JPH0643254B2 - Fluorophosphate glass - Google Patents

Fluorophosphate glass

Info

Publication number
JPH0643254B2
JPH0643254B2 JP63047118A JP4711888A JPH0643254B2 JP H0643254 B2 JPH0643254 B2 JP H0643254B2 JP 63047118 A JP63047118 A JP 63047118A JP 4711888 A JP4711888 A JP 4711888A JP H0643254 B2 JPH0643254 B2 JP H0643254B2
Authority
JP
Japan
Prior art keywords
glass
total amount
fluoride
component
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63047118A
Other languages
Japanese (ja)
Other versions
JPH01219037A (en
Inventor
誠 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP63047118A priority Critical patent/JPH0643254B2/en
Priority to DE19893906320 priority patent/DE3906320C2/en
Publication of JPH01219037A publication Critical patent/JPH01219037A/en
Priority to US07/653,742 priority patent/US5242868A/en
Publication of JPH0643254B2 publication Critical patent/JPH0643254B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/226Glass filters
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/23Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron
    • C03C3/247Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron containing fluorine and phosphorus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、弗燐酸塩ガラスに関し、例えばカラーVTR
カメラの色補正に用いて好適なフィルターガラスに関す
るものである。
The present invention relates to a fluorophosphate glass, for example, a color VTR.
The present invention relates to a filter glass suitable for color correction of a camera.

〔従来の技術〕 一般にカラーVTRカメラに使用されている撮像管の光
の分光感度は、可視域から近赤外域950nmまで伸びて
いるため、この近赤外域をフィルターによりカットし、
分光感度を人間の視感度に近似させてやらなければ、画
像が赤味を帯び、良好な色再現を得ることができない。
また一方でフィルターの紫外側の吸収が可視域まで及ぶ
と、今度は画像が暗くなってしまうことになる。したが
ってこの種のフィルターには、400〜520nmの光の
透過率が可能な限り高く、550〜950nmの光を可能
な限り多く吸収する特性が必要とされる。従来よりこの
種の近赤外域吸収フィルターとしては、燐酸塩ガラスに
CuOを添加したガラスが用いられている。
[Prior Art] Since the spectral sensitivity of light from an image pickup tube generally used in a color VTR camera extends from the visible region to the near infrared region of 950 nm, this near infrared region is cut by a filter,
Unless the spectral sensitivity is approximated to the human visual sensitivity, the image becomes reddish and good color reproduction cannot be obtained.
On the other hand, if the ultraviolet absorption of the filter reaches the visible range, the image will be darkened this time. Therefore, this type of filter is required to have a property of transmitting light of 400 to 520 nm as high as possible and absorbing light of 550 to 950 nm as much as possible. Conventionally, as this kind of near infrared absorption filter, a glass obtained by adding CuO to phosphate glass has been used.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、燐酸塩ガラスは、元々耐候性が悪いこと
から、それを実用に耐え得るまで向上させるには、例え
ば特開昭62−128943号公報に開示されているよ
うに比較的多量のAlの添加を必要とする。その
結果、溶融温度が上昇し、その温度が高いほど銅イオン
は還元されやすい傾向にあるので、近赤外域に吸収をも
つガラス成分の銅の2価のイオンCu2+が還元され、
紫外域に吸収をもつ1価のCuイオンに変化し、可視
域の透過率が低くなり、赤外域の透過率が高くなるとい
う特性劣化の傾向が生じていた。反対に透過率特性を向
上させようとすると、ガラス成分中の銅の2価のイオン
Cu2+が還元されて1価のCuイオンいならないよ
うにアルカリ添加等で溶融温度を下げることになるが、
これは同時にガラスそのものの耐候性をさらに劣化させ
ることとなる。したがって燐酸塩ガラスでこの種の近赤
外域吸収フィルターを製作する場合には、相反する関係
の透過率特性と耐候性との妥協点をみつけて実用に提供
してきたのが実状である。
However, since phosphate glass originally has poor weather resistance, in order to improve it until it can be used practically, a relatively large amount of Al 2 O is disclosed, for example, as disclosed in JP-A-62-128943. Requires the addition of 3 . As a result, the melting temperature rises, and the higher the temperature, the more easily copper ions tend to be reduced, so the divalent ion Cu 2+ of the glass component copper having absorption in the near infrared region is reduced,
There was a tendency of characteristic deterioration that the monovalent Cu + ion having absorption in the ultraviolet region was changed to lower the transmittance in the visible region and increase the transmittance in the infrared region. On the other hand, if an attempt is made to improve the transmittance characteristic, the melting temperature will be lowered by addition of an alkali or the like so that the divalent ion Cu 2+ of copper in the glass component is reduced and the monovalent Cu + ion is not left. ,
At the same time, this further deteriorates the weather resistance of the glass itself. Therefore, when manufacturing a near-infrared absorption filter of this kind using a phosphate glass, the fact is that it has been practically provided by finding a compromise between the transmittance characteristic and the weather resistance, which are in a contradictory relationship.

