WO2018021222A1 - Optical glass and near-infrared cut filter - Google Patents

Optical glass and near-infrared cut filter Download PDF

Info

Publication number
WO2018021222A1
WO2018021222A1 PCT/JP2017/026640 JP2017026640W WO2018021222A1 WO 2018021222 A1 WO2018021222 A1 WO 2018021222A1 JP 2017026640 W JP2017026640 W JP 2017026640W WO 2018021222 A1 WO2018021222 A1 WO 2018021222A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
optical glass
wavelength
transmittance
optical
Prior art date
Application number
PCT/JP2017/026640
Other languages
French (fr)
Japanese (ja)
Inventor
信夫 犬塚
貴尋 坂上
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201780046493.4A priority Critical patent/CN109562981A/en
Priority to JP2018529868A priority patent/JP7024711B2/en
Publication of WO2018021222A1 publication Critical patent/WO2018021222A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/23Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/23Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron
    • C03C3/247Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron containing fluorine and phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters

Definitions

  • the present invention relates to an optical glass and a near-infrared cut filter that are used in color correction filters (near-infrared cut filters) such as digital still cameras and color video cameras, and are particularly excellent in light transmittance in the visible region.
  • color correction filters near-infrared cut filters
  • Solid-state imaging devices such as CCDs and CMOSs used for digital still cameras have spectral sensitivity ranging from the visible region to the near infrared region around 1200 nm. Therefore, since excellent color reproducibility cannot be obtained as it is, the visibility is corrected using a near-infrared cut filter glass to which a specific substance that absorbs infrared rays is added.
  • a near-infrared cut filter glass As this near-infrared cut filter glass, an optical glass obtained by adding CuO to a fluorophosphate glass or an optical glass obtained by adding CuO to a phosphate glass has been developed and used.
  • near-infrared cut filter glass With high sensitivity and high definition of solid-state imaging devices, near-infrared cut filter glass is required to have near-ultraviolet cut characteristics and high light transmittance in the visible region.
  • a near-infrared cut filter glass provided with the cut characteristic of a near-ultraviolet ray.
  • patent document 2 as near infrared cut filter glass provided with the high transmittance
  • the near-infrared cut filter glass described in Patent Document 1 has ultraviolet cut characteristics by containing Ce 4+ that exhibits absorption in the vicinity of a wavelength of 350 nm in the glass.
  • rare earth elements such as Ce and transition metal elements exhibit absorption characteristics having a certain wavelength width from the central wavelength at which absorption peaks in glass.
  • Ce 4+ does not have steep near-ultraviolet absorption characteristics, and therefore absorbs blue light in the visible region adjacent to near-ultraviolet. Thereby, there exists a possibility that the transmittance
  • this near-infrared cut filter glass does not have a steep near-ultraviolet absorption characteristic, so that part of the transmitted near-ultraviolet light is purple flare (purple that extends vertically from the long square at the center of the captured image). There is a risk of causing a haze).
  • the near-infrared cut filter glass described in Patent Document 2 is an optical that has high transmittance in the visible region and low transmittance in the near-infrared region by strictly controlling the valence of the Cu component in the glass. Characteristics are obtained.
  • an optical multilayer film is provided on the glass, and near-ultraviolet rays are cut by the reflection action of the optical multilayer film.
  • the optical multilayer film has a reflection characteristic that changes depending on the incident angle of light. Therefore, even for light having a wavelength of 0 with respect to light incident perpendicularly to the film formation surface, the optical multilayer film is completely resistant to obliquely incident light. In some cases, the light cannot be reflected and is transmitted.
  • An object of the present invention is to provide an optical glass and a near-infrared cut filter that reliably cut near ultraviolet rays and have a high transmittance of light in the visible region (particularly blue light).
  • the optical glass according to the present invention is an optical glass that absorbs infrared rays and ultraviolet rays, and the optical glass has a wavelength range of 3 nm before and after the wavelength at which the light transmittance is 50% in the wavelength band of 300 nm to 450 nm.
  • the calculated slope of the approximate line of wavelength and transmittance is 3 or more.
  • an optical glass and a near-infrared cut filter that suppress the generation of false colors and flares by reliably cutting near-ultraviolet rays and have high transmittance for light in the visible region (particularly blue light). can do.
  • the optical glass of the present invention is mainly composed of glass, and it is essential to contain crystals in the glass. Moreover, the optical characteristic of the optical glass in this specification shall have surface reflection resulting from the difference in the refractive index of optical glass and air.
  • the optical glass of the present invention can be suitably used as a near infrared cut filter glass in a solid-state imaging device.
  • Near-infrared cut filter glass is disposed between the imaging optical system (lens group) and the solid-state imaging device (sensor) or on the subject side of the imaging optical system (on the opposite side of the solid-state imaging device) in the solid-state imaging device.
  • the optical glass of the present invention has optical properties that transmit light in the visible region and absorb ultraviolet rays and infrared rays.
  • the optical glass of the present invention is an optical glass that absorbs infrared rays and ultraviolet rays, and is calculated in a wavelength range of 3 nm before and after the wavelength at which the light transmittance is 50% in the wavelength band of 300 nm to 450 nm.
  • the optical characteristic has an inclination of an approximate straight line between the wavelength and the transmittance of 3 or more.
  • slope of the approximate straight line between the wavelength and the transmittance calculated in the wavelength range of 3 nm before and after the wavelength at which the light transmittance is 50% in the wavelength band of 300 nm to 450 nm is referred to as “slope (S)”. Sometimes it is.
  • the optical glass of the present invention has an inclination (S) of 3 or more.
  • the slope (S) is preferably 3.5 or more, and more preferably 4 or more. Further, if the slope (S) is more than 20, it is not preferable because adjustment of the glass composition of the optical glass is extremely difficult and the production cost is increased.
  • the slope (S) is preferably 20 or less, and more preferably 15 or less.
  • slope (slope (S)) of the approximate straight line between the wavelength and the transmittance calculated in the wavelength range of 3 nm before and after the wavelength at which the light transmittance is 50% in the wavelength band of 300 nm to 450 nm. Is determined in detail by the following method.
  • the spectral transmittance of the optical glass is measured.
  • the wavelength (integer value) at which the light transmittance in the wavelength band of 300 nm to 450 nm is 50% is specified.
  • the closest integer value is regarded as the wavelength at which the transmittance is 50%.
  • centering on the wavelength at which the transmittance is 50% hereinafter sometimes referred to as “ ⁇ 50 (300-450) ”
  • ⁇ 50 (300-450) centering on the wavelength at which the transmittance is 50% (hereinafter sometimes referred to as “ ⁇ 50 (300-450) ”
  • Seven points of transmittance data for each 1 nm are determined up to a wavelength of 3 nm.
  • the wavelength and transmittance data are determined. Then, an approximate straight line with the wavelength [nm] as the X axis and the transmittance [%] as the Y axis is created from the data of these seven points, and the slope [% / nm] of the obtained approximate straight line is defined as the slope (S). .
  • the optical glass of the present invention preferably has an average transmittance of light having a wavelength of 450 nm to 480 nm of 80% or more.
  • an average transmittance of light having a wavelength of 450 nm to 480 nm of 80% or more.
  • the optical glass of the present invention is used in, for example, a solid-state imaging device, a captured image having high visible light blue light transmittance and excellent color reproducibility can be obtained. it can.
  • the sensitivity of the sensor has been adjusted so as to achieve a color balance with other wavelength components in the visible region in accordance with the transmittance of blue light. Therefore, by using the optical glass of the present invention, it is possible to perform high-sensitivity imaging that makes the best use of the light receiving sensitivity capability inherent to the sensor.
  • the above-described average transmittance is more preferably 81% or more, and further preferably 82% or more. Further, if the above-mentioned average transmittance is more than 92%, it is not preferable because it is very difficult to adjust the glass composition of the optical glass and the production cost is increased.
  • the average transmittance is preferably 92% or less, and more preferably 91% or less.
  • the optical glass of the present invention is 300 nm to 450 nm from a wavelength at which the light transmittance in the wavelength band of 600 nm to 700 nm is 50% (hereinafter also referred to as “ ⁇ 50 (600-700) ”).
  • the value obtained by subtracting the wavelength ( ⁇ 50 (300-450) ) at which the light transmittance in the wavelength band is 50%, ⁇ 50 (600-700) ⁇ 50 (300-450) is 200 nm to 300 nm. It is preferable to be in the range. By providing such characteristics, it is possible to obtain a captured image with high light transmittance in the visible region, high sensitivity, and excellent color reproducibility.
  • the above-described wavelength width ( ⁇ 50 (600-700) - ⁇ 50 (300-450) ) is preferably 220 nm to 290 nm, and more preferably 230 nm to 280 nm.
  • the optical glass of the present invention has an average extinction coefficient at a wavelength of 700 nm to 850 nm (hereinafter referred to as “ ⁇ (700 (700 ) ”) with respect to an average extinction coefficient at a wavelength of 450 nm to 480 nm (hereinafter also referred to as “ ⁇ (450-480) ”).
  • ratio of -850) "and sometimes referred to.) ⁇ (700-850) / ⁇ (450-480) is preferably not more than 33.
  • the ratio of the average extinction coefficient ( ⁇ (700-850) / ⁇ (450-480) ) is preferably 34 or more, and more preferably 35 or more. Further, if the ratio of the average extinction coefficient ( ⁇ (700-850) / ⁇ (450-480) ) is more than 80, it is not preferable because adjustment of the glass composition of the optical glass is extremely difficult and the production cost is increased.
  • the average transmittance ratio ( ⁇ (700-850) / ⁇ (450-480) ) is preferably 80 or less, and more preferably 70 or less.
  • the near-infrared cut filter glass it is desirable to increase both the light transmittance of wavelengths 450 nm to 480 nm and the light transmittance of wavelengths 700 nm to 850 nm.
  • the conventional near-infrared cut filter glass there is a method of reducing the Cu concentration in the glass in order to increase the transmittance of light with a wavelength of 450 nm to 480 nm. In this case, the transmittance of light with a wavelength of 700 nm to 850 nm is reduced. There is a harmful effect of becoming higher.
  • In order to reduce the transmittance of light having a wavelength of 700 nm to 850 nm there is a method of increasing the Cu concentration.
  • the transmittance of light having a wavelength of 450 nm to 480 nm is lowered. That is, in the conventional near-infrared cut filter glass, it is difficult in the first place to increase both the light transmittance of wavelengths 450 nm to 480 nm and the light transmittance of wavelengths 700 nm to 850 nm. , One of the means of compromising one of the characteristics or making it a characteristic that balances the two had to be taken.
  • the Cu component in the optical glass related to both the transmittance of light with a wavelength of 450 nm to 480 nm and the transmittance of light with a wavelength of 700 nm to 850 nm will be described.
  • the above-mentioned optical characteristics can be achieved. It has been found that it can be obtained.
  • the optical glass of the present invention can cut near-ultraviolet rays unnecessary for the captured image.
  • the optical glass of the present invention essentially contains P and Cu as the cation component, and contains at least one selected from Cl, Br and I as the anion component, and the Cu content is from 0.5 to 0.5 in terms of cation%. 25% and contains crystals. That is, the optical glass of the present invention is composed of glass and crystals. Glass is an amorphous component and is the main component of the optical glass of the present invention. Further, the crystal is preferably a crystal in which the components contained in the glass are precipitated in the glass as crystals. In the present specification, the content of each component indicates the content in the optical glass. In the following description, the term “glass” simply means glass as an amorphous component in optical glass.
  • P is a main component (glass-forming oxide) that forms glass, and is an essential component for improving the near-infrared cut property of optical glass.
  • P is contained, for example, as P 5+ in the glass.
  • Cu is an essential component for cutting near infrared rays.
  • Cu is contained in the glass, for example, as Cu 2+ or Cu + .
  • the Cu content is preferably 0.5 to 19%, more preferably 0.6 to 18%, and still more preferably 0.7 to 17%.
  • Cu content means the total amount of Cu ⁇ 2+ > in glass, Cu ⁇ +> , and the Cu component in a crystal
  • the optical glass of the present invention contains at least one selected from Cl, Br and I as an anionic component.
  • Cl, Br and I may be contained in combination of two or more.
  • Cl, Br and I are contained in the glass as Cl ⁇ , Br ⁇ and I ⁇ , respectively.
  • the contents of Cl, Br and I in the optical glass are preferably 0.01 to 20% in terms of the total amount of anions. If the content of Cl, Br and I is less than 0.01%, crystals are difficult to precipitate, and if it exceeds 20%, volatility increases and the striae in the glass may increase, such being undesirable.
  • the total content of Cl, Br, and I in the optical glass is preferably 0.01 to 15%, more preferably 0.02 to 10%.
