi1.4 Ti1.6In0.4312、Li2
Zr(PO42 、Na3 Zr2 Si2 PO12、Na2
Zr(PO42 、Ag3 Zr2 Si2 PO12、Ag2
Zr(PO42 などをそれぞれ微粉砕した粉末に同
種のイオン導電体でガラス成分の多い電解質焼結体であ
るLi4 Sm2 Si29 、Na4 Gd2 Si29
Ag2 Si03 などを微粉砕したそれぞれの粉末を40
質量%以下添加混合し、900〜1100℃の比較的低
温で焼成して得た本発明の固体電解質は緻密であり、主
成分のセラミックス電解質の高いイオン導電率を保持し
ている。
[Function] Li 1.4 Ti 1.6 In 0.4 P 3 O 12 , Li 2 which is a ceramic electrolyte sintered body having high ionic conductivity
Zr (PO 4 ) 2 , Na 3 Zr 2 Si 2 PO 12 , Na 2
Zr (PO 4 ) 2 , Ag 3 Zr 2 Si 2 PO 12 , Ag 2
Li 4 Sm 2 Si 2 O 9 , Na 4 Gd 2 Si 2 O 9 , which is an ionic conductor of the same kind and an electrolyte sintered body having many glass components in powders obtained by finely pulverizing Zr (PO 4 ) 2, etc., respectively.
Each powder of finely crushed Ag 2 SiO 3 etc.
The solid electrolyte of the present invention obtained by adding and mixing less than or equal to mass% and firing at a relatively low temperature of 900 to 1100 ° C. is dense and retains the high ionic conductivity of the main component ceramic electrolyte.

【0007】[0007]

【実施例】【Example】

実施例1 Li1.4Ti1.6In0.4312とLi4Sm2Si29
Na3Zr2Si2PO12とNa4Gd2Si29、Ag3
2Si2PO12とAg2SiO3からそれぞれ得られる固
体電解質について説明する。
Example 1 Li 1.4 Ti 1.6 In 0.4 P 3 O 12 and Li 4 Sm 2 Si 2 O 9 ,
Na 3 Zr 2 Si 2 PO 12 and Na 4 Gd 2 Si 2 O 9 , Ag 3 Z
The solid electrolytes obtained from r 2 Si 2 PO 12 and Ag 2 SiO 3 will be described.

【0008】Li1.4 Ti1.6 In0.4312、Li4
Sm2 Si29 、Na3 Zr2Si2 PO12、Na4
Gd2 Si29 、Ag2 SiO3 は、それぞれの組
成になるように各成分の酸化物及び炭酸塩を配合、混練
し、仮成形した後、焼成用セッターとの反応が認められ
る手前の温度である800〜1300℃で焼成を行う
が、Li1.4Ti1.6In0.4312については1200
℃、Li4Sm2Si29については1100℃、Na3
Zr2Si2PO12については1300℃、Na4Gd2
29については1100℃、Ag2SiO3については
800℃とすることが好ましい。
Li 1.4 Ti 1.6 In 0.4 P 3 O 12 , Li 4
Sm 2 Si 2 O 9 , Na 3 Zr 2 Si 2 PO 12 , Na 4
Gd 2 Si 2 O 9 and Ag 2 SiO 3 are mixed with the oxides and carbonates of the respective components so as to have their respective compositions, kneaded, temporarily molded, and before reaction with the setter for firing is recognized. Firing is performed at a temperature of 800 to 1300 ° C., but 1200 for Li 1.4 Ti 1.6 In 0.4 P 3 O 12.
℃, 1100 ℃ for Li 4 Sm 2 Si 2 O 9 , Na 3
For Zr 2 Si 2 PO 12 , 1300 ° C., Na 4 Gd 2 S
The temperature is preferably 1100 ° C. for i 2 O 9 and 800 ° C. for Ag 2 SiO 3 .