したがって本発明は、前述した従来の問題に鑑みてなさ
れたものであり、その目的は、カラーVTRカメラ用フ
ィルターに要求される近赤外域吸収フィルターとしての
透過率特性を充分に満足し、かつ実用に充分に耐え得る
耐候性が極めて優れた弗燐酸塩ガラスを提供することに
ある。
Therefore, the present invention has been made in view of the above-described conventional problems, and an object thereof is to sufficiently satisfy the transmittance characteristics as a near infrared absorption filter required for a filter for a color VTR camera, and to put it into practical use. It is intended to provide a fluorophosphate glass having extremely excellent weather resistance capable of sufficiently withstanding.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明の弗燐酸塩ガラスは、ガラス骨格を形成する成分
としてのPをベースとして量産するに充分な耐失
透性を維持し、かつ耐候性を向上させるAFおよび
RF(原子価が2価の金属Ba、Sr、Ca、Mg、
Zn、Pbの弗化物の合量)を必須成分とするガラスを
ベースに、溶融温度域でのガラスの粘性を下げ、より低
融点にするR′F(原子価が1価の金属Li、Na、K
の弗化物の合量)および透過率特性に影響を与えること
なく耐磨耗性を改善するR″Fm(原子価が3〜5価の
金属La、Y、Gd、Si、B、Zr、Taの弗化物の
合量)を適宜添加してなる弗燐酸塩ガラスに、近赤外域
吸収の必須成分としてCuO外割添加して構成される。
本発明の弗燐酸塩ガラスの高耐候性および透過率特性
は、弗燐酸塩ガラス中の2価成分の種類および含有量を
変化させても大きく変化することはなく、また、2価成
分の一部を1価成分もしくは高原子価成分に置換した
り、弗化物の一部を酸化物で置換しても同様であり、ま
た弗化物総合計量の70重量%までを酸化物に置換して
も所望の特性を維持し得る。
The fluorophosphate glass of the present invention is based on P 2 O 5 as a component forming a glass skeleton, AF 3 and RF 2 (atoms) that maintain sufficient devitrification resistance for mass production and improve weather resistance. Divalent metals Ba, Sr, Ca, Mg,
R′F (monovalent metal Li, Na having a valence of 1) for lowering the viscosity of the glass in the melting temperature range and lowering its melting point based on a glass containing as an essential component the total amount of fluorides of Zn and Pb). , K
R'Fm (metals with a valence of 3 to 5 La, Y, Gd, Si, B, Zr, Ta) that improve wear resistance without affecting the total amount of fluoride and the transmittance characteristics. (A total amount of fluoride) is added to a fluorophosphate glass to which CuO is added as an essential component for absorption in the near infrared region.
The high weather resistance and the transmittance characteristics of the fluorophosphate glass of the present invention do not change significantly even if the type and content of the divalent component in the fluorophosphate glass are changed, and the divalent component has one The same applies when a part is replaced with a monovalent component or a high valence component, or a part of the fluoride is replaced with an oxide, and when up to 70% by weight of the total amount of fluoride is replaced with an oxide. It can maintain the desired properties.

すなわち、本発明の弗燐酸塩ガラスは、基礎ガラスが重
量%でP5〜45%、AlF1〜35%、RF
(原子価が2価の金属Ba、Sr、Ca、Mg、Z
n、Pbの弗化物の合量)10〜75%、R′F(原子
価が1価の金属Li、Na、Kの弗化物の合量)0〜4
0%、R″Fm(原子価が3〜5価の金属La,Y,G
d、Si、B、Zr、Ta弗化物の合量)0〜15%を
含み、さらに前記基礎ガラス100重量部に対して外割
にてCuOを0.2〜15重量%を加えてなる組成を有
する。
That is, in the fluorophosphate glass of the present invention, the basic glass is P 2 O 5 5 to 45%, AlF 3 1 to 35%, and RF by weight%.
2 (metals with divalent valences Ba, Sr, Ca, Mg, Z
n, Pb fluoride total amount) 10-75%, R'F (monovalent valence metal Li, Na, K fluoride total amount) 0-4
0%, R ″ Fm (metal having a valence of 3 to 5 La, Y, G
d, Si, B, Zr, Ta fluoride total amount) 0 to 15%, and 0.2 to 15% by weight of CuO is added to 100 parts by weight of the basic glass. Have.