  • Cl ⁇ , Br ⁇ and I ⁇ react with Cu + in the glass, Cl ⁇ forms CuCl, Br ⁇ forms CuBr, and I ⁇ forms CuI. These components make it possible to sharply cut near-ultraviolet light in the obtained optical glass.
  • Cl ⁇ , Br ⁇ , and I ⁇ can be appropriately selected according to the wavelength at which light in the near ultraviolet region is desired to be cut sharply.
  • the crystal contained in the optical glass of the present invention preferably contains at least one crystal selected from CuCl, CuBr, and CuI. That is, it is preferable that CuCl, CuBr, and CuI contained in the optical glass are precipitated as crystals. When at least one selected from CuCl, CuBr, and CuI is precipitated in a crystalline state, the sharp-cut property of light in the ultraviolet region can be enhanced.
  • the optical glass of the present invention preferably contains Ag as a cation component.
  • Ag is combined with at least one selected from Cl, Br and I, and silver halide (eg, AgCl) is precipitated.
  • AgCl acts as a crystal nucleus and has an effect of facilitating precipitation of CuCl crystals.
  • the content of Ag in the optical glass is preferably 0.01 to 5% as cation%. If it is less than 0.01%, the effect of precipitating crystals cannot be obtained sufficiently. On the other hand, if it exceeds 5%, Ag colloid is formed and the visible light transmittance is lowered, which is not preferable.
  • At least one crystal selected from CuCl, CuBr, and CuI may be precipitated by precipitating or introducing a component that becomes a crystal nucleus other than silver halide into the optical glass.
  • the crystal component in the optical glass of the present invention is mainly composed of at least one selected from CuCl, CuBr and CuI, and includes crystal nuclei in which at least one selected from Ag and Cl, Br and I is bonded, and other crystal nuclei. May be included.
  • optical glass of the present invention will be described by taking the optical glass of the two embodiments, that is, the optical glass of the first embodiment composed of phosphate glass and crystals and the optical glass of Embodiment 2 composed of fluorophosphate glass and crystals as examples. To do.
  • the optical glass of Embodiment 1 of the present invention has a P 2 O 5 ratio of 35 to 75% in terms of mass% based on oxide.
  • Al 2 O 3 5 to 15% R 2 O: 3 to 30% (where R 2 O represents the total amount of Li 2 O, Na 2 O and K 2 O)
  • R′O 3 to 35% (where R′O represents the total amount of MgO, CaO, SrO, BaO, and ZnO) CuO: 0.5-20% Containing.
  • the optical glass of Embodiment 1 contains at least one selected from Cl, Br, and I.
  • the content and form of at least one selected from Cl, Br, and I in the optical glass of Embodiment 1 are as described above.
  • the reason for limiting the content of each component constituting the optical glass of Embodiment 1 of the present invention as described above will be described below.
  • the content “%” of the components contained in the optical glass of Embodiment 1 is mass% based on oxide unless otherwise specified.
  • P 2 O 5 is a main component (glass-forming oxide) that forms glass, and is an essential component for improving the near-infrared cut property of optical glass. However, if it is less than 35%, the effect is sufficiently obtained. If it exceeds 75%, the glass becomes unstable, the weather resistance decreases, and the residual amount of at least one selected from Cl, Br and I in the optical glass decreases, and crystals do not sufficiently precipitate. Therefore, it is not preferable.
  • the content of P 2 O 5 is preferably 38 to 73%, more preferably 40 to 72%.
  • Al 2 O 3 is a main component (glass-forming oxide) that forms glass, and is an essential component for enhancing weather resistance. However, if it is less than 5%, the effect cannot be sufficiently obtained, and 15% If it exceeds, the glass becomes unstable, and the near-infrared cutting property of the optical glass is lowered, which is not preferable.
  • the content of Al 2 O 3 is preferably 5.5 to 12%, more preferably 6 to 10%.
  • R 2 O (where R 2 O represents the total amount of Li 2 O, Na 2 O and K 2 O) lowers the melting temperature of the glass, lowers the liquidus temperature of the glass, stabilizes the glass However, if it is less than 3%, the effect cannot be sufficiently obtained, and if it exceeds 30%, the glass becomes unstable, which is not preferable.
  • the content of R 2 O is preferably 5 to 28%, more preferably 6 to 25%.
  • R 2 O means the total amount of Li 2 O, Na 2 O and K 2 O, that is, Li 2 O + Na 2 O + K 2 O.
  • R 2 O is, Li 2 O, is one or more selected from Na 2 O and K 2 O, when two or more kinds may be any combination.
  • Li 2 O is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, and the like. When containing Li 2 O, it is not preferable because the glass may become unstable when more than 15%.
  • the content of Li 2 O is preferably 0 to 10%, more preferably 0 to 8%.
  • Na 2 O is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, and the like. When Na 2 O is contained, if it exceeds 25%, the glass becomes unstable, which is not preferable.
  • the content of Na 2 O is preferably 0 to 22%, more preferably 0 to 20%.
  • K 2 O is not an essential component, but is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, and the like.
  • the content of K 2 O is preferably 0 to 20%, more preferably 0 to 15%.
  • R′O (where R′O represents the total amount of MgO, CaO, SrO, BaO, and ZnO) lowers the melting temperature of the glass, lowers the liquidus temperature of the glass, stabilizes the glass It is an essential ingredient for increasing the strength of the glass. If it is less than 3%, the effect cannot be sufficiently obtained, and if it exceeds 35%, the glass becomes unstable, the near-infrared cutting property of the optical glass is lowered, and the strength of the glass is not preferred.
  • the content of R′O is preferably 3.5 to 32%, more preferably 4 to 30%.
  • R′O is the total amount of MgO, CaO, SrO, BaO, and ZnO, that is, R′O is MgO + CaO + SrO + BaO + ZnO.
  • R'O is one or more selected from MgO, CaO, SrO, BaO and ZnO, and any combination of two or more may be used.
  • MgO is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, increasing the strength of the glass, and the like.
  • MgO tends to destabilize the glass and make it easy to devitrify, and it is preferable not to include it particularly when the Cu content needs to be set high.
  • the content of MgO is preferably 0 to 3%, more preferably 0 to 2%.
  • CaO is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, increasing the strength of the glass, and the like.
  • the CaO content is preferably 0 to 7%, more preferably 0 to 5%.
  • SrO is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, and the like. When it contains SrO, if it exceeds 15%, the glass becomes unstable and easily devitrified.
  • the SrO content is preferably 0 to 12%, more preferably 0 to 10%.
  • BaO is not an essential component, it is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, and the like. When it contains BaO, if it exceeds 30%, the glass becomes unstable and tends to be devitrified.
  • the content of BaO is preferably 0 to 27%, more preferably 0 to 25%.
  • ZnO is not an essential component, but has effects such as lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, and increasing the chemical durability of the glass.
  • ZnO is contained, if it exceeds 10%, the glass tends to be unstable, and the solubility of the glass deteriorates, which is not preferable.
  • the content of ZnO is preferably 0 to 8%, more preferably 0 to 5%.
  • CuO is an essential component for cutting near infrared rays.
  • the content of CuO in the optical glass is less than 0.5%, the effect cannot be sufficiently obtained when the thickness of the optical glass is reduced, and when it exceeds 20%, the visible region transmittance is decreased, which is preferable. Absent.
  • the CuO content is preferably 0.8 to 19%, more preferably 1.0 to 18%.
  • the content of Cu in the cation% in the optical glass of Embodiment 1 is 0.5 to 25% as described above, and the preferable content is also as described above.
  • Cl, Br, and I form CuCl, CuBr, and CuI, respectively
  • the cation% of Cu in the optical glass is the total content of the Cu component and other Cu components in the copper halide. It is.
  • the optical glass of Embodiment 1 may contain 0 to 3% of Sb 2 O 3 as an optional component.
  • Sb 2 O 3 is not an essential component, it has an effect of increasing the visible region transmittance of the optical glass.
  • the content of Sb 2 O 3 is preferably 0 to 2.5%, more preferably 0 to 2%.
  • the optical glass of Embodiment 1 can further contain other components normally contained in phosphate glass such as SiO 2 , SO 3 , and B 2 O 3 as optional components as long as the effects of the present invention are not impaired.
  • the total content of these components is preferably 3% or less.
  • the optical glass of Embodiment 1 contains crystals as described above, and preferably contains at least one crystal selected from CuCl, CuBr, and CuI.
  • the optical glass of Embodiment 1 may further contain Ag as an optional component.
  • the content and form of Ag in the optical glass of Embodiment 1 are as described above.
  • the optical glass of Embodiment 2 has a cation% of P 5+ : 20 to 50% Al 3+ : 5 to 20% R + : 15 to 40% (where R + represents the total amount of Li + , Na + and K + ) R ′ 2+ : 5 to 30% (where R ′ 2+ represents the total amount of Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , and Zn 2+ ) Cu 2+ and Cu + in total amount: 0.5 to 25% Anion% F ⁇ : 10-70% It is characterized by containing.
  • cation% and anion% are units as follows. First, the constituent components of the optical glass are divided into a cation component and an anion component. “Cation%” is a unit in which the content of each cation component is expressed as a percentage when the total content of all the cation components contained in the optical glass is 100 mol%. “Anion%” is a unit in which the content of each anion component is expressed as a percentage when the total content of all anion components contained in the optical glass is 100 mol%.
  • the content of O 2 ⁇ is as described later, and the content and content of at least one selected from Cl ⁇ , Br ⁇ and I ⁇ are as described above.
  • the contents (cation% and anion% display) of the respective components constituting the optical glass of Embodiment 2 of the present invention are limited as described above will be described below.
  • the content “%” of the component contained in the optical glass of Embodiment 2 is cation% for the cation component and% anion for the anion component unless otherwise specified.
  • P 5+ is a main component (glass-forming oxide) that forms glass, and is an essential component for improving the near-infrared cut property of optical glass. However, if it is less than 20%, the effect cannot be sufficiently obtained. If it exceeds 50%, the glass becomes unstable and the weather resistance decreases, which is not preferable.
  • the content of P 5+ is preferably 20 to 48%, more preferably 21 to 46%, and still more preferably 22 to 44%.
  • Al 3+ is a main component (glass-forming oxide) that forms glass, and is an essential component for enhancing weather resistance. However, if it is less than 5%, the effect cannot be sufficiently obtained, and if it exceeds 20%. This is not preferable because the glass becomes unstable and the near-infrared cutting property of the optical glass is lowered.
  • the content of Al 3+ is preferably 6 to 18%, more preferably 6.5 to 15%, and still more preferably 7 to 13%.
  • R + (where R + represents the total amount of Li + , Na + and K + ) is used to lower the melting temperature of the glass, lower the liquidus temperature of the glass, stabilize the glass, etc. Although it is an essential component, if it is less than 15%, the effect cannot be sufficiently obtained, and if it exceeds 40%, the glass becomes unstable, which is not preferable.
  • the content of R + is preferably 15 to 38%, more preferably 16 to 37%, and still more preferably 17 to 36%. Note that R + is the total amount of Li + , Na + , and K + , that is, Li + + Na + + K + .
  • R + is one or more selected from Li + , Na + and K + , and any combination of two or more may be used.
  • Li + is an essential component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, and the like. If it is less than 5%, the effect cannot be sufficiently obtained, and if it exceeds 40%, the glass becomes unstable, which is not preferable.
  • the content of Li + is preferably 8 to 38%, more preferably 10 to 35%, and still more preferably 15 to 30%.
  • Na + is not an essential component, but is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, and the like.
  • the content of Na + is preferably 5 to 35%, more preferably 6 to 30%.
  • K + is not an essential component, but is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, and the like.
  • the content of K + is preferably 0.5 to 25%, more preferably 0.5 to 20%.
  • R ′ 2+ (where R ′ 2+ represents the total amount of Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , and Zn 2+ ) lowers the melting temperature of the glass and lowers the liquidus temperature of the glass. It is an essential component for stabilizing the glass and increasing the strength of the glass. If it is less than 5%, the effect cannot be sufficiently obtained, and if it exceeds 30%, the glass becomes unstable, the near-infrared cutting property of the optical glass is deteriorated, and the strength of the glass is not preferable.
  • the content of R ′ 2+ is preferably 5 to 28%, more preferably 7 to 25%, and still more preferably 9 to 23%.
  • R ′ 2+ is the total amount of Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , and Zn 2+ , that is, Mg 2+ + Ca 2+ + Sr 2+ + Ba 2+ + Zn 2+ .
  • R ′ 2+ is one or more selected from Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ and Zn 2+ , and any combination may be used in the case of two or more.
  • Mg 2+ is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, increasing the strength of the glass, and the like.
  • Mg 2+ tends to make the glass unstable and easily devitrified.
  • the Mg 2+ content is preferably 1 to 25%, more preferably 1 to 20%.
  • Ca 2+ is not an essential component, it is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, increasing the strength of the glass, and the like.