【0009】得られた焼成体は、微粉砕して各電解質粉
末とする。Ag3 Zr2 Si2 PO12粉末は、上記のN
3 Zr2 Si2 PO12粉末とAgNO3 粉末を混合し
ルツボ中、300℃にてNaとAgのイオン交換を行な
った後、純水中にてNaNO3 を洗い流し乾燥した。上
記の操作で得られた各粉末の混合比を変えて配合混練の
後、1000kg/cm2 の圧力で直径10mm厚さ5
mmに成形し、焼成用セッター上でLi系混合粉末およ
びNa系混合粉末は1000℃で、Ag系混合粉末は7
00℃で焼成し導電率測定用ペレットを得る。各導電率
測定用ペレットの両面に白金ペーストを塗布し900℃
で焼付けて対向電極を設けた後、赤外線加熱炉により3
00℃に加熱し、2端子法でインピーダンスメーターを
用い100Hz〜10MHzの範囲で複素インピーダン
ス解析を行ない全導電率(粒内+粒界の導電率)を求め
た。その結果を図1〜3に示す。各場合同様に、ガラス
成分の多いLi4 Sm2 Si29 、Na4 Gd2 Si
29 、Ag2 SiO3 を10〜20重量%添加した組
成領域で導電率の向上が認められる。また、ガラス成分
の多い粉末が多く添加されるほど、電子顕微鏡による破
断面の観察から穴の少ない緻密な組織であり、主要成分
である数μmの粒子の周囲をガラス質物質が取り囲み、
さらに粒界部や穴の部分をガラス質が埋めた状態となる
傾向があり、さらに純水中での24時間の浸漬テストに
よる導電率の低下も小さくなる傾向が認められる。ただ
し、上記のような組織が緻密になる反面、導電率に関し
てはガラス成分の多い粉末を60重量%以上添加した場
合には1桁以上の大きな低下が認められる。
The obtained fired body is finely pulverized to obtain each electrolyte powder. The Ag 3 Zr 2 Si 2 PO 12 powder has the above N content.
After a 3 Zr 2 Si 2 PO 12 powder and AgNO 3 powder were mixed and Na and Ag were ion-exchanged at 300 ° C. in a crucible, NaNO 3 was washed out in pure water and dried. After mixing and kneading by changing the mixing ratio of each powder obtained by the above operation, the pressure is 1000 kg / cm 2 , and the diameter is 10 mm and the thickness is 5
mm, and the Li-based mixed powder and the Na-based mixed powder were 1000 ° C. and the Ag-based mixed powder was 7 on a firing setter.
It is fired at 00 ° C. to obtain a conductivity measuring pellet. Apply platinum paste on both sides of each conductivity measurement pellets at 900 ℃
After baking it to provide the counter electrode, 3
The sample was heated to 00 ° C., a complex impedance analysis was performed in the range of 100 Hz to 10 MHz using an impedance meter by the two-terminal method, and the total conductivity (intra-grain + grain-boundary conductivity) was determined. The results are shown in FIGS. Similarly in each case, Li 4 Sm 2 Si 2 O 9 and Na 4 Gd 2 Si with many glass components
An improvement in conductivity is recognized in the composition region where 2 O 9 and Ag 2 SiO 3 are added in an amount of 10 to 20% by weight. In addition, the more powder with a large glass component is added, the finer the structure with fewer holes from the observation of the fracture surface with an electron microscope, and the vitreous material surrounds the particles of several μm, which is the main component,
Further, it is recognized that the grain boundaries and holes are likely to be filled with glass, and that the decrease in conductivity due to the immersion test in pure water for 24 hours tends to be small. However, on the other hand, while the structure becomes dense as described above, when the powder containing a large amount of glass component is added in an amount of 60% by weight or more, a large decrease of one digit or more is observed in the electric conductivity.

【0010】実施例2 実施例1と同様な操作により得られた表1に示す各粉末
を図1〜3で最も良い導電率の向上が認められたガラス
成分の多い粉末を20重量%添加した組成に配合して得
た各ペレットの300℃での導電率を表1に示す。
Example 2 To each powder shown in Table 1 obtained by the same operation as in Example 1 was added 20% by weight of a powder containing a large amount of glass component, in which the best improvement in conductivity was observed in FIGS. Table 1 shows the electrical conductivity at 300 ° C. of each pellet obtained by blending the composition.