本発明の弗燐酸塩ガラスは、波長500nmより長波長側
を選択的に吸収する分光透過率特性を有し、色補正用フ
ィルターガラスとして好適に用いられる。
INDUSTRIAL APPLICABILITY The fluorophosphate glass of the present invention has a spectral transmittance characteristic of selectively absorbing wavelengths longer than 500 nm, and is preferably used as a color correction filter glass.

本発明の弗燐酸塩ガラスにおいて、Pはガラス骨
格を形成する成分であり、5wt%未満とすると、ガラス
化が困難となり、45wt%を越えると耐候性の低下を招
くことになる。したがってPを5〜45wt%の範
囲としたが、好ましくは10〜40wt%の範囲である。
また、AFは耐候性を向上させる有効な成分であ
り、1wt%未満ではその効果が得られず、35wt%を越
えると、ガラスの溶融性が低下する。したがってAF
を1〜35wt%の範囲としたが、好ましくは1〜30
wt%の範囲である。また、2価成分RF(原子価が2
価の金属Ba、Sr、Ca、Mg、Zn、Pbの弗化物
の合量)は耐候性を低下させないための有効な成分であ
り、BaFは40wt%を越えると、失透しやすくなる
ので、0〜4wt%の範囲が好ましい。また、SrF
40wt%を越えると、失透しやすくなるので、0〜40
wt%の範囲が好ましい。また、CaFは30wt%を越
えると、失透しやすくなるので、0〜30wt%の範囲が
好ましい。また、MgFは20wt%を越えると、失透
しやすくなるので、0〜20wt%の範囲が好ましい。ま
た、ZnFは30wt%を越えると、失透しやすくなる
ので、0〜30wt%の範囲が好ましい。また、PbF
は30wt%を越えると、失透しやすくなるので、0〜3
0wt%の範囲が好ましい。さらに2価成分RFはその
合計量が10wt%未満とすると、ガラス化しにくく、7
5wt%を越えると、失透しやすくなる。したがって2価
成分RFの合計量を10〜75wt%の範囲としたが、
好ましくは14〜60wt%の範囲である。1価成分R′
Fはガラスの溶融温度を下げ、かつ粘性を下げる成分で
あるが、LiFは20wt%を越えると、耐候性を低下さ
せるので、0〜20wt%の範囲が好ましく、NaFは1
0wt%を越えると、耐候性を低下させるので、0〜10
wt%の範囲が好ましく、KFは10wt%を越えると、耐
候性を低下させるので、0〜10wt%の範囲が好まし
い。さらに1価成分R′Fはその合計量が40wt%を越
えると、耐候性を低下させる。したがって1価成分R′
Fの合計量は0〜40wt%の範囲としたが、好ましくは
0〜25wt%の範囲である。さらに他の弗化物として高
原子価成分R″Fmを添加すると、透過率特性に悪影響
を与えることなく、耐磨耗性を改善することができる
が、この高原子価成分R″Fmはその合計量が15wt%
を越えると、ガラスを不安定にする傾向があり、したが
ってこの高原子価成分R″Fmの合計量は0〜15wt%
の範囲とし、特に高原子価成分中のLaFとYF
についてはその合計量0〜8wt%の範囲がガラスの安定
性に対して好ましい。また、前述した成分のうち、弗化
物の総合計量の70wt%までを酸化物に置き換えること
が可能であるが、それを越えると、目的とする優れた耐
候性および透過率特性が得られず、弗化物から酸化物へ
の置換は、好ましくは弗化物の総合計量に対して50wt
%までである。また、CuOは近赤外域吸収のための必
須成分であり、0.2wt%未満ではその吸収が不充分と
なり、15wt%を越えると、ガラスが不安定となる。し
たがってCuOを0.2〜15wt%の範囲としたが、好
ましくは0.2〜13wt%の範囲である。
In the fluorophosphate glass of the present invention, P 2 O 5 is a component forming a glass skeleton, and if it is less than 5 wt%, vitrification becomes difficult, and if it exceeds 45 wt%, the weather resistance is deteriorated. Therefore, the P 2 O 5 content is in the range of 5 to 45 wt%, but is preferably in the range of 10 to 40 wt%.
Further, AF 3 is an effective component for improving the weather resistance, and if it is less than 1 wt%, that effect cannot be obtained, and if it exceeds 35 wt%, the meltability of glass is lowered. Therefore AF
3 was in the range of 1 to 35 wt%, but preferably 1 to 30
The range is wt%. In addition, the divalent component RF 2 (having a valence of 2
The valent metals Ba, Sr, Ca, Mg, Zn, and Pb (the total amount of fluorides) are effective components for not lowering the weather resistance, and if BaF 2 exceeds 40 wt%, devitrification is likely to occur. , 0 to 4 wt% is preferable. If SrF 2 exceeds 40 wt%, devitrification is likely to occur, so 0-40
A wt% range is preferred. If CaF 2 exceeds 30 wt%, devitrification tends to occur, so the range of 0 to 30 wt% is preferable. If MgF 2 exceeds 20 wt%, devitrification tends to occur, so the range of 0 to 20 wt% is preferable. If ZnF 2 exceeds 30 wt%, devitrification tends to occur, so the range of 0 to 30 wt% is preferable. In addition, PbF 2
If it exceeds 30 wt%, devitrification tends to occur, so 0-3
The range of 0 wt% is preferred. Further, when the total amount of the divalent component RF 2 is less than 10 wt%, it is difficult to vitrify, and 7
If it exceeds 5 wt%, devitrification tends to occur. Therefore, the total amount of the bivalent component RF 2 is set in the range of 10 to 75 wt%,
It is preferably in the range of 14 to 60 wt%. Monovalent component R '
F is a component that lowers the melting temperature and viscosity of glass, but if LiF exceeds 20 wt%, the weather resistance is lowered, so the range of 0-20 wt% is preferable, and NaF is 1
If it exceeds 0 wt%, the weather resistance will decrease, so 0-10
The range of wt% is preferable, and if KF exceeds 10 wt%, the weather resistance is deteriorated, so the range of 0 to 10 wt% is preferable. Furthermore, if the total amount of the monovalent component R'F exceeds 40% by weight, the weather resistance is deteriorated. Therefore, the monovalent component R '
The total amount of F is in the range of 0 to 40 wt%, preferably 0 to 25 wt%. When a high valence component R ″ Fm is added as another fluoride, the abrasion resistance can be improved without adversely affecting the transmittance characteristics. The amount is 15wt%
If it exceeds, the glass tends to be unstable, so that the total amount of the high valence component R ″ Fm is 0 to 15 wt%.
The range of 0 to 8 wt% of LaF 3 and YF 3 in the high valence component is preferable for stability of the glass. Further, of the above-mentioned components, it is possible to replace up to 70 wt% of the total amount of fluoride with an oxide, but if it exceeds that, the desired excellent weather resistance and transmittance characteristics cannot be obtained, The substitution of fluoride for oxide is preferably 50 wt% based on the total weight of fluoride.
Up to%. CuO is an essential component for absorption in the near infrared region. If it is less than 0.2 wt%, its absorption will be insufficient, and if it exceeds 15 wt%, the glass will be unstable. Therefore, the content of CuO is set in the range of 0.2 to 15 wt%, preferably 0.2 to 13 wt%.