  • the content of Ca 2+ is preferably 1 to 25%, more preferably 1 to 20%.
  • Sr 2+ is not an essential component, but is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, and the like. When Sr 2+ is contained, the effect is not sufficiently obtained if it is less than 1%, and if it exceeds 30%, the glass becomes unstable and tends to be devitrified.
  • the content of Sr 2+ is preferably 1 to 25%, more preferably 1 to 20%.
  • Ba 2+ is not an essential component, but is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, and the like. In the case of containing Ba 2+ , the effect is not sufficiently obtained if it is less than 0.1%, and if it exceeds 30%, the glass becomes unstable and tends to be devitrified.
  • the Ba 2+ content is preferably 1 to 25%, more preferably 1 to 20%.
  • Zn 2+ is not an essential component, but has effects such as lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, and increasing the chemical durability of the glass. In the case of containing Zn 2+ , if less than 1%, the effect is not sufficiently obtained, and if it exceeds 30%, the glass becomes unstable and tends to be devitrified.
  • the Zn 2+ content is preferably 1 to 25%, more preferably 1 to 20%.
  • the content of Cu as a cation component in the optical glass of Embodiment 2 that is, the total content of Cu 2+ and Cu + is the total amount of the Cu component and other Cu components in the copper halide.
  • the Cu content is 0.5 to 25% as described above, and the preferable content is also as described above.
  • Cu 2+ is an essential component for cutting near infrared rays, and the content is preferably 0.1% or more and less than 25%. When the content is less than 0.1%, the effect cannot be sufficiently obtained when the thickness of the optical glass is reduced, and when it is 25% or more, the visible region transmittance of the optical glass is lowered. It is not preferable because Cu + cannot be contained.
  • the Cu 2+ content is preferably 0.2 to 24%, more preferably 0.3 to 23%, and still more preferably 0.4 to 22%.
  • Cu + reacts with Cl, Br, and I and precipitates as a copper halide crystal, thereby giving the optical glass the effect of sharply cutting ultraviolet rays.
  • the Cu + content is preferably 0.1 to 15%. If the content is less than 0.1%, the effect cannot be sufficiently obtained, and if it exceeds 15%, the blue intensity of the optical glass is weakened, which is not preferable.
  • the content of Cu + is preferably 0.2 to 13%, more preferably 0.3 to 12%, and still more preferably 0.4 to 11%.
  • the optical glass of Embodiment 2 may contain 0 to 1% of Sb 3+ as an optional cation component.
  • Sb 3+ is not an essential component, but has an effect of increasing the visible region transmittance. When Sb 3+ is contained, if it exceeds 1%, the stability of the glass is lowered, which is not preferable.
  • the content of Sb 3+ is preferably 0.01 to 0.8%, more preferably 0.05 to 0.5%, and still more preferably 0.1 to 0.3%.
  • the optical glass of Embodiment 2 can further contain, as an optional cation component, other components that are normally contained in a fluorophosphate glass such as Si and B within a range not impairing the effects of the present invention.
  • the total content of these components is preferably 5% or less.
  • O 2 ⁇ is an essential component for stabilizing the glass, increasing the visible region transmittance of the optical glass, increasing mechanical properties such as strength, hardness and elastic modulus, and decreasing the ultraviolet transmittance.
  • the content is preferably 30 to 90%. If the content of O 2 ⁇ is less than 30%, the effect cannot be sufficiently obtained, and if it exceeds 90%, the glass becomes unstable and weather resistance is lowered, which is not preferable.
  • the content of O 2 ⁇ is more preferably 30 to 80%, still more preferably 30 to 75%.
  • F ⁇ is an essential component for improving the weather resistance in order to stabilize the glass, but if it is less than 10%, the effect cannot be sufficiently obtained, and if it exceeds 70%, the visible region transmittance of the optical glass is not obtained. This is not preferred because there is a risk that mechanical properties such as strength, hardness and elastic modulus will decrease, volatility will increase and striae will increase.
  • the content of F ⁇ is preferably 10 to 50%, more preferably 15 to 40%.
  • the optical glass of Embodiment 2 of the present invention contains the F component as an essential component, it has excellent weather resistance. Specifically, alteration of the optical glass surface and a decrease in transmittance due to reaction with moisture in the atmosphere can be suppressed.
  • the weather resistance is evaluated by, for example, holding an optically polished optical glass sample in a high temperature and high humidity chamber at 65 ° C. and a relative temperature of 90% for 1000 hours using a high temperature and high humidity chamber. And the burnt state of the optical glass surface can be visually observed and evaluated.
  • the transmittance of the optical glass before being put into the high-temperature and high-humidity tank and the transmittance of the optical glass after being kept in the high-temperature and high-humidity tank for 1000 hours can also be compared and evaluated.
  • the optical glass of Embodiment 2 can further contain other components normally contained in a fluorophosphate glass such as S as an optional anion component within a range not impairing the effects of the present invention.
  • the total content of these components is preferably 5% or less.
  • the optical glass of Embodiment 2 contains crystals as described above, and preferably contains at least one crystal selected from CuCl, CuBr, and CuI.
  • content of the crystal component in the optical glass of Embodiment 2 has the preferable range similar to the above as a crystallinity degree of filter glass.
  • the optical glass of Embodiment 2 may further contain Ag as an optional cation component.
  • the content and form of Ag in the optical glass of Embodiment 2 are as described above.
  • substantially not contained means that it is not intended to be used as a raw material, and it is regarded as not containing a raw material component or an inevitable impurity mixed from a manufacturing process.
  • the optical glass of the present invention preferably contains substantially no PbO, As 2 O 3 , V 2 O 5 , YbF 3 , or GdF 3 .
  • PbO is a component that lowers the viscosity of the glass and improves manufacturing workability.
  • As 2 O 3 is a component that acts as an excellent clarifier that can generate a clarified gas in a wide temperature range.
  • PbO and As 2 O 3 are environmentally hazardous substances, it is desirable not to contain them as much as possible.
  • V 2 O 5 has absorption in the visible region, it is desirable that V 2 O 5 is not contained as much as possible in the near-infrared cut filter glass for a solid-state imaging device that is required to have high visible region transmittance.
  • YbF 3 and GdF 3 are components that stabilize the glass, but since the raw materials are relatively expensive and lead to an increase in cost, it is desirable that YbF 3 and GdF 3 are not contained as much as possible.
  • a nitrate compound or a sulfate compound having a cation forming glass can be added as an oxidizing agent or a clarifying agent.
  • the oxidizing agent has an effect of improving the near-infrared cutting property by increasing the ratio of Cu 2+ ions in the total amount of Cu in the optical glass.
  • the addition amount of the nitrate compound or sulfate compound is preferably 0.5 to 10% by mass based on the external addition to the raw material mixture. If the addition amount is less than 0.5% by mass, the effect of improving the transmittance is difficult to be obtained, and if it exceeds 10% by mass, glass formation tends to be difficult. More preferably, it is 1 to 8% by mass, and still more preferably 3 to 6% by mass.
  • Al (NO 3 ) 3 LiNO 3 , NaNO 3 , KNO 3 , Mg (NO 3 ) 2 , Ca (NO 3 ) 2 , Sr (NO 3 ) 2 , Ba (NO 3 ) 2 , Zn (NO 3 ) 2 , Cu (NO 3 ) 2 and the like.
  • the optical glass of the present invention preferably has an average light transmittance of 80% or more at a wavelength of 450 to 600 nm.
  • the wavelength at which the transmittance is 50% is preferably 600 to 650 nm.
  • the transmittance at a wavelength of 450 nm is 80% or more, so that a near-infrared cut filter having optical characteristics with high transmittance of light in the visible region is obtained.
  • the transmittance was converted so as to be a value in the case of a wall thickness of 0.03 to 0.3 mm.
  • the transmittance was converted using the following formula 1.
  • T i1 is the internal transmittance of the measurement sample (data excluding front and back reflection loss)
  • t 1 is the thickness (mm) of the measurement sample
  • T i2 is the transmittance of the converted value
  • t 2 is The wall thickness to be converted (in the present invention, 0.03 to 0.3 mm).
  • the thickness of the optical glass is preferably 1 mm or less, more preferably 0.8 mm or less, still more preferably 0.6 mm or less, and most preferably 0.4 mm or less.
  • the lower limit value of the thickness of the optical glass is not particularly limited. However, in view of the strength that is difficult to break during the manufacture of the optical glass or when it is incorporated into the imaging apparatus, it is preferably 0.03 mm or more, more preferably 0.00. It is 05 mm or more, more preferably 0.07 mm or more, and most preferably 0.1 mm or more.
  • the optical glass of the present invention is characterized in that the optical glass alone has the above-mentioned optical characteristics, but for the purpose of further improving the optical characteristics and protecting the optical glass from moisture etc., an antireflection film or You may provide optical thin films, such as an infrared cut film, an ultraviolet-ray, and an infrared cut film. These optical thin films are composed of a single layer film or a multilayer film, and can be formed by a known method such as a vapor deposition method or a sputtering method. Similarly to the above, a resin film containing a dye component that absorbs infrared rays or ultraviolet rays may be provided on the surface of the optical glass for the purpose of improving optical characteristics and protecting the optical glass from moisture or the like.
  • the optical glass of the present invention can be produced as follows. First, raw materials are weighed and mixed so that the obtained optical glass is in the above composition range (mixing step). This raw material mixture is placed in a platinum crucible and heated and melted at a temperature of 700 to 1300 ° C. in an electric furnace (melting step). After sufficiently stirring and clarifying, a step of casting into a mold and precipitating crystals (crystal precipitation step) is performed, followed by cutting and polishing to form a flat plate having a predetermined thickness (molding step).
  • an optical glass composed of fluorophosphate glass and crystals for example, in the optical glass of Embodiment 2, the highest temperature of the glass during glass melting is 950 ° C. or lower, and an optical glass composed of phosphate glass and crystals.
  • the temperature is preferably 1280 ° C. or lower.
  • the temperature is more preferably 900 ° C. or less, and further preferably 850 ° C. or less in the fluorophosphate glass.
  • phosphate glass it is more preferably 1250 ° C. or lower, and further preferably 1200 ° C. or lower.
  • a fluorophosphate glass it is preferably 700 ° C. or higher, more preferably 750 ° C. That's it.
  • the phosphate glass it is more preferably 800 ° C. or higher, and further preferably 850 ° C. or higher.
  • the glass component does not crystallize before the following crystal precipitation step, and therefore the temperature in the melting step is preferably within the above range.
  • the crystal precipitation step performed subsequent to the dissolution step is preferably performed by slow cooling or by slow cooling and heat treatment.
  • the slow cooling is preferably performed at a rate of 0.1 to 2 ° C./min until it reaches 200 to 250 ° C. for fluorophosphate glass.
  • phosphate glass it is preferably performed at a rate of 0.1 to 2 ° C./min until the temperature reaches 200 to 250 ° C.
  • the temperature is increased from 400 to 600 ° C. from the temperature after gradual cooling. It is preferable to perform heat treatment.
  • the phosphate glass is subjected to a heat treatment in which the temperature is raised from 350 to 600 ° C. after the slow cooling under the same slow cooling conditions as described above.
  • the obtained optical glass of the present invention is an optical glass composed of an amorphous (glass) portion and a crystalline portion.
  • the amount of Cu + in the amorphous (glass) portion excluding the crystal portion in the obtained optical glass can be reduced, and a sharp cut effect of ultraviolet rays can be provided. It is also preferable because it can be used.
  • the optical glass of the present invention can be suitably used as a near infrared cut filter.
  • Solid-state image sensors used in digital cameras, etc. have been improved in sensitivity and definition, have good near-UV cut characteristics, and have a visible light transmittance (especially blue light transmittance).
  • the high optical glass of the present invention as a near-infrared cut filter of a solid-state imaging device, it is possible to obtain a captured image in which color reproducibility is good and generation of noise components such as flare, false color, and ghost is suppressed. it can.
  • Tables 1 to 3 show examples of the present invention and comparative examples.
  • Examples 1-1 and 1-2 are examples relating to the optical glass of the present invention relating to phosphate glass
  • Example 1-3 is a comparative example relating to the optical glass of the present invention relating to phosphate glass.
  • Examples 2-1 and 2-4 to 2-8 are examples relating to the optical glass of the present invention relating to a fluorophosphate glass
  • Examples 2-2 and 2-3 are examples of the optical glass of the present invention relating to a fluorophosphate glass. It is a comparative example regarding glass.
