JPH0643269B2 - Magnesia-zirconia refractory brick with excellent thermal shock resistance - Google Patents

Magnesia-zirconia refractory brick with excellent thermal shock resistance

Info

Publication number
JPH0643269B2
JPH0643269B2 JP61140990A JP14099086A JPH0643269B2 JP H0643269 B2 JPH0643269 B2 JP H0643269B2 JP 61140990 A JP61140990 A JP 61140990A JP 14099086 A JP14099086 A JP 14099086A JP H0643269 B2 JPH0643269 B2 JP H0643269B2
Authority
JP
Japan
Prior art keywords
zirconia
magnesia
thermal shock
shock resistance
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61140990A
Other languages
Japanese (ja)
Other versions
JPS6360151A (en
Inventor
重俊 宇都
博右 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Ceramic Co Ltd
Harima Refractories Co Ltd
Original Assignee
Harima Ceramic Co Ltd
Harima Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Ceramic Co Ltd, Harima Refractories Co Ltd filed Critical Harima Ceramic Co Ltd
Priority to JP61140990A priority Critical patent/JPH0643269B2/en
Publication of JPS6360151A publication Critical patent/JPS6360151A/en
Publication of JPH0643269B2 publication Critical patent/JPH0643269B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 産業上の利用分野: 本発明は、すぐれた耐熱衝撃性をもつマグネシア−ジル
コニア質耐火煉瓦に係るものである。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a magnesia-zirconia refractory brick having excellent thermal shock resistance.

発明の背景: マグネシア質耐火煉瓦は、他のケイ石質煉瓦、シヤモツ
ト質煉瓦に比べて融点が著しく高く、特に金属精錬中に
おける塩基性スラグに対する侵食抵抗性がすぐれてお
り、金属精錬炉用内張り耐火物として多量に使用されて
いる。しかし耐熱衝撃性に劣る欠点があるため、これを
使用した金属精錬炉の操作時には、処理開始時及び終了
時の加熱・冷却の繰り返しによる熱衝撃のため、稼働面
背後に亀裂を生じ、その亀裂からの剥離並びに損傷が激
しく、炉の寿命が短命に終つていた。
Background of the Invention: Magnesia refractory bricks have a significantly higher melting point than other siliceous bricks and chamotte bricks, and particularly have excellent resistance to erosion against basic slag during metal refining, and liners for metal refining furnaces. Used in large amounts as a refractory material. However, it has a drawback that it is inferior in thermal shock resistance, so when operating a metal refining furnace using this, a crack is generated behind the operating surface due to thermal shock due to repeated heating and cooling at the start and end of the process, Peeling and damage were severe, and the life of the furnace was short-lived.

従来技術: マグネシア質煉瓦に耐熱衝撃性を付与する方策として、
クロム鉱粒を配合し焼成後、クロム鉱粒子の周囲に生ず
る微小亀裂により耐熱衝撃性を付与した、いわゆるマグ
ネシア−クロム質ダイレクトボンド煉瓦が特開昭55-116
661号公報で提案されている。しかし、マグネシア−ク
ロム質ダイレクトボンド煉瓦も、繰り返される熱衝撃に
よつて前記の微小亀裂が棟瓦組織を劣化させ、これが耐
食性を低下させる欠点を招くことになり、マグネシア質
棟瓦が塩基性スラグに強いという耐食性の特質を充分に
発揮できなかつた。
Prior art: As a measure to impart thermal shock resistance to magnesia bricks,
A so-called magnesia-chromic direct bond brick, which is provided with thermal shock resistance due to microcracks formed around the chromium ore particles after being mixed with the chromium ore particles and fired, is disclosed in JP-A-55-116.
Proposed in Japanese Patent No. 661. However, even in magnesia-chromic direct bond bricks, the microcracks deteriorate the roof tile structure due to repeated thermal shocks, which leads to the drawback of lowering corrosion resistance, and the magnesia roof tile is resistant to basic slag. It was not possible to fully demonstrate the characteristics of corrosion resistance.

発明の課題: 本発明は上記のごとき問題点を解決するためになされた
もので、局部的な微細気孔を分散させて全体の熱応力を
消去せしめることにより、すぐれた耐熱衝撃性を付与し
たマグネシア−ジルコニア質耐火棟瓦の提供を目的とし
ている。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above problems, and magnesia imparting excellent thermal shock resistance by dispersing local fine pores to eliminate the entire thermal stress. -The purpose is to provide zirconia fireproof roof tiles.