なお、ガラス技術分野においては、ガラスを構成する成
分を上述のように重量%で表示するとともにカチオン成
分をカチオニック%、アニオン成分をアニオニック%で
表示することがしばしば行われているので、後記表1に
記載された実施例の組成No.1〜10の弗燐酸塩ガラス
組成に基づき、好ましいカチオン成分の組成範囲をカチ
オニック%で表示すると、P5+が11〜43%、A3+
が1〜29%、Rイオン(原子価が2価の金属Ba、S
r、Ca、Mg、Zn、Pbイオンの合量)が14〜5
0%、R′イオン(原子価が1価の金属Li、Na、K
イオンの合量)が0〜43%、R″イオン(原子価が3
〜5価の金属La、Y、Gd、Si、B、Zr、Taイ
オンの合量)が0〜8%、およびCu2+が0.5〜13
%である。特にR′イオンおよび/またはR″イオンの
うちの少なくとも1種を含有するのが好ましい。また、
好ましいアニオン成分の組成範囲をアニオニック%で表
示するとF-が17〜80%である。
In the glass technical field, it is often the case that the components constituting the glass are represented by weight% as described above, and the cation component is represented by Cationic% and the anion component is represented by Anionic%. Based on the fluorophosphate glass compositions of Composition Nos. 1 to 10 of the examples described in 1., the preferable composition range of the cation component is expressed by Cationic%, P 5+ is 11 to 43%, A 3+
Is 1 to 29%, R ion (divalent metal Ba, S
The total amount of r, Ca, Mg, Zn, and Pb ions) is 14 to 5
0%, R'ion (monovalent metal Li, Na, K
0 to 43% of the total amount of ions, R ″ ion (having a valence of 3)
˜5 valent metal La, Y, Gd, Si, B, Zr, Ta ions) 0-8%, and Cu 2+ is 0.5-13.
%. In particular, it preferably contains at least one of R ′ ion and / or R ″ ion.
When the composition range of the preferable anion component is expressed in anionic%, F is 17 to 80%.

