JPS6360151A - Thermal shock-resistant magnesia-zirconia base refractory brick - Google Patents

Thermal shock-resistant magnesia-zirconia base refractory brick

Info

Publication number
JPS6360151A
JPS6360151A JP61140990A JP14099086A JPS6360151A JP S6360151 A JPS6360151 A JP S6360151A JP 61140990 A JP61140990 A JP 61140990A JP 14099086 A JP14099086 A JP 14099086A JP S6360151 A JPS6360151 A JP S6360151A
Authority
JP
Japan
Prior art keywords
zirconia
magnesia
thermal shock
grains
refractory brick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61140990A
Other languages
Japanese (ja)
Other versions
JPH0643269B2 (en
Inventor
宇都 重俊
大崎 博右
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Refractories Co Ltd
Original Assignee
Harima Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Refractories Co Ltd filed Critical Harima Refractories Co Ltd
Priority to JP61140990A priority Critical patent/JPH0643269B2/en
Publication of JPS6360151A publication Critical patent/JPS6360151A/en
Publication of JPH0643269B2 publication Critical patent/JPH0643269B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 膚東上の利用分野: 本発明は、すぐルた1耐熱衝撃性をもつマグネジr−ジ
ルコニア質耐火煉瓦に係るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Application of Hada Tojo: The present invention relates to a magnetic screw r-zirconia refractory brick that has excellent thermal shock resistance.

発明の背景: マグネシア′R耐火煉瓦は、他のゲイ石*煉瓦、シャモ
ツト質煉瓦に比べて融点が著しく高く、特に金属槽課中
における1基性スラグに対する侵食抵抗性がすぐれ−C
2す、金属檀諌炉用内張り耐火物として多数に使用さ几
′Cいる。しかしilt熱衝湛性に劣る入点がりる之め
、これを使用し之金属梢魂炉の操業時には、処理開始時
及び終r時の加熱・冷却の繰り返しによる熱衝撃の、t
め、稼動面背後に亀裂金主じ、その亀裂からの剥離並び
に損傷が激しく、炉の寿命が短命に終つ′Cい、・こ。
Background of the invention: Magnesia'R refractory bricks have a significantly higher melting point than other gay stone* bricks and chamotite bricks, and have excellent corrosion resistance against monobasic slag, especially in metal tanks.
2. It is widely used as a refractory lining for metal hearths. However, since the input point has poor thermal shock resistance, when operating a metal tree-top soul furnace using it, the thermal shock due to repeated heating and cooling at the start and end of the process is reduced.
Therefore, if there are cracks behind the operating surface, the cracks will cause severe peeling and damage, which will shorten the life of the furnace.

従来技術: マグネシア質煉瓦に耐熱衝本性を付与する方策として、
クロム鉱粒を配合し焼成後、クロム鉱粒子の周回に生ず
る微少4*vζより耐熱衝革性全付与した、いわゆるマ
グネシア−クロム貞ダイレクトボンド凍瓦が特開昭55
−116661号公報で提案ざルでいる。しかし、マグ
ネジアークqム′擺ダイレクト煉瓦も、繰り返し熱衝撃
により微少亀裂が凍瓦組城?劣化ざ−C%ざらに耐食性
金低ドさせる欠点金招さ、マグネシア質煉瓦が4基性ス
ラグに強いという耐食性の特′iと充分に発1′4でき
なかった。
Conventional technology: As a measure to impart heat and impact resistance to magnesia bricks,
A so-called magnesia-chromite direct bonded frozen tile, which has been blended with chromium ore grains and is then fired, has full thermal shock resistance due to the minute 4*vζ generated in the circulation of the chromium ore grains.
- The proposal was made in Publication No. 116661. However, even the magnetic screw arc direct bricks may develop micro-cracks due to repeated thermal shocks. The corrosion resistance properties of the magnesia bricks were not sufficiently developed due to the corrosion resistance characteristics of the magnesia bricks, which were resistant to tetrabase slag.