  • Example 1-1 For the examples of the present invention (Example 1-1, Example 1-2, Example 2-1, Example 2-4 to Example 2-8), after casting into a rectangular mold, slow cooling or slow cooling And heat treatment (Example 1-1 and Example 1-2: held at 460 ° C. for 1 hour, cooled to room temperature at 1 ° C./minute, then held at 480 ° C. for 1 hour, then cooled to room temperature at 1 ° C./minute, Example 2-1: Hold at 360 ° C. for 1 hour, then cool to room temperature at 1 ° C./min, Example 2-4, Example 2-6 to Example 2-8: Hold at 360 ° C. for 1 hour, then 1 ° C. / Cool to room temperature in minutes, then hold at 410 ° C.
  • Example 1-3 For the comparative examples (Example 1-3, Example 2-2, and Example 2-3), slow cooling (Example 1-3: holding at 460 ° C. for 1 hour, then cooling to room temperature at 1 ° C./minute, Example 2- 2, Example 2-3: held at 360 ° C. for 1 hour and then cooled to room temperature at 1 ° C./minute).
  • Example 1-3 holding at 460 ° C. for 1 hour, then cooling to room temperature at 1 ° C./minute
  • Example 2- 2 Example 2-3: held at 360 ° C. for 1 hour and then cooled to room temperature at 1 ° C./minute.
  • a block-shaped optical glass of 50 mm length ⁇ 50 mm width ⁇ 20 mm thickness was obtained. After this optical glass was ground, a glass plate polished to a desired thickness was used for evaluation.
  • the raw materials for each optical glass are H 3 PO 4 and / or Al (PO 3 ) 3 in the case of P 5+ , and AlF 3 , Al (PO 3 ) 3 and / or Al 2 O 3 in the case of Al 3+.
  • the case of Li + LiF, a LiNO 3, Li 2 CO 3 and / or LiPO 3 a in the case of Mg 2+ MgF 2 and / or MgO and / or Mg (PO 3) 2
  • the case of Sr 2+ is the SrF 2, SrCO 3 and / or Sr (PO 3) 2, a BaF 2, BaCO 3 and / or Ba (PO 3) 2 in the case of Ba 2+
  • Na + is NaCl and / or NaBr and / or NaI and / Or NaF and / or Na (PO 3 )
  • Tables 1, 2, and 3 show the presence or absence of crystals, the average transmittance of light having a wavelength of 450 to 600 nm, and the transmittance of light having a wavelength of 450 nm.
  • Table 1 shows the content of Cu (total of Cu 2+ and Cu + ) in cation% and the content of Cl + Br + I in anion%.
  • the method for determining the slope (S) is as follows.
  • the spectral transmittance of the optical glass is measured.
  • the wavelength (integer value, ⁇ 50 (300-450) ) at which the transmittance of light in the wavelength band of 300 nm to 450 nm is 50% is specified.
  • the nearest integer value is set as a wavelength at which the transmittance is 50%.
  • seven points of transmittance data for each 1 nm are determined from ⁇ 50 (300-450) as the center to a wavelength 3 nm away from ⁇ 50 (300-450) on the short wavelength side and the long wavelength side.
  • the method for determining the ratio of the average extinction coefficient of the optical glass is as follows.
  • the spectral transmittance of the optical glass is measured.
  • the average extinction coefficient in the wavelength band of the wavelength 450nm ⁇ 480nm ( ⁇ (450-480) ) and the average absorption coefficient in the wavelength band of the wavelength 700nm ⁇ 850nm ( ⁇ (700-850) ) Calculate each.
  • the ratio of the average extinction coefficient ( ⁇ (700-850) / ⁇ (450-480) ) is obtained by dividing the average extinction coefficient in the wavelength range of 700 nm to 850 nm by the average extinction coefficient of the wavelength range of 450 nm to 480 nm.
  • Tables 4, 5 and 6 show the ratios of the average extinction coefficients of Examples and Comparative Examples obtained by this method.
  • each optical glass of the examples of the present invention has a steep near-ultraviolet cut characteristic (slope (S) is steep) with respect to each optical glass of the comparative example.
  • Each optical glass of the Example of this invention has especially high transmittance
  • Each optical glass of the embodiment of the present invention has a wide wavelength band in the visible region ( ⁇ 50 (600-700) ⁇ 50 (300-450) ). Thereby, a captured image with good color reproducibility can be obtained.
  • Each optical glass of the example of the present invention has a higher ratio of average extinction coefficient ( ⁇ (700-850) / ⁇ (450-480) ) than that of the optical glass of the comparative example. That is, each optical glass of the embodiment of the present invention has a high transmittance of blue light in the visible region to be transmitted while reliably cutting near infrared light to be shielded. As described above, since the optical characteristics are sharp, it is possible to obtain a captured image with good color reproducibility.
  • the near-ultraviolet rays are surely cut to suppress generation of false colors and flares, and an optical glass having a high transmittance of light in the visible region (particularly blue light) can be obtained.
  • the blue light transmittance is particularly high and the color reproducibility is good.
  • the near-ultraviolet cut characteristic is high, it is possible to suppress the occurrence of noise such as flare, false color, and ghost in the captured image.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Glass Compositions (AREA)
  • Optical Filters (AREA)

Abstract

The present invention provides an optical glass and a near-infrared cut filter that reliably cut near-ultraviolet rays and have a high transmittance of light in the visible range (in particular, blue light). This optical glass absorbs infrared and ultraviolet rays, and is characterized in that an approximate straight line that represents the relationship between wavelength and transmittance and that is calculated in a wavelength range between 3 nm lower and 3 nm higher than a wavelength at which light transmittance is 50% in a wavelength band of 300-450 nm, has an inclination of 3 or more.

Description

光学ガラスおよび近赤外線カットフィルタOptical glass and near-infrared cut filter
 本発明は、デジタルスチルカメラやカラービデオカメラなどの色補正フィルタ(近赤外線カットフィルタ)に使用され、特に可視領域の光の透過性に優れた光学ガラスおよび近赤外線カットフィルタに関する。 The present invention relates to an optical glass and a near-infrared cut filter that are used in color correction filters (near-infrared cut filters) such as digital still cameras and color video cameras, and are particularly excellent in light transmittance in the visible region.
 デジタルスチルカメラ等に使用されるCCDやCMOSなどの固体撮像素子は、可視領域から1200nm付近の近赤外領域にわたる分光感度を有している。したがって、そのままでは良好な色再現性を得ることができないので、赤外線を吸収する特定の物質が添加された近赤外線カットフィルタガラスを用いて視感度を補正している。この近赤外線カットフィルタガラスは、フツリン酸塩系ガラスにCuOを添加した光学ガラス、もしくはリン酸塩系ガラスにCuOを添加した光学ガラスが開発され使用されている。 Solid-state imaging devices such as CCDs and CMOSs used for digital still cameras have spectral sensitivity ranging from the visible region to the near infrared region around 1200 nm. Therefore, since excellent color reproducibility cannot be obtained as it is, the visibility is corrected using a near-infrared cut filter glass to which a specific substance that absorbs infrared rays is added. As this near-infrared cut filter glass, an optical glass obtained by adding CuO to a fluorophosphate glass or an optical glass obtained by adding CuO to a phosphate glass has been developed and used.
 固体撮像素子の高感度化および高精細化に伴い、近赤外線カットフィルタガラスには、近紫外線のカット特性や可視領域の光の高い透過率が求められている。
 近紫外線のカット特性を備える近赤外線カットフィルタガラスとしては、特許文献1記載のものがある。
 また、可視領域の光の高い透過率を備える近赤外線カットフィルタガラスとしては、特許文献2記載のものがある。
With high sensitivity and high definition of solid-state imaging devices, near-infrared cut filter glass is required to have near-ultraviolet cut characteristics and high light transmittance in the visible region.
There exists a thing of patent document 1 as a near-infrared cut filter glass provided with the cut characteristic of a near-ultraviolet ray.
Moreover, there exists a thing of patent document 2 as near infrared cut filter glass provided with the high transmittance | permeability of the light of visible region.
特開2008-1544号公報JP 2008-1544 A 国際公開第2015/156163号International Publication No. 2015/156163
 特許文献1に記載の近赤外線カットフィルタガラスは、ガラス中に波長350nm付近に吸収を示すCe4+を含有することで紫外線のカット特性を備える。しかしながら、Ceなどの希土類元素および遷移金属元素は、ガラス中では吸収のピークを示す中心波長から、一定の波長幅をもった吸収特性を示す。例えば、Ce4+は、急峻な近紫外線の吸収特性を備えないため、近紫外線と隣接する可視領域の青色光をも吸収することになる。これにより、可視光の透過率が低下するおそれがある。また、この近赤外線カットフィルタガラスは、急峻な近紫外線の吸収特性を備えないことに起因し、透過した一部の近紫外線の光がパープルフレア(撮影画像中央の長四角から縦方向に延びる紫色のもや)を引き起こすおそれがある。 The near-infrared cut filter glass described in Patent Document 1 has ultraviolet cut characteristics by containing Ce 4+ that exhibits absorption in the vicinity of a wavelength of 350 nm in the glass. However, rare earth elements such as Ce and transition metal elements exhibit absorption characteristics having a certain wavelength width from the central wavelength at which absorption peaks in glass. For example, Ce 4+ does not have steep near-ultraviolet absorption characteristics, and therefore absorbs blue light in the visible region adjacent to near-ultraviolet. Thereby, there exists a possibility that the transmittance | permeability of visible light may fall. In addition, this near-infrared cut filter glass does not have a steep near-ultraviolet absorption characteristic, so that part of the transmitted near-ultraviolet light is purple flare (purple that extends vertically from the long square at the center of the captured image). There is a risk of causing a haze).
 特許文献2に記載の近赤外線カットフィルタガラスは、ガラス中のCu成分の価数を厳密に制御することで可視領域の光の透過率が高く、近赤外領域の光の透過率が低い光学特性が得られる。しかしながら、この近赤外線カットフィルタガラスにおいては、ガラスに光学多層膜を設け、光学多層膜の反射作用により近紫外線をカットする。光学多層膜は、光の入射角度により反射特性が変化するため、成膜面に垂直に入射する光線に対する透過率が0の波長の光であっても斜めに入射した光に対しては完全に反射することができず透過してしまう場合がある。このため、固体撮像素子に対して斜めに入射する光が多くなる画像周辺部で偽色、ゴースト、フレア等の影響が出ることが懸念される。また、光学多層膜に反射された光が光学系の中で迷光となって再度光学多層膜に斜めに入射すると、固体撮像素子の光電変換面に到達して偽色など撮影画像の色彩を乱す原因になる。 The near-infrared cut filter glass described in Patent Document 2 is an optical that has high transmittance in the visible region and low transmittance in the near-infrared region by strictly controlling the valence of the Cu component in the glass. Characteristics are obtained. However, in this near-infrared cut filter glass, an optical multilayer film is provided on the glass, and near-ultraviolet rays are cut by the reflection action of the optical multilayer film. The optical multilayer film has a reflection characteristic that changes depending on the incident angle of light. Therefore, even for light having a wavelength of 0 with respect to light incident perpendicularly to the film formation surface, the optical multilayer film is completely resistant to obliquely incident light. In some cases, the light cannot be reflected and is transmitted. For this reason, there is a concern about the influence of false color, ghost, flare, etc. on the periphery of the image where light incident obliquely on the solid-state imaging device increases. In addition, when the light reflected by the optical multilayer film becomes stray light in the optical system and enters the optical multilayer film obliquely again, it reaches the photoelectric conversion surface of the solid-state image sensor and disturbs the color of the photographed image such as false color. Cause.
 本発明は、近紫外線を確実にカットし、かつ可視領域の光(特に青色光)の透過率の高い光学ガラスおよび近赤外線カットフィルタの提供を目的とする。 An object of the present invention is to provide an optical glass and a near-infrared cut filter that reliably cut near ultraviolet rays and have a high transmittance of light in the visible region (particularly blue light).
 本発明に係る光学ガラスは、赤外線および紫外線を吸収する光学ガラスであって、前記光学ガラスは、300nm~450nmの波長帯域で光の透過率が50%となる波長の前後3nmの波長の範囲で算出される、波長と透過率との近似直線の傾きが3以上であることを特徴とする。 The optical glass according to the present invention is an optical glass that absorbs infrared rays and ultraviolet rays, and the optical glass has a wavelength range of 3 nm before and after the wavelength at which the light transmittance is 50% in the wavelength band of 300 nm to 450 nm. The calculated slope of the approximate line of wavelength and transmittance is 3 or more.
 本発明によれば、近紫外線を確実にカットすることで偽色やフレア等の発生を抑制し、かつ可視領域の光(特に青色光)の透過率の高い光学ガラスおよび近赤外線カットフィルタを提供することができる。 According to the present invention, there is provided an optical glass and a near-infrared cut filter that suppress the generation of false colors and flares by reliably cutting near-ultraviolet rays and have high transmittance for light in the visible region (particularly blue light). can do.