〔実施例〕〔Example〕

次に本発明の実施例を表及び図面を用いて説明する。 Next, an embodiment of the present invention will be described with reference to tables and drawings.

下記表1は、本発明の実施例および従来技術としての比
較例のガラス組成と、耐候性テストで表面変質が生じ始
めるまでの時間とを示したものである。ここで言う耐候
性テストとは、研磨したガラスを約65℃、90%の相
対湿度の恒温恒湿条件下に保持し、一定時間毎にその表
面状態を観察し、ガラスの表面に変質が見られるまでの
時間を示したものである。
Table 1 below shows the glass compositions of the examples of the present invention and the comparative example as the prior art, and the time until the surface deterioration starts in the weather resistance test. The weather resistance test here means that the polished glass is kept under constant temperature and constant humidity conditions of about 65 ° C. and 90% relative humidity, and the surface condition is observed at regular intervals to confirm that the glass surface is not deteriorated. It shows the time until it is taken.

なお、上述のようにガラス研究者の間で、ガラスを構成
する成分をカチオン成分及びアニオン成分とに分け、こ
れらの量をカチオニック%及びアニオニック%で表示す
ることが、各カチオン成分及びアニオン成分の存在量の
比較等の都合上広く採用されているため、表1では各弗
燐酸塩ガラスの組成には重量%表示とカチオニック%及
びアニオニック%表示を併記した。表2に実施例1に基
づいて行った重量%からのカチオニック%及びアニオニ
ック%への換算例を示す。なお、表2より明らかなよう
にA3+については、AFに由来するA3+(26.
8%)とAに由来するA3+(1.5%)とがある
が、これらの合量(28.3%)を、表1の上段の、AF
と併記されたA3+欄に記載した。他のカチオンについ
ても、弗化物と酸化物が存在するときは、当該カチオン
の合量を弗化物と併記されたカチオン欄に記載した。
As described above, it is possible for glass researchers to divide the components that make up the glass into cation components and anion components, and to display these amounts in terms of Cationic and Anionic percentages. Since it is widely adopted for the sake of comparison of abundance, etc., Table 1 shows the composition of each fluorophosphate glass together with the weight% indication and the cationic and anionic percentage indications. Table 2 shows an example of conversion from wt% to Cationic% and Anionic% based on Example 1. Note that the A 3+ As is clear from Table 2, A 3+ (26 derived from AF 3.
8%) and A 3+ (1.5%) derived from A 2 O 3 , but the total amount (28.3%) of these is AF 3
It is described in the A 3+ column which is also written. Regarding the other cations, when fluoride and oxide are present, the total amount of the cation is described in the cation column in which "fluoride" is also described.

上記表1中、組成No.1〜10は本発明による実施例、
組成No.11、12は特開昭62−128943号公報
による比較例である。まず、実施例の組成No.5に基づ
いて具体的に説明する。重量%でP27.8%、
AF10.2%、MgF5.3%、CaF
0.4%、SrF19.4%、BaF15.0%、
Al7.9%、LiO4.0%の基礎ガラス1
00重量部に対して外割にてCuOを1.4%となるよ
うに添加する。原料として正燐酸水溶液、水酸化アルミ
ニウム、弗化アルミニウム、弗化マグネシウム、弗化カ
ルシウム、弗化ストロンチウム、弗化バリウム、炭酸リ
チウム、酸化第2銅を所定量混合し、白金製るつぼで蓋
をして800〜900℃で溶融し、攪拌して脱泡、均質
化を行った後、予熱した金型に鋳込み、徐冷することに
よってガラスフィルターを得た。なお、原料として燐酸
アルミニウム、燐酸バリウム等の複合塩の使用を妨げる
ものではない。
In Table 1 above, compositions Nos. 1 to 10 are examples according to the present invention,
Composition Nos. 11 and 12 are comparative examples according to JP-A-62-128943. First, a specific description will be given based on the composition No. 5 of the example. 27.8% by weight of P 2 O 5 ;
AF 3 10.2%, MgF 2 5.3%, CaF 2 1
0.4%, SrF 2 19.4%, BaF 2 15.0%,
Al 2 O 3 7.9%, Li 2 O4.0% of basic glass 1
CuO is added so as to be 1.4% based on 100 parts by weight. As raw materials, orthophosphoric acid aqueous solution, aluminum hydroxide, aluminum fluoride, magnesium fluoride, calcium fluoride, strontium fluoride, barium fluoride, lithium carbonate, cupric oxide are mixed in a predetermined amount, and the lid is covered with a platinum crucible. After melting at 800 to 900 ° C., stirring to defoam and homogenize, the mixture was cast into a preheated mold and gradually cooled to obtain a glass filter. It should be noted that the use of a composite salt of aluminum phosphate, barium phosphate or the like as a raw material is not hindered.