発明の構成・作用: 以下本発明につき説明すると、マグネシア原料に0.3〜
2mm径の未安定ジルコニア原料を中間粒として5〜20wt
%加えて100wt%の配合物にし、この配合物を混合成形
後1650℃以上で焼成し、上記ジルコニア原料を微細気孔
を均一に内蔵する安定ジルコニア粒に変化させる。この
部分において全体の熱応力を吸収させるようにして全体
の耐熱衝撃性を向上したマグネシア−ジルコニア質耐火
煉瓦としたものである。
Structure and function of the invention: The present invention will be described below.
5 to 20wt of 2mm diameter unstable zirconia raw material
% To make a 100 wt% blend, which is mixed and molded and then fired at 1650 ° C. or higher to convert the above zirconia raw material into stable zirconia grains in which fine pores are uniformly incorporated. This part is a magnesia-zirconia refractory brick in which the entire thermal stress is absorbed to improve the overall thermal shock resistance.

このようにして得られる本発明の耐火煉瓦では、マグネ
シア原料に配合した中間粒度の未安定ジルコニアはマグ
ネシアと反応して安定ジルコニアとなつている。このと
きのジルコニア粒は第1図に示すように5〜30μmの微
細気孔を均一に内蔵する粒に変化している。そしてこの
ようなジルコニア粒が他の耐火材料中に均一に分散した
組織のマグネシア−ジルコニア質耐火煉瓦となつてい
る。
In the thus obtained refractory brick of the present invention, the medium-sized unstable zirconia mixed in the magnesia raw material reacts with magnesia to become stable zirconia. As shown in FIG. 1, the zirconia grains at this time are changed to grains having fine pores of 5 to 30 μm uniformly incorporated therein. And, such a zirconia grain serves as a magnesia-zirconia refractory brick having a structure in which it is uniformly dispersed in another refractory material.

次にこのような組織としたマグネシア−ジルコニア質耐
火煉瓦の耐熱衝撃性の発現機構について説明する。繰り
返し熱衝撃テスト後の煉瓦組織が第2図に示されてい
る。この第2図から明らかなように5〜30μmの微細気
孔を内蔵したジルコニア粒内の微細気孔を伝つて亀裂が
発生している。他の耐火材領域には亀裂の発生は全たく
認められない。すなわち、熱衝撃により発起した熱応力
を、この微細気孔部域での亀裂発生のみで吸収し緩和し
た結果にほかならず、換言すれば、5〜30μmの微細気
孔を無数にもつジルコニアの中間粒がマグネシア煉瓦内
に均一に分布した組織は熱応力を吸収・緩和することが
できる。この局部的な発生亀裂は後記の実施例及び第1
〜2図から明らかなように、煉瓦全体の物性には殆んど
影響を及ぼさず、繰り返し熱衝撃を加えても強度低下又
は組織劣化を惹起しない。
Next, the mechanism of development of thermal shock resistance of the magnesia-zirconia refractory brick having such a structure will be described. The brick structure after repeated thermal shock tests is shown in FIG. As is clear from FIG. 2, cracks are generated through the fine pores in the zirconia grains containing the fine pores of 5 to 30 μm. No cracks were found in the other refractory areas. In other words, the thermal stress caused by thermal shock is absorbed by only the cracks generated in the fine pore area and alleviated. In other words, intermediate particles of zirconia having innumerable fine pores of 5 to 30 μm are formed. The texture uniformly distributed in the magnesia brick can absorb and relieve thermal stress. This locally generated crack is caused by the first and second embodiments described below.
As is clear from FIGS. 2A to 2C, the physical properties of the whole brick are hardly affected, and even if repeated thermal shock is applied, strength reduction or structure deterioration does not occur.