 以下、本発明の実施の形態について説明する。本発明の光学ガラスは、ガラスを主体とし、ガラス中に結晶を含有することを必須構成とする。また、本明細書における光学ガラスの光学特性は、光学ガラスと空気との屈折率の相違に起因する表面反射があるものとする。 Hereinafter, embodiments of the present invention will be described. The optical glass of the present invention is mainly composed of glass, and it is essential to contain crystals in the glass. Moreover, the optical characteristic of the optical glass in this specification shall have surface reflection resulting from the difference in the refractive index of optical glass and air.
 本発明の光学ガラスは、固体撮像装置における近赤外線カットフィルタガラスとして好適に用いることができる。近赤外線カットフィルタガラスは、固体撮像装置において、結像光学系(レンズ群)と固体撮像素子(センサー)との間、もしくは結像光学系の被写体側(固体撮像素子の反対側)に配置される。 The optical glass of the present invention can be suitably used as a near infrared cut filter glass in a solid-state imaging device. Near-infrared cut filter glass is disposed between the imaging optical system (lens group) and the solid-state imaging device (sensor) or on the subject side of the imaging optical system (on the opposite side of the solid-state imaging device) in the solid-state imaging device. The
 本発明の光学ガラスは、可視領域の光を透過し、紫外線および赤外線を吸収する光学特性を備える。そして、本発明の光学ガラスは、赤外線および紫外線を吸収する光学ガラスであって、300nm~450nmの波長帯域で光の透過率が50%となる波長の前後3nmの波長の範囲で算出される、波長と透過率との近似直線の傾きが3以上の光学特性を備える。以下、「300nm~450nmの波長帯域で光の透過率が50%となる波長の前後3nmの波長の範囲で算出される、波長と透過率との近似直線の傾き」を「傾き(S)」ということもある。 The optical glass of the present invention has optical properties that transmit light in the visible region and absorb ultraviolet rays and infrared rays. The optical glass of the present invention is an optical glass that absorbs infrared rays and ultraviolet rays, and is calculated in a wavelength range of 3 nm before and after the wavelength at which the light transmittance is 50% in the wavelength band of 300 nm to 450 nm. The optical characteristic has an inclination of an approximate straight line between the wavelength and the transmittance of 3 or more. Hereinafter, “the slope of the approximate straight line between the wavelength and the transmittance calculated in the wavelength range of 3 nm before and after the wavelength at which the light transmittance is 50% in the wavelength band of 300 nm to 450 nm” is referred to as “slope (S)”. Sometimes it is.
 このような光学特性を備えることで、近紫外線を確実にカットし、偽色やフレア等の発生を抑制することができる。また、光学多層膜による反射作用ではなく、光学ガラスの吸収作用による近紫外線のカットのため、光の斜入射に伴う光学特性の変化が極めて小さく、固体撮像装置内の迷光に起因する近紫外線の斜入射光が光学ガラスに入射した場合であっても、確実に近紫外線をカットすることができる。 By providing such optical characteristics, it is possible to reliably cut near ultraviolet rays and suppress the occurrence of false colors, flares, and the like. In addition, because the near-ultraviolet ray is cut by the absorption action of the optical glass, not by the reflection action by the optical multilayer film, the change in the optical characteristics due to the oblique incidence of light is extremely small, and the near-ultraviolet ray caused by stray light in the solid-state imaging device Even when obliquely incident light is incident on the optical glass, near-ultraviolet rays can be reliably cut.
 光学ガラスにおいて、傾き(S)が3未満であると、近紫外線の一部が透過することに起因し、偽色やフレア等の発生が懸念される。本発明の光学ガラスは、傾き(S)が3以上である。傾き(S)は、3.5以上が好ましく、4以上がより好ましい。また、傾き(S)は、20超であると、光学ガラスのガラス組成の調整が極めて難しく、製造コストが高くなるため好ましくない。傾き(S)は、20以下が好ましく、15以下がより好ましい。 In the optical glass, if the inclination (S) is less than 3, a part of near ultraviolet rays are transmitted, and there is a concern about generation of false color or flare. The optical glass of the present invention has an inclination (S) of 3 or more. The slope (S) is preferably 3.5 or more, and more preferably 4 or more. Further, if the slope (S) is more than 20, it is not preferable because adjustment of the glass composition of the optical glass is extremely difficult and the production cost is increased. The slope (S) is preferably 20 or less, and more preferably 15 or less.
 なお、前述の300nm~450nmの波長帯域で光の透過率が50%となる波長の前後3nmの波長の範囲で算出される、波長と透過率との近似直線の傾き(傾き(S))とは、詳細には以下の方法により決定される。 Note that the slope (slope (S)) of the approximate straight line between the wavelength and the transmittance calculated in the wavelength range of 3 nm before and after the wavelength at which the light transmittance is 50% in the wavelength band of 300 nm to 450 nm. Is determined in detail by the following method.
 まず、光学ガラスの分光透過率を測定する。次いで、300nm~450nmの波長帯域での光の透過率が50%になる波長(整数値)を特定する。ここで、分光透過率を示す曲線より得られる波長が整数値とならない場合は、最も近い整数値を透過率が50%となる波長とみなす。そして、透過率が50%となる波長(以下、「λ50(300-450)」と表記することもある。)を中心とし、λ50(300-450)から短波長側および長波長側にそれぞれ3nm離れた波長まで1nmごとの透過率データを7点決定する。例えば、透過率が50%となる波長が380nmの場合、377nm、378nm、379nm、380nm、381nm、382nm、383nmにおける波長と透過率のデータ(計7点)を決定する。そして、この7点のデータより波長[nm]をX軸、透過率[%]をY軸とした近似直線を作成し、得られる近似直線の傾き[%/nm]を傾き(S)とする。 First, the spectral transmittance of the optical glass is measured. Next, the wavelength (integer value) at which the light transmittance in the wavelength band of 300 nm to 450 nm is 50% is specified. Here, when the wavelength obtained from the curve indicating the spectral transmittance does not become an integer value, the closest integer value is regarded as the wavelength at which the transmittance is 50%. Then, centering on the wavelength at which the transmittance is 50% (hereinafter sometimes referred to as “λ 50 (300-450)), from λ 50 (300-450) to the short wavelength side and the long wavelength side. Seven points of transmittance data for each 1 nm are determined up to a wavelength of 3 nm. For example, when the wavelength at which the transmittance is 50% is 380 nm, the wavelength and transmittance data (total of 7 points) at 377 nm, 378 nm, 379 nm, 380 nm, 381 nm, 382 nm, and 383 nm are determined. Then, an approximate straight line with the wavelength [nm] as the X axis and the transmittance [%] as the Y axis is created from the data of these seven points, and the slope [% / nm] of the obtained approximate straight line is defined as the slope (S). .
 本発明の光学ガラスは、波長450nm~480nmの光の平均透過率が80%以上であることが好ましい。このような特性を備えることで、本発明の光学ガラスを、例えば、固体撮像装置に用いた場合に、可視領域の青色光の透過率が高く、色再現性に優れた撮像画像を得ることができる。なお、従来は、青色光の透過率に合わせて、可視領域の他の波長成分との色バランスを取るべく、センサーの感度調整がなされていた。そのため、本発明の光学ガラスを用いることで、センサーが本来持つ受光感度能を最大限生かした高感度の撮像が可能となる。 The optical glass of the present invention preferably has an average transmittance of light having a wavelength of 450 nm to 480 nm of 80% or more. By having such characteristics, when the optical glass of the present invention is used in, for example, a solid-state imaging device, a captured image having high visible light blue light transmittance and excellent color reproducibility can be obtained. it can. Conventionally, the sensitivity of the sensor has been adjusted so as to achieve a color balance with other wavelength components in the visible region in accordance with the transmittance of blue light. Therefore, by using the optical glass of the present invention, it is possible to perform high-sensitivity imaging that makes the best use of the light receiving sensitivity capability inherent to the sensor.
 なお、前述の平均透過率は、81%以上がより好ましく、82%以上がさらに好ましい。また、前述の平均透過率は、92%超であると、光学ガラスのガラス組成の調整が極めて難しく、製造コストが高くなるため好ましくない。前述の平均透過率は、92%以下が好ましく、91%以下がより好ましい。 Note that the above-described average transmittance is more preferably 81% or more, and further preferably 82% or more. Further, if the above-mentioned average transmittance is more than 92%, it is not preferable because it is very difficult to adjust the glass composition of the optical glass and the production cost is increased. The average transmittance is preferably 92% or less, and more preferably 91% or less.
 本発明の光学ガラスは、600nm~700nmの波長帯域での光の透過率が50%となる波長(以下、「λ50(600-700)」と表記することもある。)から、300nm~450nmの波長帯域での光の透過率が50%となる波長(λ50(300-450))を引いた値、λ50(600-700)-λ50(300-450)が、200nm~300nmの範囲にあることが好ましい。このような特性を備えることで、可視領域の光の透過率が高く、高感度で色再現性に優れた撮像画像を得ることができる。なお、前述の波長の幅(λ50(600-700)-λ50(300-450))は、220nm~290nmが好ましく、230nm~280nmがより好ましい。 The optical glass of the present invention is 300 nm to 450 nm from a wavelength at which the light transmittance in the wavelength band of 600 nm to 700 nm is 50% (hereinafter also referred to as “λ 50 (600-700) ”). The value obtained by subtracting the wavelength (λ 50 (300-450) ) at which the light transmittance in the wavelength band is 50%, λ 50 (600-700) −λ 50 (300-450) is 200 nm to 300 nm. It is preferable to be in the range. By providing such characteristics, it is possible to obtain a captured image with high light transmittance in the visible region, high sensitivity, and excellent color reproducibility. The above-described wavelength width (λ 50 (600-700)50 (300-450) ) is preferably 220 nm to 290 nm, and more preferably 230 nm to 280 nm.
 本発明の光学ガラスは、波長450nm~480nmの平均吸光係数(以下、「ε(450-480)」と表記することもある。)に対する波長700nm~850nmの平均吸光係数(以下、「ε(700-850)」と表記することもある。)の比率、ε(700-850)/ε(450-480)が33以上であることが好ましい。このような特性を備えることで、本発明の光学ガラスを、例えば、固体撮像装置に用いた場合に、撮像画像に不要な近赤外線を確実にカットしつつ、可視領域の青色光の透過率を高くすることができるため、高感度で色再現性に優れた撮像画像を得ることができる。 The optical glass of the present invention has an average extinction coefficient at a wavelength of 700 nm to 850 nm (hereinafter referred to as “ε (700 (700 ) ”) with respect to an average extinction coefficient at a wavelength of 450 nm to 480 nm (hereinafter also referred to as “ε (450-480) ”). ratio of -850) "and sometimes referred to.), ε (700-850) / ε (450-480) is preferably not more than 33. By having such characteristics, when the optical glass of the present invention is used in, for example, a solid-state imaging device, the near-infrared ray unnecessary for the captured image is reliably cut, and the transmittance of blue light in the visible region is increased. Since the height can be increased, a captured image with high sensitivity and excellent color reproducibility can be obtained.
 なお、平均吸光係数の比率(ε(700-850)/ε(450-480))は、34以上が好ましく、35以上がより好ましい。また、平均吸光係数の比率(ε(700-850)/ε(450-480))は、80超であると、光学ガラスのガラス組成の調整が極めて難しく、製造コストが高くなるため好ましくない。平均透過率の比率(ε(700-850)/ε(450-480))は、80以下が好ましく、70以下がより好ましい。 The ratio of the average extinction coefficient (ε (700-850) / ε (450-480) ) is preferably 34 or more, and more preferably 35 or more. Further, if the ratio of the average extinction coefficient (ε (700-850) / ε (450-480) ) is more than 80, it is not preferable because adjustment of the glass composition of the optical glass is extremely difficult and the production cost is increased. The average transmittance ratio (ε (700-850) / ε (450-480) ) is preferably 80 or less, and more preferably 70 or less.
 近赤外線カットフィルタガラスにおいては、波長450nm~480nmの光の透過率を高くすることと波長700nm~850nmの光の透過率を低くすることを両立するのが望ましい。従来の近赤外線カットフィルタガラスでは、波長450nm~480nmの光の透過率を高くするためにはガラス中のCu濃度を低くする方法があるが、この場合、波長700nm~850nmの光の透過率が高くなるという弊害がある。また、波長700nm~850nmの光の透過率を低くするためにはCu濃度を高くする方法があるが、この場合、波長450nm~480nmの光の透過率が低くなるという弊害がある。すなわち、従来の近赤外線カットフィルタガラスにおいては、波長450nm~480nmの光の透過率を高くすることと波長700nm~850nmの光の透過率を低くすることとを両立するのは、そもそも困難であり、どちらかの特性を妥協するか、もしくは両者のバランスをとった特性とするかのいずれかの手段をとらざるを得なかった。 In the near-infrared cut filter glass, it is desirable to increase both the light transmittance of wavelengths 450 nm to 480 nm and the light transmittance of wavelengths 700 nm to 850 nm. In the conventional near-infrared cut filter glass, there is a method of reducing the Cu concentration in the glass in order to increase the transmittance of light with a wavelength of 450 nm to 480 nm. In this case, the transmittance of light with a wavelength of 700 nm to 850 nm is reduced. There is a harmful effect of becoming higher. In order to reduce the transmittance of light having a wavelength of 700 nm to 850 nm, there is a method of increasing the Cu concentration. However, in this case, the transmittance of light having a wavelength of 450 nm to 480 nm is lowered. That is, in the conventional near-infrared cut filter glass, it is difficult in the first place to increase both the light transmittance of wavelengths 450 nm to 480 nm and the light transmittance of wavelengths 700 nm to 850 nm. , One of the means of compromising one of the characteristics or making it a characteristic that balances the two had to be taken.