このようにして得られたガラスを研磨して前述した65
℃、90%の相対湿度下におけるガラスの表面に変質が
見られるまでの時間は約1080時間であった。この実
施例の組成No.5のガラスも含めて本実施例の組成No.1
〜10のガラスは全てこの条件下で約950時間を充分
にクリアできるだけの耐候性が得られた。一方、比較例
の組成No.11、12のガラスについては、220〜2
40時間を越えたあたりから、表面が変質しはじめ、約
1000時間を経た時点では、完全に白く変質し、ガラ
スの透明度を失う状態に至った。以上のことから、本実
施例によるガラスは極めて大なる耐候性を有しているこ
とがわかった。
The glass thus obtained was polished to obtain the above-mentioned 65.
It took about 1080 hours until the glass surface was altered at 90 ° C. and 90% relative humidity. Composition No. 1 of this example including glass of composition No. 5 of this example
All the glasses of Nos. 10 to 10 had weather resistance enough to clear about 950 hours under these conditions. On the other hand, regarding the glasses of composition Nos. 11 and 12 of the comparative example, 220 to 2
The surface began to deteriorate after about 40 hours, and after about 1000 hours, the surface became completely white, and the transparency of the glass was lost. From the above, it was found that the glass according to this example has extremely high weather resistance.

次に前述した実施例および比較例の分光透過率曲線を図
に示す。同図では実施例の組成No.2、5、7のガラス
と比較例の組成No.11、12のガラスについて示した
が、ガラスの肉厚は1.6mmである。同図から明らかな
ように本実施例によるガラスは、弗化物を含まない燐酸
塩ベースの比較例のガラスに比べて波長360〜500
nmにおける透過率が高く、それより長波長側が低いカラ
ーVTRカメラ用フィルターとして優れた分光透過率特
性を有している。
Next, the spectral transmittance curves of the above-mentioned examples and comparative examples are shown in the figure. In the figure, the glass of composition Nos. 2, 5, and 7 of the example and the glass of composition Nos. 11 and 12 of the comparative example are shown, but the thickness of the glass is 1.6 mm. As is clear from the figure, the glass according to this example has a wavelength of 360 to 500 as compared with the glass of the phosphate-based comparative example containing no fluoride.
It has excellent spectral transmittance characteristics as a filter for a color VTR camera, which has a high transmittance in nm and a lower wavelength side than that.

上記実施例における組成No.1〜10の結果より、カチ
オニック%でP5+11〜43%、A3+1〜29%、R
イオン(2価金属イオン)14〜50%、Rイオン(1
価金属イオン)0〜43%、Rイオン(3〜5価金属イ
オン)0〜8%、およびCu2+0.5〜13%を含有
し、さらにアニオニック%でF-を17〜80%含有す
る組成とすることにより、より効果が大となる。
From the results of composition Nos. 1 to 10 in the above examples, P 5+ 11 to 43%, A 3+ 1 to 29%, R in Cationic%
Ion (divalent metal ion) 14 to 50%, R ion (1
(Valent metal ion) 0 to 43%, R ion (3 to 5 valent metal ion) 0 to 8%, and Cu 2+ 0.5 to 13%, and anionic% F of 17 to 80%. With such a composition, the effect is further enhanced.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明の弗燐酸塩ガラスは、従来製
作し得なかった極めて優れた耐候性を有すると同時に分
光透過率特性も一層向上した理想的なフィルターガラス
が製作できるという極めて優れた効果が得られた。
As described above, the fluorophosphate glass of the present invention has an extremely excellent weather resistance which could not be produced conventionally, and at the same time has an extremely excellent effect that an ideal filter glass having further improved spectral transmittance characteristics can be produced. was gotten.