本発明において配合するジルコニア原料は未安定ジルコ
ニアであることが必要である。安定ジルコニアを最初か
ら用いれば5〜30μmの微細気孔がその粒内に形成され
ない。配合する未安定ジルコニア原料の粒度は0.3〜2.0
mm程度が望ましい。0.3mm未満の微粒で配合するとジル
コニア粒の配合が過多となり煉瓦内に欠没が分散されて
熱応力を吸収する構成部が小さく、熱衝撃時の亀裂の伝
達が容易に進みすぎ耐スポール性を損なう。2mmを超す
粒度で配合すると煉瓦内での分散が不均一となり易く、
耐熱衝撃性の発現が困難となる。
The zirconia raw material to be blended in the present invention needs to be unstable zirconia. When stable zirconia is used from the beginning, fine pores of 5 to 30 μm are not formed in the grains. The particle size of the unstable zirconia raw material to be blended is 0.3 to 2.0.
mm is preferable. Mixing with fine particles of less than 0.3 mm causes excessive mixing of zirconia particles to disperse the cavities in the brick and the thermal shock absorption is small, and crack propagation during thermal shock is too easy to promote spall resistance. Spoil. Mixing with a particle size of more than 2 mm tends to result in uneven dispersion in the brick,
It becomes difficult to develop thermal shock resistance.

配合する未安定ジルコニア原料の配合量は、耐火材料総
量の5〜20wt%の範囲内で耐熱衝撃性の効果が認められ
る。5wt%未満であれば、このジルコニア粒子部分での
亀裂発生のみでは熱応力を吸収しきれず、損傷が煉瓦全
体に及ぶ結果となる。また、20wt%を超すとジルコニア
粒子部分での亀裂発生が主体となり、煉瓦全体の損傷に
及ぶ懸念がある。
The effect of thermal shock resistance is recognized within the range of 5 to 20% by weight of the total amount of refractory material in the amount of the unstable zirconia raw material to be blended. If it is less than 5 wt%, the thermal stress cannot be completely absorbed only by the crack generation in the zirconia particle portion, resulting in damage to the entire brick. On the other hand, if it exceeds 20 wt%, cracks mainly occur in the zirconia particles, which may damage the entire brick.

未安定ジルコニア原料がマグネシアと反応し、5〜30μ
mの微細気孔を均一に内蔵する安定ジルコニア粒に変化
させるには、焼成温度を少くとも1650℃以上にする必要
がある。1650℃未満では未安定ジルコニアとマグネシア
との反応が不充分であり、5〜30μmの微細気孔を有す
る安定ジルコニアへの変化が充分進まない。安定ジルコ
ニア粒に変化した後に内蔵される微細気孔が5μm未満
ではジルコニアの欠没が小さくなり強度に増す反面、熱
衝撃時の亀裂の伝達が容易に起こり囲のマグネシアにも
伝播する。気孔の大きさが30μmを超すとジルコニア粒
内の欠没が大きくなり強度が低下する。
Unstable zirconia raw material reacts with magnesia, 5-30μ
The firing temperature must be at least 1650 ° C. or higher in order to change into stable zirconia grains in which m fine pores are uniformly incorporated. If it is less than 1650 ° C, the reaction between the unstable zirconia and magnesia is insufficient, and the change to stable zirconia having fine pores of 5 to 30 µm does not proceed sufficiently. If the fine pores contained after the change to stable zirconia grains are less than 5 μm, the zirconia is less likely to collapse and the strength is increased, but cracks are easily transmitted during thermal shock and propagate to the surrounding magnesia. If the pore size exceeds 30 μm, the zirconia grains will be deeply collapsed and the strength will be reduced.

実施例: 第1表に示す配合率で耐火材料及び結合剤を配合し、い
ずれもフレツトミルで混練し、プレス機で並形形状に成
形し、80〜150℃で48時間乾燥した後トンネルキルンを
用いて1750℃で7時間焼成した。実施例のうち、NO.1
〜4は本発明例、NO.5〜6は未安定ジルコニアの配合
率が本発明の範囲外にある比較例、NO.7〜9は従来例
である。なお、焼結マグネシア、電融マグネシアは共に
MgO成分が98wt%以上のものを使用した。
Example: A refractory material and a binder were blended at the blending ratios shown in Table 1, both were kneaded with a fret mill, molded into a parallel shape with a press, and dried at 80 to 150 ° C. for 48 hours, and then a tunnel kiln was formed. It was used and baked at 1750 ° C. for 7 hours. No. 1 of the examples
Nos. 4 to 4 are examples of the present invention, Nos. 5 to 6 are comparative examples in which the compounding ratio of unstable zirconia is out of the range of the present invention, and Nos. 7 to 9 are conventional examples. Sintered magnesia and fused magnesia are both
A MgO component of 98 wt% or more was used.