発明の課題: 本発明−工上記のごとさ間j点金解決するためになされ
たもので、局部的な微細気孔部域欣させて全坏の熱工6
力を消去せしめることにより、すぐ几た耐熱衝撃性金付
与したマグネシア−ジルコニアi尉火ノ東瓦の提共七目
的としている。
Problem to be solved by the invention: The present invention has been made to solve the above-mentioned problems, and is capable of heat treatment of all parts by reducing localized microporous areas.
By eliminating the force, the thermal shock resistance of the gold-added magnesia-zirconia roof tile can be improved quickly.

発明の構成・作用: 以下本発明りζつき説明すると、マグネシア原料に未安
定ジルコニア原料to、a〜2JIJI径の中間粒とし
て耐火材料唸虐中5〜20 wtチ となるように配合
し、混合11形後1650’C以上の高温で焼成し、上
記未安定ジルコニア粒を微細気孔金グーに内蔵するt定
ジルコニア粒に変化させる。この部分v′cJ?いて全
体、/)pA応力を、吸収させるようにして全体の# 
a ’R撃a k同上したマグネシア−ジルコニア質(
耐火煉瓦とし、tものでるる。
Structure and operation of the invention: To explain the present invention as follows, the unstabilized zirconia raw material is blended with the magnesia raw material as intermediate grains of a ~ 2JIJI diameter so that the amount of refractory material is 5~20 wt. After forming No. 11, it is fired at a high temperature of 1650'C or higher to transform the unstable zirconia grains into t-constant zirconia grains contained in the fine pore gold goo. This part v'cJ? /)pA stress is absorbed and the total #
a 'R shot a k Magnesia-zirconia material (same as above)
It is made of refractory bricks and is made of T-mono.

こυようにして得られる本発明の耐火煉瓦では、マグネ
シア原料に配合し7を中間種変の未安定ジルコニア4マ
グネシアと反応して安定ジルコニアとなっている。この
ときのジルコニア粒は第1図に示すように5〜80μm
の微細気孔を均一に内蔵する粒・こ変化し′Cいる。そ
してこのようなジルコニア粒が他の1lIIt火材、科
−1:lvC均一に分散し九組、熾のマグネシア−ジル
コニア貞耐火煉瓦となっている。
In the refractory brick of the present invention obtained in this way, stable zirconia is obtained by mixing 7 with the magnesia raw material and reacting with unstable zirconia 4 magnesia of the intermediate variety. The zirconia grains at this time are 5 to 80 μm as shown in Figure 1.
This is a grain that uniformly contains fine pores. These zirconia grains are uniformly dispersed with another 1lIIt refractory material, family-1:lvC, to form a solid magnesia-zirconia refractory brick.

次にこのような組織としたマグネシア−ジルコニア4耐
火煉瓦の耐熱衝撃性の発現機構について検討する。繰り
返し熱面本テスト後の煉瓦組織が第2図に示されている
。この第2図から明らかなように5〜30μmの微細気
孔を内蔵したジルコニア粒内の微細気孔を伝ってj亀裂
が発生している。
Next, the mechanism by which the thermal shock resistance of the magnesia-zirconia 4 refractory brick with such a structure is developed will be discussed. The structure of the brick after repeated hot surface tests is shown in Figure 2. As is clear from FIG. 2, J-cracks are generated along the fine pores within the zirconia grains, which contain fine pores of 5 to 30 μm.

他の耐火材領域には亀裂の発生は宝たく認のらルない。Cracks are unlikely to occur in other areas of refractory materials.

すなわら、熱衝撃により生起した熱応力金、この微細気
孔部域での亀裂発生のみで吸収し緩和した結果にほかな
らず、換言すれば、5〜80μmの微細気孔を無数にも
つジルコニアの中間粒がマグネシア煉瓦内に均−lこ分
布した組織は熱応力を吸収・緩和−rることがでさる。
In other words, this is nothing but the result of the thermal stress caused by thermal shock being absorbed and relaxed only by the occurrence of cracks in this microporous region.In other words, the thermal stress caused by thermal shock is absorbed and relaxed only by the occurrence of cracks in the microporous region. The structure in which grains are uniformly distributed within the magnesia brick is capable of absorbing and relaxing thermal stress.