【図面の簡単な説明】[Brief description of drawings]

図は本発明の実施例による弗燐酸塩ガラスと従来のガラ
スとの分光透過率の差異を示す特性図である。
The figure is a characteristic diagram showing the difference in the spectral transmittance between the fluorophosphate glass according to the embodiment of the present invention and the conventional glass.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基礎ガラスが重量%でP5〜45
%、AlF1〜35%、RF(原子価が2価の金属
Ba、Sr、Ca、Mg、Zn、Pbの弗化物の合量)
10〜75%、R′F(原子価が1価の金属Li、N
a、Kの弗化物の合量)0〜40%、R″Fm(原子化
が3〜5価の金属La、Y、Gd、Si、B、Zr、T
aの弗化物の合量)0〜15%を含み、さらに前記基礎
ガラス100重量部に対して外割にてCuOを0.2〜
15重量%加えてなることを特徴とする弗燐酸塩ガラ
ス。
1. A base glass containing P 2 O 5 5 to 45% by weight.
%, AlF 3 1 to 35%, RF 2 (total amount of fluoride of divalent metal Ba, Sr, Ca, Mg, Zn, Pb)
10 to 75%, R'F (monovalent metal Li, N
0 to 40% of the total amount of fluorides of a and K, R ″ Fm (metals whose atomization is 3 to 5 valence La, Y, Gd, Si, B, Zr, T)
a total amount of the fluoride of a) 0 to 15%, and further, CuO is added to the base glass in an amount of 0.2 to CuO.
A fluorophosphate glass characterized by being added in an amount of 15% by weight.
【請求項2】カチオニック%でP5+11〜43%、A
3+1〜29%、Rカチオン(原子価が2価の金属Ba、
Sr、Ca、Mg、Zn、Pbイオンの合量)14〜5
0%、R′カチオン(原子価が1価の金属Li,Na,
Kイオンの合量)0〜43%、R″カチオン(原子価が
3〜5価の金属La,Y,Gd,Si,B,Zr,Ta
イオンの合量)0〜8%およびCu2+0.5〜13%を
含み、さらにアニオニック%でFを17〜80%含有
することを特徴とする弗燐酸塩ガラス。
2. P 5+ 11 to 43% in Cationic%, A
3+ 1 to 29%, R cation (divalent metal Ba,
Sr, Ca, Mg, Zn, Pb ion total amount) 14-5
0%, R'cation (monovalent metal Li, Na,
0 to 43% of total amount of K ion, R ″ cation (metal having a valence of 3 to 5 La, Y, Gd, Si, B, Zr, Ta)
A total amount of ions) 0 to 8% and Cu 2+ 0.5 to 13%, and further contains 17 to 80% of F in anionic%.
【請求項3】請求項1又は2に記載の弗燐酸塩ガラスか
らなり、波長500nmより長波長側を選択的に吸収する
分光透過率特性を有することを特徴とする色補正用フィ
ルターガラス。
3. A filter glass for color correction, comprising the fluorophosphate glass according to claim 1 or 2, and having a spectral transmittance characteristic of selectively absorbing a wavelength longer than 500 nm.
JP63047118A 1988-02-29 1988-02-29 Fluorophosphate glass Expired - Lifetime JPH0643254B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63047118A JPH0643254B2 (en) 1988-02-29 1988-02-29 Fluorophosphate glass
DE19893906320 DE3906320C2 (en) 1988-02-29 1989-02-28 Fluorophosphate glass and its use
US07/653,742 US5242868A (en) 1988-02-29 1991-02-11 Fluorophosphate glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63047118A JPH0643254B2 (en) 1988-02-29 1988-02-29 Fluorophosphate glass

Publications (2)

Publication Number Publication Date
JPH01219037A JPH01219037A (en) 1989-09-01
JPH0643254B2 true JPH0643254B2 (en) 1994-06-08

Family

ID=12766249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63047118A Expired - Lifetime JPH0643254B2 (en) 1988-02-29 1988-02-29 Fluorophosphate glass

Country Status (2)