【0011】本実施例においてもガラス成分の多い粉末
を20重量%添加した系では導電率の向上、組織の緻密
化、純水中での浸漬テストでの導電率の低下が小さくな
る傾向が認められる。
Also in this example, in the system in which 20% by weight of powder containing a large amount of glass component was added, the conductivity was improved, the structure was densified, and the decrease in conductivity in the immersion test in pure water tended to be small. To be

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【発明の効果】高いイオン導電率を有するセラミックス
電解質焼結体であるLi1.4 Ti1.6In0.43
12、Li2 Zr(PO42 、Na3 Zr2 Si2
12、Na2 Zr(PO42 、Ag3 Zr2 Si2
12、Ag2 Zr(PO42 などをそれぞれ微粉砕し
た粉末に、同種のイオン導電体でガラス成分の多い電解
質焼結体であるLi4 Sm2 Si29 、Na4 Gd2
Si29 、Ag2 Si03などを微粉砕した粉末を4
0質量%以下添加混合し、900〜1100℃の比較的
低温で焼成することによって緻密で、導電率も大きな固
体電解質を得た。
EFFECT OF THE INVENTION Li 1.4 Ti 1.6 In 0.4 P 3 which is a ceramic electrolyte sintered body having high ionic conductivity.
O 12 , Li 2 Zr (PO 4 ) 2 , Na 3 Zr 2 Si 2 P
O 12 , Na 2 Zr (PO 4 ) 2 , Ag 3 Zr 2 Si 2 P
O 12 and Ag 2 Zr (PO 4 ) 2 etc. were finely pulverized into powders, and Li 4 Sm 2 Si 2 O 9 , Na 4 Gd 2 which is an electrolyte sintered body of the same kind of ion conductor and having many glass components.
Powder of pulverized Si 2 O 9 , Ag 2 SiO 3, etc.
By adding and mixing 0 mass% or less and firing at a relatively low temperature of 900 to 1100 ° C., a solid electrolyte having a high density and a high conductivity was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】ガラス成分の多い電解質の添加による導電率の
変化を説明する図。
FIG. 1 is a diagram illustrating a change in conductivity due to addition of an electrolyte containing a large amount of glass components.

【図2】ガラス成分の多い電解質の添加による導電率の
変化を説明する図。
FIG. 2 is a diagram for explaining a change in conductivity due to addition of an electrolyte having a large glass component.

【図3】ガラス成分の多い電解質の添加による導電率の
変化を説明する図。
FIG. 3 is a diagram illustrating a change in conductivity due to addition of an electrolyte containing a large amount of glass components.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 導電性セラミックスからなる固体電解質
において、導電率の高いセラミックス電解質に、該セラ
ミックス電解質と同種のイオン導電体からなり、該セラ
ミックスよりもガラス成分の多い電解質を40重量%以
下添加して焼結したことを特徴とする固体電解質。
1. A solid electrolyte made of conductive ceramics, wherein 40% by weight or less of an electrolyte made of an ionic conductor of the same kind as said ceramic electrolyte and having a larger glass component than said ceramics is added to said ceramic electrolyte having high conductivity. A solid electrolyte characterized by being sintered.
JP4231856A 1992-08-31 1992-08-31 Solid electrolyte Pending JPH0680462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4231856A JPH0680462A (en) 1992-08-31 1992-08-31 Solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4231856A JPH0680462A (en) 1992-08-31 1992-08-31 Solid electrolyte

Publications (1)

Publication Number Publication Date
JPH0680462A true JPH0680462A (en) 1994-03-22

Family

ID=16930095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4231856A Pending JPH0680462A (en) 1992-08-31 1992-08-31 Solid electrolyte

Country Status (1)