この局部的な発生亀裂は後記の実施例及び第1〜2図か
ら明らかなように、煉瓦全体の物性には殆んど影響を及
ぼざず、繰り返し熱IJIを加えても強度低下又は組織
劣化全惹起しない。
As is clear from the Examples and Figures 1 and 2 described below, these locally generated cracks have almost no effect on the physical properties of the brick as a whole, and even when heat IJI is repeatedly applied, the strength decreases or the structure deteriorates. Not triggered at all.

本発明に2いて配合す、Sジルコニア原料は未安定ジル
コニアでめることが必要で6るっ安定ジルコニアを最初
から用いれば5〜80μmの微細気孔が七り粒内に形成
されない。配合−rる未安定ジルコニアの粒度ri0.
3〜2.Off程度が望ましい。0.8絹未膚の微粒で
配合するとジルコニア粒の配合が過多となり煉瓦内に大
役が;+欣されて熱応力全吸収する構成部が小さく、熱
衝4時の亀裂の伝達が容易に進みすぎ耐スポール性を損
なう。2Mを超す粒度で配合すると煉瓦内での分散が不
均一となり易く、耐熱d堪性の発現が国電となる。
The S zirconia raw material blended in the present invention needs to be filled with unstable zirconia, and if stable zirconia is used from the beginning, fine pores of 5 to 80 μm will not be formed within the grains. Particle size of unstabilized zirconia blended ri0.
3-2. Off level is desirable. 0.8 When blended with silk-like fine grains, too many zirconia grains are blended and they play a major role in the brick. Too much will impair spall resistance. When blended with a particle size exceeding 2M, the dispersion within the brick tends to become uneven, and the development of heat resistance and durability becomes a problem.

配合する未安定ジルコニア原料の配合量は、耐火材料a
tの5〜20 #t * の範囲内で:け熱j堪性の幼
果が認めらルる。5wtチ未満でbれば、このジルコニ
ア粒子部分での亀裂発生のみでは熱応力全吸収しきnず
、損傷が煉瓦全体に及ぶ結果となる。また、20wt%
  t−超すとジルコニア粒子部分での亀裂発生が主体
と次り、煉瓦全体の損傷に及ぶ過怠がbる。
The amount of unstable zirconia raw material to be blended is as follows:
Within the range of 5 to 20 #t*: Heat-resistant young fruits are observed. If the weight is less than 5wt, cracks occurring only in the zirconia particle portion will not be able to fully absorb the thermal stress, resulting in damage to the entire brick. Also, 20wt%
When the temperature exceeds t, cracks mainly occur in the zirconia particles, and the damage to the entire brick increases.

未安定ジルコニア粒がマグネシアと反応し、5〜30μ
mの微細気孔を均一に内蔵する粒子に変化させるには、
焼成温度を少くとも1650℃以上にする必要がある。
Unstabilized zirconia grains react with magnesia and become 5-30μ
In order to transform into particles that uniformly contain m micropores,
It is necessary to set the firing temperature to at least 1650°C or higher.

安定ジルコニアに変化した後に内蔵される微細気孔が5
μm未満ではジルコニアの大役が小さくなり強度ρS増
す反面、熱#零時の亀裂の伝達が容易に起り周囲のマグ
ネシアにも伝播する。気孔の大きさが30μm2超すと
ジルコニア粒内の大役が大さくなり強度が低下するっ実
施例: 第1表に示す配合率で耐火材料及び結合剤を配合し、い
ずれもブレッドミルで混練し、プVス機で鼓形形状に成
形し、81)〜150’Cで48時間乾燥した麦トンネ
ルキルンを用いて1750℃で7時間焼成した。実施例
のうち、嵐1〜4は本発明例、患5〜6は未安定ジルコ
ニアの配合率が本発明・D範囲外に6る比較例、Na7
〜9は従来例で、bる。なお、焼結マグネシア、電融マ
グネシアは共にfシ観成分が98多以上のものを使用し
t。
There are 5 microscopic pores built in after changing to stable zirconia.
When the diameter is less than μm, the role of zirconia becomes smaller and the strength ρS increases, but on the other hand, cracks at zero temperature easily propagate and propagate to the surrounding magnesia. If the size of the pores exceeds 30 μm2, the role within the zirconia grains becomes large and the strength decreases.Example: A refractory material and a binder were blended in the proportions shown in Table 1, and both were kneaded in a breadmill. It was molded into an hourglass shape using a press Vs machine, dried at 81) to 150'C for 48 hours, and fired at 1750C for 7 hours using a barley tunnel kiln. Among the Examples, Arashi 1 to 4 are examples of the present invention, Cases 5 to 6 are comparative examples in which the blending ratio of unstabilized zirconia is outside the D range of the present invention, and Na7
9 to 9 are conventional examples. Incidentally, both sintered magnesia and fused magnesia should have a visual component of 98 or more.