Country Link
JP (1) JPH0643254B2 (en)
DE (1) DE3906320C2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2515268B2 (en) * 1990-02-06 1996-07-10 東芝硝子株式会社 Near infrared cut filter glass
US6859309B2 (en) * 2001-12-19 2005-02-22 3M Innovative Properties Company Optical filters for manipulating spectral power distribution in accelerated weathering devices
US6872937B2 (en) * 2002-12-20 2005-03-29 General Electric Company Well logging apparatus with gadolinium optical interface
CN1617347A (en) * 2003-04-09 2005-05-18 Hoya株式会社 Glass for window of semiconductor package, glass window , process for production of glass window, and semiconductor package
JP4570576B2 (en) * 2005-03-30 2010-10-27 Hoya株式会社 Optical glass, press-molding preform and manufacturing method thereof, and optical element and manufacturing method thereof
JP4498315B2 (en) * 2005-07-28 2010-07-07 Hoya株式会社 Optical glass, optical element and manufacturing method thereof
JP2007099604A (en) * 2005-09-06 2007-04-19 Hoya Corp Near infrared ray absorbing glass, near infrared ray absorbing element provided with the same and imaging device
JP4652941B2 (en) * 2005-09-30 2011-03-16 Hoya株式会社 Lens and manufacturing method thereof
JP4953347B2 (en) * 2006-06-21 2012-06-13 Agcテクノグラス株式会社 Visibility correction filter glass and visibility correction filter
JP2008044813A (en) * 2006-08-15 2008-02-28 Fujinon Corp Optical glass
JP2008137877A (en) 2006-12-05 2008-06-19 Hoya Corp Optical glass and optical element
JP2011093757A (en) * 2009-10-30 2011-05-12 Hoya Corp Fluorophosphate glass, near infrared ray absorbing filter, optical element, and glass window for semiconductor image sensor
WO2011118724A1 (en) 2010-03-26 2011-09-29 旭硝子株式会社 Process for production of near infrared ray cut filter glass
JP2013100213A (en) * 2011-10-19 2013-05-23 Ohara Inc Optical glass, optical element, and preform
WO2013120421A1 (en) * 2012-02-17 2013-08-22 成都光明光电股份有限公司 Near infrared light absorbing glass, element and filter
CN102603187A (en) * 2012-02-17 2012-07-25 成都光明光电股份有限公司 Near infrared light absorption glass, element and light filter
JP6001094B2 (en) * 2012-02-17 2016-10-05 成都光明光▲電▼股▲分▼有限公司 Near infrared light absorbing glass, near infrared light absorbing element, and near infrared light absorbing optical filter
CN105122095B (en) 2013-04-10 2017-07-21 旭硝子株式会社 Infrared ray masking wave filter, solid-state imager, camera device and display device
CN106164002A (en) 2014-04-09 2016-11-23 旭硝子株式会社 Near infrared cut-off filters glass
CN107406304B (en) 2015-03-24 2020-05-12 Agc株式会社 Near infrared ray cut-off filter glass
WO2017018273A1 (en) 2015-07-24 2017-02-02 旭硝子株式会社 Near-infrared cutoff filter glass

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0231013B2 (en) * 1985-11-29 1990-07-11 Hoya Corp RINSANENGARASU

Also Published As

Publication number Publication date
JPH01219037A (en) 1989-09-01
DE3906320A1 (en) 1989-09-07
DE3906320C2 (en) 1993-09-30

Similar Documents

Publication Publication Date Title
JPH0643254B2 (en) Fluorophosphate glass
US6225244B1 (en) Glass for near absorption filter and near infrared absorption filter to which the glass is applied
US4719186A (en) Optical and ophthalmic glass with refractive indices greater than or equal to 1.56, Abbe numbers greater than or equal to 40 and densities less than or equal to 2.70 g/cm3
US4526874A (en) Optical light weight glass with a refractive index of >1.70, an Abbe index of >22 and a density of <3.5 G/CM3
EP0371716B1 (en) A fluorophosphate optical glass
US5242868A (en) Fluorophosphate glass
JP2726078B2 (en) Near infrared absorption filter glass
KR20120098748A (en) Optical glass, preform, and optical element
WO2018021222A1 (en) Optical glass and near-infrared cut filter
JP2515672B2 (en) Optical glass showing positive anomalous partial dispersion in the blue region
JPH0780689B2 (en) Fluorophosphate glass
JPH0774083B2 (en) Fluorophosphate glass
JP2515268B2 (en) Near infrared cut filter glass
JPH0616451A (en) Filter glass for cutting near-infrared rays
JPH0578148A (en) Near infrared light cutting filter glass
JP3396387B2 (en) Near infrared cut filter glass
JPS62128943A (en) Phosphate glass
US5332700A (en) High dispersion optical glass
US5227343A (en) Near infrared screening filter glass
EP0272790B2 (en) A fluorophosphate optical glass
JPH10194774A (en) Filter glass for cutting near infrared light
JPS60210545A (en) Optical fluorophosphate glass
JP3894596B2 (en) Optical glass
JP2003160358A (en) Filter glass for cutting near-infrared ray
JP3073474B2 (en) Lead-free optical lightweight flint to ultra-lightweight flint glass

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080608

Year of fee payment: 14