 本発明の光学ガラスは、詳細には後述するが、波長450nm~480nmの光の透過率と波長700nm~850nmの光の透過率の両者に関連する光学ガラス中のCu成分について、波長450nm~480nmの透過率を低下させるCuイオンをハロゲン化物としてガラス中に結晶として析出し、非晶質(ガラス)部分におけるCuイオンの存在量を可及的に少なくすることで、前述の光学特性が得られることを見出したものである。 Although the optical glass of the present invention will be described in detail later, the Cu component in the optical glass related to both the transmittance of light with a wavelength of 450 nm to 480 nm and the transmittance of light with a wavelength of 700 nm to 850 nm will be described. By precipitating Cu + ions, which reduce the transmittance, as crystals in the glass as halides, and reducing the amount of Cu + ions present in the amorphous (glass) portion as much as possible, the above-mentioned optical characteristics can be achieved. It has been found that it can be obtained.
 なお、Cuイオンをハロゲン化物としてガラス中に結晶として析出した場合、波長700nm~850nmの光の透過率を低下させる非晶質部分のCu2+イオンへの影響はほとんどないため、波長700nm~850nmの光の透過率が低いという好ましい光学特性を維持したまま、波長450nm~480nmの光の透過率を高めることができる。また、ガラス中に結晶として析出したCuのハロゲン化物は、紫外線領域に急峻な吸収特性を備えるため、本発明の光学ガラスは撮像画像に不要な近紫外線をカットすることもできる。 When Cu + ions are precipitated as crystals in glass as halides, there is almost no influence on Cu 2+ ions in the amorphous portion that reduces the transmittance of light with a wavelength of 700 nm to 850 nm. The transmittance of light having a wavelength of 450 nm to 480 nm can be increased while maintaining the preferable optical characteristic that the transmittance of light is low. Moreover, since the Cu halide precipitated as crystals in the glass has a steep absorption characteristic in the ultraviolet region, the optical glass of the present invention can cut near-ultraviolet rays unnecessary for the captured image.
 本発明の光学ガラスは、カチオン成分としてP及びCuを必須で含有し、アニオン成分としてCl、Br及びIから選ばれる少なくとも1種を含有し、前記Cuの含有量はカチオン%で0.5~25%であり、かつ結晶を含有する。すなわち、本発明の光学ガラスは、ガラスと結晶からなる。ガラスは非晶質成分であり本発明の光学ガラスの主たる成分である。また、結晶はガラス中の含有成分が結晶としてガラス中に析出した結晶が好ましい。本明細書において、各成分の含有量は光学ガラス中の含有量を示す。また、以下の説明において、単に「ガラス」という場合は、光学ガラス中の非晶質成分としてのガラスを意味する。 The optical glass of the present invention essentially contains P and Cu as the cation component, and contains at least one selected from Cl, Br and I as the anion component, and the Cu content is from 0.5 to 0.5 in terms of cation%. 25% and contains crystals. That is, the optical glass of the present invention is composed of glass and crystals. Glass is an amorphous component and is the main component of the optical glass of the present invention. Further, the crystal is preferably a crystal in which the components contained in the glass are precipitated in the glass as crystals. In the present specification, the content of each component indicates the content in the optical glass. In the following description, the term “glass” simply means glass as an amorphous component in optical glass.
 Pは、ガラスを形成する主成分(ガラス形成酸化物)であり、光学ガラスの近赤外領域のカット性を高めるための必須成分である。Pはガラス中に、例えばP5+として含有される。 P is a main component (glass-forming oxide) that forms glass, and is an essential component for improving the near-infrared cut property of optical glass. P is contained, for example, as P 5+ in the glass.
 また、Cuは、近赤外線カットための必須成分である。Cuはガラス中に、例えばCu2+、Cuとして含有される。光学ガラス中のCuの含有量が0.5%未満であると光学ガラスの肉厚を薄くした際にその効果が十分に得られず、25%を超えると可視域透過率が低下するため好ましくない。Cuの含有量は、好ましくは0.5~19%、より好ましくは0.6~18%、さらに好ましくは0.7~17%である。なお、Cuの含有量とは、ガラス中のCu2+、Cu、および結晶中のCu成分の合計量をいうものである。 Cu is an essential component for cutting near infrared rays. Cu is contained in the glass, for example, as Cu 2+ or Cu + . When the content of Cu in the optical glass is less than 0.5%, the effect cannot be sufficiently obtained when the thickness of the optical glass is reduced, and when it exceeds 25%, the visible region transmittance is decreased, which is preferable. Absent. The Cu content is preferably 0.5 to 19%, more preferably 0.6 to 18%, and still more preferably 0.7 to 17%. In addition, Cu content means the total amount of Cu < 2+ > in glass, Cu <+> , and the Cu component in a crystal | crystallization.
 本発明の光学ガラスは、アニオン成分としてCl、Br及びIから選ばれる少なくとも1種を含有する。Cl、Br及びIは組み合わせて2種類以上含有してもよい。Cl、Br及びIは、ガラス中に、それぞれCl、Br、及びIとして含有される。光学ガラス中のCl、Br及びIの含有量は、アニオン%の合量で、0.01~20%であることが好ましい。Cl、Br及びIの含有量が0.01%未満では結晶が析出しにくく、20%を超えると、揮発性が高くなり、ガラス中の脈理が増加するおそれがあるため好ましくない。光学ガラス中のCl、Br及びIの含有量は合量で、0.01~15%がより好ましく、0.02~10%がさらに好ましい。 The optical glass of the present invention contains at least one selected from Cl, Br and I as an anionic component. Cl, Br and I may be contained in combination of two or more. Cl, Br and I are contained in the glass as Cl , Br and I , respectively. The contents of Cl, Br and I in the optical glass are preferably 0.01 to 20% in terms of the total amount of anions. If the content of Cl, Br and I is less than 0.01%, crystals are difficult to precipitate, and if it exceeds 20%, volatility increases and the striae in the glass may increase, such being undesirable. The total content of Cl, Br, and I in the optical glass is preferably 0.01 to 15%, more preferably 0.02 to 10%.
 Cl、Br、Iは、ガラス中のCuと反応し、ClはCuCl、BrはCuBr、IはCuIを形成する。これらの成分により、得られる光学ガラスにおいて、近紫外域の光をシャープにカットすることが可能となる。Cl、Br、Iは近紫外域の光をシャープにカットしたい波長に合わせて、適宜選択できる。 Cl , Br and I react with Cu + in the glass, Cl forms CuCl, Br forms CuBr, and I forms CuI. These components make it possible to sharply cut near-ultraviolet light in the obtained optical glass. Cl , Br , and I can be appropriately selected according to the wavelength at which light in the near ultraviolet region is desired to be cut sharply.
 本発明の光学ガラスが含有する結晶は、CuCl、CuBr及びCuIから選ばれる少なくとも1種の結晶を含むことが好ましい。すなわち、光学ガラスが含有するCuCl、CuBr、CuIは、結晶として析出していることが好ましい。CuCl、CuBr及びCuIから選ばれる少なくとも1種が結晶の状態で析出していることで、紫外域の光のシャープカット性を高めることができる。 The crystal contained in the optical glass of the present invention preferably contains at least one crystal selected from CuCl, CuBr, and CuI. That is, it is preferable that CuCl, CuBr, and CuI contained in the optical glass are precipitated as crystals. When at least one selected from CuCl, CuBr, and CuI is precipitated in a crystalline state, the sharp-cut property of light in the ultraviolet region can be enhanced.
 本発明の光学ガラスは、カチオン成分として、Agを含有することが好ましい。Agは、Cl、Br及びIから選ばれる少なくとも1種と結びつき、ハロゲン化銀(例えばAgCl)を析出する。この場合、AgClは、結晶核として作用し、CuClの結晶を析出しやすくする作用がある。光学ガラス中のAgの含有量は、カチオン%として0.01~5%であることが好ましい。0.01%未満であると、結晶を析出する作用が十分に得られない。また、5%を超えると、Agコロイドが形成され、可視光の透過率が低下するため好ましくない。 The optical glass of the present invention preferably contains Ag as a cation component. Ag is combined with at least one selected from Cl, Br and I, and silver halide (eg, AgCl) is precipitated. In this case, AgCl acts as a crystal nucleus and has an effect of facilitating precipitation of CuCl crystals. The content of Ag in the optical glass is preferably 0.01 to 5% as cation%. If it is less than 0.01%, the effect of precipitating crystals cannot be obtained sufficiently. On the other hand, if it exceeds 5%, Ag colloid is formed and the visible light transmittance is lowered, which is not preferable.
 また、光学ガラス中にハロゲン化銀以外の結晶核となる成分を析出もしくは導入して、CuCl、CuBr及びCuIから選ばれる少なくとも1種の結晶を析出させてもよい。 In addition, at least one crystal selected from CuCl, CuBr, and CuI may be precipitated by precipitating or introducing a component that becomes a crystal nucleus other than silver halide into the optical glass.
 本発明の光学ガラスにおける結晶成分は、主としてCuCl、CuBr及びCuIから選ばれる少なくとも1種からなり、AgとCl、Br及びIから選ばれる少なくとも1種が結合した結晶核やそれ以外の結晶核を含んでいてもよい。 The crystal component in the optical glass of the present invention is mainly composed of at least one selected from CuCl, CuBr and CuI, and includes crystal nuclei in which at least one selected from Ag and Cl, Br and I is bonded, and other crystal nuclei. May be included.
 次に、本発明の光学ガラスについて、2つの実施形態の光学ガラス、すなわちリン酸ガラスと結晶からなる実施形態1の光学ガラス及びフツリン酸ガラスと結晶からなる実施形態2の光学ガラスを例に説明する。 Next, the optical glass of the present invention will be described by taking the optical glass of the two embodiments, that is, the optical glass of the first embodiment composed of phosphate glass and crystals and the optical glass of Embodiment 2 composed of fluorophosphate glass and crystals as examples. To do.
 本発明の実施形態1の光学ガラスは、酸化物基準の質量%表示で
:35~75%
Al:5~15%
O:3~30%(但し、ROはLiO、NaO及びKOの合量を表す。)
R’O:3~35%(但し、R’OはMgO、CaO、SrO、BaO、及びZnOの合量を表す。)
CuO:0.5~20%
を含有する。
The optical glass of Embodiment 1 of the present invention has a P 2 O 5 ratio of 35 to 75% in terms of mass% based on oxide.
Al 2 O 3 : 5 to 15%
R 2 O: 3 to 30% (where R 2 O represents the total amount of Li 2 O, Na 2 O and K 2 O)
R′O: 3 to 35% (where R′O represents the total amount of MgO, CaO, SrO, BaO, and ZnO)
CuO: 0.5-20%
Containing.
 実施形態1の光学ガラスは、Cl、Br及びIから選ばれる少なくとも1種を含有する。実施形態1の光学ガラスにおけるCl、Br及びIから選ばれる少なくとも1種の含有量及び含有形態は上記のとおりである。本発明の実施形態1の光学ガラスを構成する各成分の含有量を上記のように限定した理由を以下に説明する。以下の説明において、実施形態1の光学ガラスの含有成分の含有量「%」は、特に断りのない限り酸化物基準の質量%である。 The optical glass of Embodiment 1 contains at least one selected from Cl, Br, and I. The content and form of at least one selected from Cl, Br, and I in the optical glass of Embodiment 1 are as described above. The reason for limiting the content of each component constituting the optical glass of Embodiment 1 of the present invention as described above will be described below. In the following description, the content “%” of the components contained in the optical glass of Embodiment 1 is mass% based on oxide unless otherwise specified.