得られた各実施例煉瓦のテストを行ない、その結果を第
1図に併せ示した。各種テストの方法及び評価基準は下
記によった。
The obtained bricks of each example were tested, and the results are also shown in FIG. The methods and evaluation criteria for various tests were as follows.

〔見掛比重〕、〔カサ比重〕、〔見掛気孔率〕通常の耐
火物試験法によった。
[Apparent specific gravity], [Bulk specific gravity], and [Apparent porosity] were determined by ordinary refractory testing methods.

〔圧縮強さ〕[Compressive strength]

連形形状煉瓦から55 x 55 x 55!  の立
方体を切出し、油圧式圧縮試験機で測定した。
55 x 55 x 55 from continuous bricks! A cube was cut out and measured using a hydraulic compression testing machine.

〔曲げ強さ〕[Bending strength]

連形形状煉瓦から巾30H1厚さ15g、長さ120I
Hのテストピースを切出し、 1500’cに保定した
電気炉中で1時間加熱した後8点曲げ試験r行なったO 〔耐スポール性〕 連形形状煉瓦から55 X 55 X 280 mの角
柱状テストピースを切出し、片面を1400″Cに保定
した′電気炉中に15分間保持し、ついで炉外に取出し
15分間強11tlj空冷する作業ナイクルを25回限
度で行なっ九。4裂の発生状況と剥落に至るまでの作業
サイクルの回数で評価した。耐スポール性は剥落までの
作業ナイクルの繰り返し数が多い方が良好でるる。
From continuous bricks, width 30H1 thickness 15g, length 120I
A test piece of H was cut out, heated for 1 hour in an electric furnace maintained at 1500'c, and then subjected to an 8-point bending test. A piece was cut out, one side kept in an electric furnace held at 1400"C for 15 minutes, then taken out of the furnace and air cooled for 15 minutes at a maximum of 25 times. The evaluation was based on the number of work cycles required to reach this point.The spalling resistance is better as the number of cycles until peeling is greater.

殆明の効果: 第1表の結果より明らかなごとく、本発明例のものは、
いずれも良好な耐スポール性を示している。特に未安定
ジルコニアelOwt% 配合しfc、b2及び庵4で
は目視可能な微亀裂の発生もなかつ・た。一方、従来例
の凪7及び陽8は未安定ジルコニア無添υ口のものでb
O1剥落までの繰り返し回数が15回及び2回と耐スポ
ール性が劣っている。
Almost bright effect: As is clear from the results in Table 1, the examples of the present invention have
All exhibit good spall resistance. In particular, no visible microcracks occurred in fc, b2, and ann 4, which contained unstable zirconia elOwt%. On the other hand, the conventional examples Nagi 7 and Yang 8 are unstabilized zirconia-free υ openings.
The number of repetitions until O1 peeling off was 15 and 2, indicating poor spall resistance.

又、従来例の磁9はジルコニアの代りにクロム鉱石を配
合し友ものでbるが、未安定ジルコニアの場合に与る微
細気孔組織は形成さルず、繰り返し回数25回で剥落は
しないが亀裂の発生が顕著に確認された。
Furthermore, although the conventional magnet 9 contains chromium ore instead of zirconia, it does not form the microporous structure that occurs with unstable zirconia, and does not peel off after 25 repetitions. Significant cracking was observed.