Country Link
JP (1) JPH0680462A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9034524B2 (en) 2011-03-07 2015-05-19 Samsung Sdi Co., Ltd. Solid electrolyte for rechargeable lithium battery and rechargeable lithium battery including same
JP2016046000A (en) * 2014-08-20 2016-04-04 国立大学法人長岡技術科学大学 Raw material powder for solid electrolyte
EP3080860A4 (en) * 2014-03-28 2017-02-01 BYD Company Limited Lithium ion battery, solid electrolyte and method of preparing the same
CN109786815A (en) * 2018-12-20 2019-05-21 广东工业大学 A kind of Nasicon type sodion solid electrolytes and its preparation method and application
WO2021049360A1 (en) * 2019-09-13 2021-03-18 Tdk株式会社 Solid electrolyte layer, all-solid-state secondary battery, and method for manufacturing same
CN113277843A (en) * 2021-05-24 2021-08-20 哈尔滨工业大学 Method for improving ionic conductivity of sodium-based solid electrolyte

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9034524B2 (en) 2011-03-07 2015-05-19 Samsung Sdi Co., Ltd. Solid electrolyte for rechargeable lithium battery and rechargeable lithium battery including same
EP3080860A4 (en) * 2014-03-28 2017-02-01 BYD Company Limited Lithium ion battery, solid electrolyte and method of preparing the same
US9893379B2 (en) 2014-03-28 2018-02-13 Byd Company Limited Lithium ion battery, solid electrolyte and method of preparing the same
JP2016046000A (en) * 2014-08-20 2016-04-04 国立大学法人長岡技術科学大学 Raw material powder for solid electrolyte
CN109786815A (en) * 2018-12-20 2019-05-21 广东工业大学 A kind of Nasicon type sodion solid electrolytes and its preparation method and application
WO2021049360A1 (en) * 2019-09-13 2021-03-18 Tdk株式会社 Solid electrolyte layer, all-solid-state secondary battery, and method for manufacturing same
CN114402470A (en) * 2019-09-13 2022-04-26 Tdk株式会社 Solid electrolyte layer, all-solid-state secondary battery, and methods for producing them
CN113277843A (en) * 2021-05-24 2021-08-20 哈尔滨工业大学 Method for improving ionic conductivity of sodium-based solid electrolyte

Similar Documents

Publication Publication Date Title
Gordon et al. Fabrication and characterization of Nasicon electrolytes
Boilot et al. Phase transformation in Na1+ xSixZr2P3− xO12 compounds
Uvarov et al. Effect of morphology and particle size on the ionic conductivities of composite solid electrolytes
JP5721540B2 (en) Lithium ion conductive inorganic material
CN100567189C (en) Be used for dielectric glass powder, laminated ceramic capacitor and manufacture method thereof
CN107473717A (en) Boroaluminosilicate mineral material, LTCC composite, LTCC, composite base plate and preparation method thereof
JP3934750B2 (en) Oxide ion conductive ceramics and method for producing the same
JPH08208333A (en) Conductive material for oxygen ion and its production
JPH0680462A (en) Solid electrolyte
Yao et al. The preparation and properties of the solid state ionic conductor, CuZr2 (PO4) 3
McENTIRE et al. Effect of decomposition on the densification and properties of nasicon ceramic electrolytes
US3475225A (en) Method for preparing solid state ionic conductor
CN110357607A (en) A kind of MAS-LT composite microwave medium ceramic and preparation method thereof
JPH07149522A (en) Zirconia electrolyte powder and its production
CN110357608A (en) A kind of MS-LT composite microwave medium ceramic and preparation method thereof
JPH04240155A (en) Beta-alumina-based sintered body and production thereof
CN109081687A (en) A kind of highly heatproof and shockproof ceramic crucible and preparation method thereof suitable for calcining anode material of lithium battery
Zhang et al. Synthesis of magnesium-beta-alumina composite electrolytes via a vapour phase method
Yao et al. Sodium activity determinations in molten 99.5% aluminium using solid electrolytes
WO2023203986A1 (en) Lithium ion conductive glass ceramic precursor
WO2022209464A1 (en) Lithium-ion-conductive material
WO2024105943A1 (en) Lithium-ion conductive glass ceramic precursor
CN109796136A (en) A kind of BLMT glass and Li2Zn3Ti4O12Low-temperature co-burning ceramic material of Ceramic Composite and preparation method thereof
JP7424783B2 (en) glass ceramic solid electrolyte
WO2023092844A1 (en) Ceramic oxide solid-state electrolyte and preparation method therefor