 Pは、ガラスを形成する主成分(ガラス形成酸化物)であり、光学ガラスの近赤外領域のカット性を高めるための必須成分であるが、35%未満ではその効果が十分得られず、75%を超えるとガラスが不安定になり、耐候性が低下し、また光学ガラス中のCl、Br及びIから選ばれる少なくとも1種の残存量が低下し、結晶が十分に析出しないため好ましくない。Pの含有量は、好ましくは38~73%、より好ましくは40~72%である。 P 2 O 5 is a main component (glass-forming oxide) that forms glass, and is an essential component for improving the near-infrared cut property of optical glass. However, if it is less than 35%, the effect is sufficiently obtained. If it exceeds 75%, the glass becomes unstable, the weather resistance decreases, and the residual amount of at least one selected from Cl, Br and I in the optical glass decreases, and crystals do not sufficiently precipitate. Therefore, it is not preferable. The content of P 2 O 5 is preferably 38 to 73%, more preferably 40 to 72%.
 Alは、ガラスを形成する主成分(ガラス形成酸化物)であり、耐候性を高めるなどのための必須成分であるが、5%未満ではその効果が十分得られず、15%を超えるとガラスが不安定になり、また光学ガラスの近赤外線カット性が低下するため好ましくない。Alの含有量は、好ましくは5.5~12%、より好ましくは6~10%である。 Al 2 O 3 is a main component (glass-forming oxide) that forms glass, and is an essential component for enhancing weather resistance. However, if it is less than 5%, the effect cannot be sufficiently obtained, and 15% If it exceeds, the glass becomes unstable, and the near-infrared cutting property of the optical glass is lowered, which is not preferable. The content of Al 2 O 3 is preferably 5.5 to 12%, more preferably 6 to 10%.
 RO(但し、ROはLiO、NaO及びKOの合量を表す。)は、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスを安定化させるなどのための成分であるが、3%未満ではその効果が十分得られず、30%を超えるとガラスが不安定になるため好ましくない。ROの含有量は、好ましくは5~28%、より好ましくは6~25%である。なお、ROはLiO、NaO及びKOの合量、つまり、LiO+NaO+KOであることをいう。また、ROは、LiO、NaO及びKOから選ばれる1種または2種以上であり、2種以上の場合いかなる組合せであってもよい。 R 2 O (where R 2 O represents the total amount of Li 2 O, Na 2 O and K 2 O) lowers the melting temperature of the glass, lowers the liquidus temperature of the glass, stabilizes the glass However, if it is less than 3%, the effect cannot be sufficiently obtained, and if it exceeds 30%, the glass becomes unstable, which is not preferable. The content of R 2 O is preferably 5 to 28%, more preferably 6 to 25%. R 2 O means the total amount of Li 2 O, Na 2 O and K 2 O, that is, Li 2 O + Na 2 O + K 2 O. Further, R 2 O is, Li 2 O, is one or more selected from Na 2 O and K 2 O, when two or more kinds may be any combination.
 LiOは、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスを安定化させるなどのための成分である。LiOを含有する場合、15%を超えるとガラスが不安定になるため好ましくない。LiOの含有量は、好ましくは、0~10%、より好ましくは、0~8%である。 Li 2 O is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, and the like. When containing Li 2 O, it is not preferable because the glass may become unstable when more than 15%. The content of Li 2 O is preferably 0 to 10%, more preferably 0 to 8%.
 NaOは、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスを安定化させるなどのための成分である。NaOを含有する場合、25%を超えるとガラスが不安定になるため好ましくない。NaOの含有量は、好ましくは0~22%、より好ましくは0~20%である。 Na 2 O is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, and the like. When Na 2 O is contained, if it exceeds 25%, the glass becomes unstable, which is not preferable. The content of Na 2 O is preferably 0 to 22%, more preferably 0 to 20%.
 KOは、必須成分ではないが、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、などのための成分である。KOを含有する場合、25%を超えるとガラスが不安定になる、熱膨張率が著しく大きくなるため好ましくない。KOの含有量は、好ましくは0~20%、より好ましくは0~15%である。 K 2 O is not an essential component, but is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, and the like. When K 2 O is contained, if it exceeds 25%, the glass becomes unstable and the coefficient of thermal expansion becomes remarkably large, which is not preferable. The content of K 2 O is preferably 0 to 20%, more preferably 0 to 15%.
 R’O(ただし、R’Oは、MgO、CaO、SrO、BaO、及びZnOの合量を表す。)は、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスを安定化させる、ガラスの強度を高めるなどのための必須成分である。3%未満ではその効果が十分得られず、35%を超えるとガラスが不安定になる、光学ガラスの近赤外線カット性が低下する、ガラスの強度が低下するなどのため好ましくない。R’Oの含有量は、好ましくは3.5~32%、より好ましくは4~30%、である。なお、R’OはMgO、CaO、SrO、BaO、及びZnOの合量、つまり、R’OはMgO+CaO+SrO+BaO+ZnOであることをいう。また、R’Oは、MgO、CaO、SrO、BaO及びZnOから選ばれる1種または2種以上であり、2種以上の場合いかなる組合せであってもよい。 R′O (where R′O represents the total amount of MgO, CaO, SrO, BaO, and ZnO) lowers the melting temperature of the glass, lowers the liquidus temperature of the glass, stabilizes the glass It is an essential ingredient for increasing the strength of the glass. If it is less than 3%, the effect cannot be sufficiently obtained, and if it exceeds 35%, the glass becomes unstable, the near-infrared cutting property of the optical glass is lowered, and the strength of the glass is not preferred. The content of R′O is preferably 3.5 to 32%, more preferably 4 to 30%. Note that R′O is the total amount of MgO, CaO, SrO, BaO, and ZnO, that is, R′O is MgO + CaO + SrO + BaO + ZnO. R'O is one or more selected from MgO, CaO, SrO, BaO and ZnO, and any combination of two or more may be used.
 MgOは、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスの強度を高めるなどのための成分である。しかし、MgOはガラスを不安定にし、失透しやすくする傾向があり、特にCuの含有量を高く設定する必要がある場合には含有しないことが好ましい。MgOを含有する場合、5%を超えるとガラスが極端に不安定になる、光学ガラスの近赤外線カット性が低下するため好ましくない。MgOの含有量は、好ましくは0~3%、より好ましくは0~2%である。 MgO is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, increasing the strength of the glass, and the like. However, MgO tends to destabilize the glass and make it easy to devitrify, and it is preferable not to include it particularly when the Cu content needs to be set high. When MgO is contained, if it exceeds 5%, the glass becomes extremely unstable, and the near-infrared cutting property of the optical glass is lowered, which is not preferable. The content of MgO is preferably 0 to 3%, more preferably 0 to 2%.
 CaOは、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスを安定化させる、ガラスの強度を高めるなどのための成分である。CaOを含有する場合、10%を超えるとガラスが不安定となり失透しやすくなる、光学ガラスの近赤外線カット性が低下するため好ましくない。CaOの含有量は、好ましくは0~7%、より好ましくは0~5%である。 CaO is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, increasing the strength of the glass, and the like. When CaO is contained, if it exceeds 10%, the glass becomes unstable and tends to be devitrified. The CaO content is preferably 0 to 7%, more preferably 0 to 5%.
 SrOは、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスを安定化させるなどのための成分である。SrOを含有する場合、15%を超えるとガラスが不安定となり失透しやすくなる、光学ガラスの近赤外線カット性が低下するため好ましくない。SrOの含有量は、好ましくは0~12%、より好ましくは0~10%である。 SrO is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, and the like. When it contains SrO, if it exceeds 15%, the glass becomes unstable and easily devitrified. The SrO content is preferably 0 to 12%, more preferably 0 to 10%.
 BaOは、必須成分ではないものの、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスを安定化させるなどのための成分である。BaOを含有する場合、30%を超えるとガラスが不安定となり失透しやすくなる、光学ガラスの近赤外線カット性が低下するため好ましくない。BaOの含有量は、好ましくは0~27%、より好ましくは0~25%である。 Although BaO is not an essential component, it is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, and the like. When it contains BaO, if it exceeds 30%, the glass becomes unstable and tends to be devitrified. The content of BaO is preferably 0 to 27%, more preferably 0 to 25%.
 ZnOは、必須成分ではないものの、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスの化学的耐久性を高めるなどの効果がある。ZnOを含有する場合10%を超えるとガラスが不安定となりしやすくなる、ガラスの溶解性が悪化するため好ましくない。ZnOの含有量は、好ましくは0~8%、より好ましくは0~5%である。 ZnO is not an essential component, but has effects such as lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, and increasing the chemical durability of the glass. When ZnO is contained, if it exceeds 10%, the glass tends to be unstable, and the solubility of the glass deteriorates, which is not preferable. The content of ZnO is preferably 0 to 8%, more preferably 0 to 5%.
 CuOは、近赤外線カットための必須成分である。光学ガラス中のCuOの含有量が0.5%未満であると光学ガラスの肉厚を薄くした際にその効果が十分に得られず、20%を超えると可視域透過率が低下するため好ましくない。CuOの含有量は、好ましくは0.8~19%、より好ましくは1.0~18%である。 CuO is an essential component for cutting near infrared rays. When the content of CuO in the optical glass is less than 0.5%, the effect cannot be sufficiently obtained when the thickness of the optical glass is reduced, and when it exceeds 20%, the visible region transmittance is decreased, which is preferable. Absent. The CuO content is preferably 0.8 to 19%, more preferably 1.0 to 18%.
 なお、実施形態1の光学ガラスにおけるCuのカチオン%での含有量は、上記のとおり0.5~25%であり、好ましい含有量も上記のとおりである。また、上記Cl、Br、Iが、それぞれCuCl、CuBr、CuIを形成している場合、光学ガラス中のCuのカチオン%は、該ハロゲン化銅におけるCu成分とその他のCu成分との合計含有量である。 In addition, the content of Cu in the cation% in the optical glass of Embodiment 1 is 0.5 to 25% as described above, and the preferable content is also as described above. When Cl, Br, and I form CuCl, CuBr, and CuI, respectively, the cation% of Cu in the optical glass is the total content of the Cu component and other Cu components in the copper halide. It is.
 実施形態1の光学ガラスは、任意成分としてSbを0~3%含有してもよい。Sbは、必須成分ではないものの、光学ガラスの可視領域透過率を高める効果がある。Sbを含有する場合、3%を超えるとガラスの安定性が低下するため好ましくない。Sbの含有量は、好ましくは0~2.5%、より好ましくは0~2%である。 The optical glass of Embodiment 1 may contain 0 to 3% of Sb 2 O 3 as an optional component. Although Sb 2 O 3 is not an essential component, it has an effect of increasing the visible region transmittance of the optical glass. When Sb 2 O 3 is contained, if it exceeds 3%, the stability of the glass is lowered, which is not preferable. The content of Sb 2 O 3 is preferably 0 to 2.5%, more preferably 0 to 2%.
 実施形態1の光学ガラスは、さらに、任意成分としてSiO、SO、B等のリン酸ガラスが通常含有するその他の成分を本発明の効果を損なわない範囲で含有できる。これらの成分の含有量は合計で3%以下が好ましい。 The optical glass of Embodiment 1 can further contain other components normally contained in phosphate glass such as SiO 2 , SO 3 , and B 2 O 3 as optional components as long as the effects of the present invention are not impaired. The total content of these components is preferably 3% or less.
 また、実施形態1の光学ガラスは、上記のとおり結晶を含有し、好ましくは、CuCl、CuBr及びCuIから選ばれる少なくとも1種の結晶を含有するものである。 Further, the optical glass of Embodiment 1 contains crystals as described above, and preferably contains at least one crystal selected from CuCl, CuBr, and CuI.
 実施形態1の光学ガラスは、さらに、任意成分としてAgを含有してもよい。実施形態1の光学ガラスにおけるAgの含有量及び含有形態は上記のとおりである。 The optical glass of Embodiment 1 may further contain Ag as an optional component. The content and form of Ag in the optical glass of Embodiment 1 are as described above.
<実施形態2の光学ガラス>
 実施形態2の光学ガラスは、カチオン%で
5+:20~50%
Al3+:5~20%
:15~40%(但し、RはLi、Na及びKの合量を表す。)
R’2+:5~30%(但し、R’2+はMg2+、Ca2+、Sr2+、Ba2+、及びZn2+の合量を表す。)
Cu2+とCuの合量:0.5~25%
アニオン%で
:10~70%
を含有することを特徴とする。
<Optical Glass of Embodiment 2>
The optical glass of Embodiment 2 has a cation% of P 5+ : 20 to 50%
Al 3+ : 5 to 20%
R + : 15 to 40% (where R + represents the total amount of Li + , Na + and K + )
R ′ 2+ : 5 to 30% (where R ′ 2+ represents the total amount of Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , and Zn 2+ )
Cu 2+ and Cu + in total amount: 0.5 to 25%
Anion% F : 10-70%
It is characterized by containing.