得られた各実施例煉瓦のテストを行ない、その結果を第
1図に併せ示した。各種テストの方法及び評価基準は下
記によつた。
Each of the obtained example bricks was tested, and the results are also shown in FIG. The methods and evaluation criteria of various tests are as follows.

〔見掛比重〕、〔カサ比重〕、〔見掛気孔率〕 通常の耐火物試験によつた。[Apparent specific gravity], [Bulk specific gravity], [Apparent porosity] A normal refractory test was conducted.

〔圧縮強さ〕[Compressive strength]

並形形状煉瓦から55×55×55mmの立方体を切出し、油圧
式圧縮試験機で測定した。
A 55 × 55 × 55 mm cube was cut out from a normal-shaped brick and measured with a hydraulic compression tester.

〔曲げ強さ〕[Bending strength]

並形形状煉瓦から巾30mm、厚さ15mm、長さ120mmのテス
トピースを切出し、1500℃に保定した電気炉中で1時間
加熱した後3点曲げ試験を行なつた。
A test piece having a width of 30 mm, a thickness of 15 mm and a length of 120 mm was cut out from the normal-shaped brick, heated in an electric furnace kept at 1500 ° C. for 1 hour, and then subjected to a three-point bending test.

〔耐スポール性〕[Spolling resistance]

並形形状煉瓦から55×55×230mの角柱状テストピース
を切出し、片面を1400℃に保定した電気炉中に15分間保
持し、ついで炉外に取出し15分間強制空冷する作業サイ
クルを25回限度で行なつた。亀裂の発生状況と剥落に至
るまでの作業サイクルの回数で評価した。耐スポール性
は剥落までの作業サイクルの繰り返し数が多い方が良好
である。
A 55 × 55 × 230m prismatic test piece is cut out from a brick in parallel shape, and one side is kept in an electric furnace kept at 1400 ° C for 15 minutes, then taken out of the furnace and forced-air cooled for 15 minutes. I went to. The evaluation was made based on the state of crack occurrence and the number of work cycles until peeling. The spall resistance is better when the number of repetitions of the work cycle until peeling is large.

発明の効果: 第1表の結果より明らかなごとく、本発明例のものは、
いずれも良好な耐スポール性を示している。特に未安定
ジルコニア原料を10wt%配合したNO.2及びNO.4では目視
可能な微亀裂の発生もなかつた。一方、従来例のNO.7及
びNO.8は未安定ジルコノア原料無添加のものであり、剥
落までの繰り返し回数が15回及び2回と耐スポール性が
劣つている。又、従来例のNO.9はジルコニアの代りにク
ロム鉱石を配合したものであるが、未安定ジルコニア原
料添加の場合にみる微細気孔組織は形成されず、繰り返
し回数25回で剥落はしないが亀裂の発生が顕著に確認さ
れた。
EFFECTS OF THE INVENTION As is clear from the results shown in Table 1, the examples of the present invention are:
All show good spall resistance. In particular, NO.2 and NO.4 containing 10 wt% of the unstable zirconia raw material did not cause visible cracks. On the other hand, the conventional examples NO.7 and NO.8 are those in which the unstabilized zirconoa raw material is not added, and the spall resistance is inferior, that is, the number of repetitions until stripping is 15 and 2. Further, the conventional example NO.9 is a mixture of chrome ore instead of zirconia, fine pore structure seen in the case of adding unstable zirconia raw material is not formed, it does not peel off at 25 times of repetition but cracks. Occurrence was confirmed remarkably.