以上のごとく、本発明のマグネシア−ジルコニア質耐火
煉瓦は組織劣化全生起することなく耐スポール性が著し
く改善され、すぐルた耐熱面寧住を示している。
As described above, the magnesia-zirconia refractory brick of the present invention has significantly improved spalling resistance without any structural deterioration, and exhibits excellent heat resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例の反射顕am写真でめり、約
1 xg径のジルコニア膣中に5〜30μ肩の微細気孔
全内蔵していることを示している。第2図は耐スポール
性試験後の本発明のマグネシア−ジルコニア粒内(A 
−A’間)のみに亀裂が認められるが他のマグネシア部
域には亀裂が全九く認められないことを示している。 出 願 人   播磨耐火煉瓦株式会社図面の浄6(内
容に変更なし) 第1図 第2図 手続補正書鴎蓮 ジルコニア質耐火煉瓦 補正をする者 事件との関係   特許出願人 住所(居所)   兵庫県高砂市荒井町fr兵1丁目3
魯1号膳 補正命令の 日付 昭和61年8 月6 日補正の対象
 (1)明細N:図面の簡単な説明の欄。畷(2) 図
面。 、−1いkくの内容 別紙のと2シ t−”7.傷−5、ノー−)\ ■ 明細1、第10貞第2行目、「1実施例の」と((
ろるを、「1実施例における粒子構造の」と補−j 正
します。 ■ 明細書、第10貞第5行目、「本発明の」とめる金
、「本発明品の粒子構造の変化を示す反射顕gLd!写
真でろつ、」と補正します。 ■ 図面、第1図及び第2図が粒子構造を示す「カラー
写真」で第るのを、添付図面のとおり「白黒写真」に補
とします。
FIG. 1 is a reflection microscopic photograph of one embodiment of the present invention, showing that the zirconia vagina with a diameter of about 1×g contains all microscopic pores with a shoulder size of 5 to 30 μm. Figure 2 shows the inside of the magnesia-zirconia grains (A) of the present invention after the spall resistance test.
-A'), but no cracks are observed in the other magnesia areas. Applicant Harima Refractory Brick Co., Ltd. Drawing No. 6 (No change in content) Figure 1 Figure 2 Procedural amendment document Oiren Zirconia refractory brick person who makes amendments Relationship to the case Patent applicant address (residence) Hyogo prefecture 1-3 frei, Arai-cho, Takasago City
Date of order to amend Lu No. 1 meal: August 6, 1985 Target of amendment (1) Specification N: Column for a brief explanation of the drawing. Nawate (2) Drawing. , -1k contents of attached sheet and 2 sheets-"7. Scratches-5, no-)
Correct the word ``of the particle structure in Example 1.'' ■ In the specification, No. 10, line 5, correct the phrase "of the present invention" to read, "Reflection microscopy showing changes in the particle structure of the product of the present invention! Photos are included." ■ The drawings, Figures 1 and 2, are "color photographs" showing the particle structure, but they are supplemented with "black and white photographs" as shown in the attached drawings.

Claims (1)

【特許請求の範囲】[Claims]  マグネシア原料に、未安定ジルコニア原料を0.3〜
2mmの中間粒として耐火材料総量中5〜20wt%配
合し、混合成形後、1650℃以上の高温で焼成し、上
記未安定ジルコニア粒を5〜30μmの微細気孔を均一
に内蔵する安定ジルコニア粒に変化させたことを特徴と
する耐熱衝撃性にすぐれたマグネシア−ジルコニア質耐
火煉瓦。
Add unstabilized zirconia raw material to magnesia raw material from 0.3 to
5 to 20 wt% of the total amount of refractory material is blended as 2 mm intermediate grains, mixed and molded, and fired at a high temperature of 1,650°C or higher to transform the unstable zirconia grains into stable zirconia grains uniformly containing fine pores of 5 to 30 μm. A magnesia-zirconia refractory brick with excellent thermal shock resistance.
JP61140990A 1986-06-16 1986-06-16 Magnesia-zirconia refractory brick with excellent thermal shock resistance Expired - Lifetime JPH0643269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61140990A JPH0643269B2 (en) 1986-06-16 1986-06-16 Magnesia-zirconia refractory brick with excellent thermal shock resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61140990A JPH0643269B2 (en) 1986-06-16 1986-06-16 Magnesia-zirconia refractory brick with excellent thermal shock resistance

Publications (2)

Publication Number Publication Date
JPS6360151A true JPS6360151A (en) 1988-03-16
JPH0643269B2 JPH0643269B2 (en) 1994-06-08

Family

ID=15281580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61140990A Expired - Lifetime JPH0643269B2 (en) 1986-06-16 1986-06-16 Magnesia-zirconia refractory brick with excellent thermal shock resistance

Country Status (1)

Country Link
JP (1) JPH0643269B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263758A (en) * 1988-06-21 1990-10-26 Harima Ceramic Co Ltd Production of upper nozzle for casting molten steel
CN1325435C (en) * 2004-06-30 2007-07-11 宝山钢铁股份有限公司 Chromium free refractory material for RH vacuum furnace lining
CN112608135A (en) * 2020-12-30 2021-04-06 马鞍山利尔开元新材料有限公司 Low-cost magnesia-zirconia-carbon converter steel-tapping hole brick and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077162A (en) * 1983-09-30 1985-05-01 ハリマセラミック株式会社 Sliding nozzle plate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077162A (en) * 1983-09-30 1985-05-01 ハリマセラミック株式会社 Sliding nozzle plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263758A (en) * 1988-06-21 1990-10-26 Harima Ceramic Co Ltd Production of upper nozzle for casting molten steel
CN1325435C (en) * 2004-06-30 2007-07-11 宝山钢铁股份有限公司 Chromium free refractory material for RH vacuum furnace lining
CN112608135A (en) * 2020-12-30 2021-04-06 马鞍山利尔开元新材料有限公司 Low-cost magnesia-zirconia-carbon converter steel-tapping hole brick and preparation method thereof

Also Published As

Publication number Publication date
JPH0643269B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
Chen et al. Thermal characteristics of Al2O3–MgO and Al2O3–spinel castables for steel ladles
KR20110028364A (en) Chromina-alumina refractory
Haldar et al. Effect of compositional variation on the synthesis of magnesite–chrome composite refractory
JPS6360151A (en) Thermal shock-resistant magnesia-zirconia base refractory brick
JPS6060985A (en) Refractory composition for ladle lining
JPH0687667A (en) Zirconia-mullite containing castable refractory
RU2785728C1 (en) Chromite-periclase refractory
Yakubu et al. Suitability of Birinin Gwari and Maraban Rido Clays as Refractory Materials
JPH01305851A (en) Production of unfired mgo-c brick
JP7377635B2 (en) Bricks for hot metal ladle and hot metal ladle lined with the bricks
CN107646026A (en) refractory product and forming method thereof
JPH07315913A (en) Magnesia refractory brick
JP3079296B2 (en) Method for producing fired brick for lining molten metal containers
JP3197681B2 (en) Method for producing unburned MgO-C brick
Tchamba et al. Influence of lithium carbonate and superplasticizer as admixtures on low calcium dialuminate cement castable submitted to thermal shock
JP2582443B2 (en) Cordierite refractories
JPS6212655A (en) Carbon-containing refractory brick
JPH06287057A (en) Carbon-containing refractory
SU1114660A1 (en) Slip for making cermet material
Fomenko et al. Investigation of thermal properties of carbon-containing composites obtained by solid-state combustion
Lv et al. Preparation of ZnAl2O4 and its effect on fatigue resistance of alumina castables
JPS59223267A (en) Nozzle refractories for molten metal vessel
JPH01160862A (en) Calcined firebrick of magnesia base
JPS63195161A (en) Graphite-containing basic refractories
Kartha et al. A study of clay from Kumbalam (Kerala State)