以上のごとく、本発明のマグネシア−ジルコニア質耐火
煉瓦は組織劣化を生起することなく耐スポール性が著し
く改善され、すぐれた耐熱衝撃性を示している。
As described above, the magnesia-zirconia-based refractory brick of the present invention has significantly improved spall resistance without causing structural deterioration and exhibits excellent thermal shock resistance.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の1実施例における粒子構造の反射顕微
鏡写真であり、約1mm径のジルコニア粒中に5〜30μm
の微細気孔を内蔵していることを示している。第2図は
耐スポール性試験後の本発明品の粒子構造の変化を示す
反射顕微鏡写真であり、マグネシア−ジルコニア粒内
(A−A′間)のみに亀裂が認められるが他のマグネシ
ア部域には亀裂が全たく認められないことを示してい
る。
FIG. 1 is a reflection microscopic photograph of the grain structure in one example of the present invention, which is 5 to 30 μm in a zirconia grain having a diameter of about 1 mm.
It shows that the micropores of are incorporated. FIG. 2 is a reflection micrograph showing the change in the grain structure of the product of the present invention after the spall resistance test. Cracks are observed only in the magnesia-zirconia grains (between A and A '), but other magnesia regions. It shows that no cracks are found in all of them.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】マグネシア原料に、0.3〜2mmの未安定ジ
ルコニア原料を中間粒として5〜20wt%加えて100wt%
の配合物にし、この配合物を混合成形後、1650℃以上で
焼成し、上記ジルコニア原料を5〜30μmの微細気孔を
均一に内蔵する安定ジルコニア粒に変化させたことを特
徴とする耐熱衝撃性にすぐれたマグネシア−ジルコニア
質耐火煉瓦。
1. A magnesia raw material is added with 5 to 20 wt% of an unstable zirconia raw material of 0.3 to 2 mm as an intermediate grain to obtain 100 wt%.
Thermal shock resistance, characterized in that after mixing and molding the mixture, the mixture was fired at 1650 ° C. or higher, and the above zirconia raw material was changed to stable zirconia grains uniformly incorporating fine pores of 5 to 30 μm. Excellent magnesia-zirconia refractory brick.
JP61140990A 1986-06-16 1986-06-16 Magnesia-zirconia refractory brick with excellent thermal shock resistance Expired - Lifetime JPH0643269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61140990A JPH0643269B2 (en) 1986-06-16 1986-06-16 Magnesia-zirconia refractory brick with excellent thermal shock resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61140990A JPH0643269B2 (en) 1986-06-16 1986-06-16 Magnesia-zirconia refractory brick with excellent thermal shock resistance

Publications (2)

Publication Number Publication Date
JPS6360151A JPS6360151A (en) 1988-03-16
JPH0643269B2 true JPH0643269B2 (en) 1994-06-08

Family

ID=15281580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61140990A Expired - Lifetime JPH0643269B2 (en) 1986-06-16 1986-06-16 Magnesia-zirconia refractory brick with excellent thermal shock resistance

Country Status (1)

Country Link
JP (1) JPH0643269B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263758A (en) * 1988-06-21 1990-10-26 Harima Ceramic Co Ltd Production of upper nozzle for casting molten steel
CN1325435C (en) * 2004-06-30 2007-07-11 宝山钢铁股份有限公司 Chromium free refractory material for RH vacuum furnace lining
CN112608135A (en) * 2020-12-30 2021-04-06 马鞍山利尔开元新材料有限公司 Low-cost magnesia-zirconia-carbon converter steel-tapping hole brick and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077162A (en) * 1983-09-30 1985-05-01 ハリマセラミック株式会社 Sliding nozzle plate

Also Published As

Publication number Publication date
JPS6360151A (en) 1988-03-16

Similar Documents

Publication Publication Date Title
CA1105500A (en) Refractory for aluminum-melting furnaces
JPH0420871B2 (en)
US3008842A (en) Basic refractory insulating shapes
KR950008607B1 (en) Alumina-spinel type monolithic refractories
EP0096508A1 (en) Magnesia-carbon refractory
JPH0643269B2 (en) Magnesia-zirconia refractory brick with excellent thermal shock resistance
JPS6060985A (en) Refractory composition for ladle lining
JP3343297B2 (en) Fired refractory brick for lining
US4999325A (en) Rebonded fused brick
JP2562767B2 (en) Pouring refractories
JPH06345550A (en) Castable refractory
US3359124A (en) Zircon refractory
JP3368960B2 (en) SiC refractory
JPH06321628A (en) Alumina-chromia-zircon-based sintered refractory brick
JPH0357067B2 (en)
JPH06172045A (en) Refractory for casting process
JP3197681B2 (en) Method for producing unburned MgO-C brick
US3864136A (en) Direct bonded refractory brick having improved hot strength and its method of manufacture
JP4058649B2 (en) Basic brick for rotary kiln
JP2872670B2 (en) Irregular refractories for lining of molten metal containers
JP3079296B2 (en) Method for producing fired brick for lining molten metal containers
JP3368035B2 (en) Setter
JP2003342080A (en) Castable chromia refractory and precast block manufactured using the same
JPH0475864B2 (en)
JPS63215558A (en) Magnesia-spinel base refractory brick