 本明細書において、「カチオン%」および「アニオン%」とは、以下のとおりの単位である。まず、光学ガラスの構成成分をカチオン成分とアニオン成分とに分ける。そして、「カチオン%」とは、光学ガラス中に含まれる全カチオン成分の合計含有量を100モル%としたときに、各カチオン成分の含有量を百分率で表記した単位である。「アニオン%」とは、光学ガラス中に含まれる全アニオン成分の合計含有量を100モル%としたときに、各アニオン成分の含有量を百分率で表記した単位である。 In this specification, “cation%” and “anion%” are units as follows. First, the constituent components of the optical glass are divided into a cation component and an anion component. “Cation%” is a unit in which the content of each cation component is expressed as a percentage when the total content of all the cation components contained in the optical glass is 100 mol%. “Anion%” is a unit in which the content of each anion component is expressed as a percentage when the total content of all anion components contained in the optical glass is 100 mol%.
 実施形態2の光学ガラスは、F以外にアニオン成分として、O2-を含有し、Cl、Br及びIから選ばれる少なくとも1種を含有する。実施形態2の光学ガラスにおける、O2-の含有量は後述のとおりであり、Cl、Br及びIから選ばれる少なくとも1種の含有量及び含有形態は前述のとおりである。 The optical glass of the embodiment 2, F - as an anion component other than, contain O 2-, Cl -, Br - and I - contains at least one selected from. In the optical glass of Embodiment 2, the content of O 2− is as described later, and the content and content of at least one selected from Cl , Br and I are as described above.
 本発明の実施形態2の光学ガラスを構成する各成分の含有量(カチオン%、アニオン%表示)を上記のように限定した理由を以下に説明する。以下の説明において、実施形態2の光学ガラスの含有成分の含有量「%」は、特に断りのない限りカチオン成分についてはカチオン%であり、アニオン成分についてはアニオン%である。 The reason why the contents (cation% and anion% display) of the respective components constituting the optical glass of Embodiment 2 of the present invention are limited as described above will be described below. In the following description, the content “%” of the component contained in the optical glass of Embodiment 2 is cation% for the cation component and% anion for the anion component unless otherwise specified.
(カチオン成分)
 P5+は、ガラスを形成する主成分(ガラス形成酸化物)であり、光学ガラスの近赤外領域のカット性を高めるための必須成分であるが、20%未満ではその効果が十分得られず、50%を超えるとガラスが不安定になり、耐候性が低下するため好ましくない。P5+の含有量は、好ましくは20~48%、より好ましくは21~46%、さらに好ましくは22~44%である。
(Cation component)
P 5+ is a main component (glass-forming oxide) that forms glass, and is an essential component for improving the near-infrared cut property of optical glass. However, if it is less than 20%, the effect cannot be sufficiently obtained. If it exceeds 50%, the glass becomes unstable and the weather resistance decreases, which is not preferable. The content of P 5+ is preferably 20 to 48%, more preferably 21 to 46%, and still more preferably 22 to 44%.
 Al3+は、ガラスを形成する主成分(ガラス形成酸化物)であり、耐候性を高めるなどのための必須成分であるが、5%未満ではその効果が十分得られず、20%を超えるとガラスが不安定になり、また光学ガラスの近赤外線カット性が低下するため好ましくない。Al3+の含有量は、好ましくは6~18%、より好ましくは6.5~15%、さらに好ましくは7~13%である。 Al 3+ is a main component (glass-forming oxide) that forms glass, and is an essential component for enhancing weather resistance. However, if it is less than 5%, the effect cannot be sufficiently obtained, and if it exceeds 20%. This is not preferable because the glass becomes unstable and the near-infrared cutting property of the optical glass is lowered. The content of Al 3+ is preferably 6 to 18%, more preferably 6.5 to 15%, and still more preferably 7 to 13%.
 R(ただし、RはLi、Na及びKの合量を表す)は、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスを安定化させるなどのための必須成分であるが、15%未満ではその効果が十分得られず、40%を超えるとガラスが不安定になるため好ましくない。Rの含有量は、好ましくは15~38%、より好ましくは16~37%、さらに好ましくは17~36%である。なお、Rは、Li、Na、及びKの合量、つまり、Li+Na+Kであることをいう。また、Rは、Li、Na及びKから選ばれる1種または2種以上であり、2種以上の場合いかなる組合せであってもよい。 R + (where R + represents the total amount of Li + , Na + and K + ) is used to lower the melting temperature of the glass, lower the liquidus temperature of the glass, stabilize the glass, etc. Although it is an essential component, if it is less than 15%, the effect cannot be sufficiently obtained, and if it exceeds 40%, the glass becomes unstable, which is not preferable. The content of R + is preferably 15 to 38%, more preferably 16 to 37%, and still more preferably 17 to 36%. Note that R + is the total amount of Li + , Na + , and K + , that is, Li + + Na + + K + . R + is one or more selected from Li + , Na + and K + , and any combination of two or more may be used.
 Liは、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスを安定化させるなどのための必須成分である。5%未満ではその効果が十分得られず、40%を超えるとガラスが不安定になるため好ましくない。Liの含有量は、好ましくは、8~38%、より好ましくは、10~35%、さらに好ましくは15~30%である。 Li + is an essential component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, and the like. If it is less than 5%, the effect cannot be sufficiently obtained, and if it exceeds 40%, the glass becomes unstable, which is not preferable. The content of Li + is preferably 8 to 38%, more preferably 10 to 35%, and still more preferably 15 to 30%.
 Naは、必須成分ではないが、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスを安定化させるなどのための成分である。Naを含有する場合、5%未満ではその効果が十分得られず、40%を超えるとガラスが不安定になるため好ましくない。Naの含有量は、好ましくは5~35%、より好ましくは6~30%である。 Na + is not an essential component, but is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, and the like. When Na + is contained, if less than 5%, the effect cannot be sufficiently obtained, and if it exceeds 40%, the glass becomes unstable, which is not preferable. The content of Na + is preferably 5 to 35%, more preferably 6 to 30%.
 Kは、必須成分ではないが、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、などのための成分である。Kを含有する場合、0.1%未満ではその効果が十分得られず、30%を超えるとガラスが不安定になるため好ましくない。Kの含有量は、好ましくは0.5~25%、より好ましくは0.5~20%である。 K + is not an essential component, but is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, and the like. When K + is contained, if less than 0.1%, the effect cannot be sufficiently obtained, and if it exceeds 30%, the glass becomes unstable, which is not preferable. The content of K + is preferably 0.5 to 25%, more preferably 0.5 to 20%.
 R’2+(ただし、R’2+は、Mg2+、Ca2+、Sr2+、Ba2+、及びZn2+の合量を表す)は、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスを安定化させる、ガラスの強度を高めるなどのための必須成分である。5%未満ではその効果が十分得られず、30%を超えるとガラスが不安定になる、光学ガラスの近赤外線カット性が低下する、ガラスの強度が低下するなどのため好ましくない。R’2+の含有量は、好ましくは5~28%、より好ましくは7~25%、さらに好ましくは9~23%である。なお、R’2+は、Mg2+、Ca2+、Sr2+、Ba2+、及びZn2+の合量、つまり、Mg2++Ca2++Sr2++Ba2++Zn2+であることをいう。また、R’2+は、Mg2+、Ca2+、Sr2+、Ba2+及びZn2+から選ばれる1種または2種以上であり、2種以上の場合いかなる組合せであってもよい。 R ′ 2+ (where R ′ 2+ represents the total amount of Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , and Zn 2+ ) lowers the melting temperature of the glass and lowers the liquidus temperature of the glass. It is an essential component for stabilizing the glass and increasing the strength of the glass. If it is less than 5%, the effect cannot be sufficiently obtained, and if it exceeds 30%, the glass becomes unstable, the near-infrared cutting property of the optical glass is deteriorated, and the strength of the glass is not preferable. The content of R ′ 2+ is preferably 5 to 28%, more preferably 7 to 25%, and still more preferably 9 to 23%. Note that R ′ 2+ is the total amount of Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , and Zn 2+ , that is, Mg 2+ + Ca 2+ + Sr 2+ + Ba 2+ + Zn 2+ . R ′ 2+ is one or more selected from Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ and Zn 2+ , and any combination may be used in the case of two or more.
 Mg2+は、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスの強度を高めるなどのための成分である。しかし、Mg2+はガラスを不安定にし、失透しやすくする傾向があり、Mg2+を含有する場合、1%未満ではその効果が十分得られず、30%を超えるとガラスが極端に不安定になる、ガラスの溶解温度が上がるなどのため好ましくない。Mg2+の含有量は、好ましくは1~25%、より好ましくは1~20%である。 Mg 2+ is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, increasing the strength of the glass, and the like. However, Mg 2+ tends to make the glass unstable and easily devitrified. When Mg 2+ is contained, the effect cannot be obtained sufficiently if it is less than 1%, and if it exceeds 30%, the glass is extremely unstable. And the melting temperature of the glass is increased. The Mg 2+ content is preferably 1 to 25%, more preferably 1 to 20%.
 Ca2+は、必須成分ではないものの、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスを安定化させる、ガラスの強度を高めるなどのための成分である。Ca2+を含有する場合、1%未満ではその効果が十分得られず、30%を超えるとガラスが不安定となり失透しやすくなるため好ましくない。Ca2+の含有量は、好ましくは1~25%、より好ましくは1~20%である。 Although Ca 2+ is not an essential component, it is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, increasing the strength of the glass, and the like. When containing Ca 2+, its effect can not be obtained sufficiently less than 1% is not preferable because the glass exceeds 30% tends to be devitrified to become unstable. The content of Ca 2+ is preferably 1 to 25%, more preferably 1 to 20%.
 Sr2+は、必須成分ではないものの、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスを安定化させるなどのための成分である。Sr2+を含有する場合、1%未満ではその効果が十分得られず、30%を超えるとガラスが不安定となり失透しやすくなる、ガラスの強度が低下するため好ましくない。Sr2+の含有量は、好ましくは1~25%、より好ましくは1~20%である。 Sr 2+ is not an essential component, but is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, and the like. When Sr 2+ is contained, the effect is not sufficiently obtained if it is less than 1%, and if it exceeds 30%, the glass becomes unstable and tends to be devitrified. The content of Sr 2+ is preferably 1 to 25%, more preferably 1 to 20%.
 Ba2+は、必須成分ではないものの、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスを安定化させるなどのための成分である。Ba2+を含有する場合、0.1%未満ではその効果が十分得られず、30%を超えるとガラスが不安定となり失透しやすくなる、ガラスの強度が低下するため好ましくない。Ba2+の含有量は、好ましくは1~25%、より好ましくは1~20%である。 Ba 2+ is not an essential component, but is a component for lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, stabilizing the glass, and the like. In the case of containing Ba 2+ , the effect is not sufficiently obtained if it is less than 0.1%, and if it exceeds 30%, the glass becomes unstable and tends to be devitrified. The Ba 2+ content is preferably 1 to 25%, more preferably 1 to 20%.
 Zn2+は、必須成分ではないものの、ガラスの溶融温度を低くする、ガラスの液相温度を低くする、ガラスの化学的耐久性を高めるなどの効果がある。Zn2+を含有する場合、1%未満ではその効果が十分得られず、30%を超えるとガラスが不安定となり失透しやすくなる、ガラスの溶解性が悪化するため好ましくない。Zn2+の含有量は、好ましくは1~25%、より好ましくは1~20%である。 Zn 2+ is not an essential component, but has effects such as lowering the melting temperature of the glass, lowering the liquidus temperature of the glass, and increasing the chemical durability of the glass. In the case of containing Zn 2+ , if less than 1%, the effect is not sufficiently obtained, and if it exceeds 30%, the glass becomes unstable and tends to be devitrified. The Zn 2+ content is preferably 1 to 25%, more preferably 1 to 20%.
 実施形態2の光学ガラスにおけるカチオン成分としてのCuの含有量、すなわちCu2+とCuの合計の含有量は、上記ハロゲン化銅におけるCu成分とその他のCu成分との合計量である。具体的には、Cuの含有量は、上記のとおり0.5~25%であり、好ましい含有量も上記のとおりである。 The content of Cu as a cation component in the optical glass of Embodiment 2, that is, the total content of Cu 2+ and Cu + is the total amount of the Cu component and other Cu components in the copper halide. Specifically, the Cu content is 0.5 to 25% as described above, and the preferable content is also as described above.
 Cu2+は、近赤外線カットための必須成分であり、含有量は0.1%以上25%未満が好ましい。該含有量が0.1%未満であると光学ガラスの肉厚を薄くした際にその効果が十分に得られず、25%以上であると光学ガラスの可視域透過率が低下するため、またCuを含有できないため好ましくない。Cu2+の含有量は、好ましくは0.2~24%、より好ましくは0.3~23%、さらに好ましくは0.4~22%である。 Cu 2+ is an essential component for cutting near infrared rays, and the content is preferably 0.1% or more and less than 25%. When the content is less than 0.1%, the effect cannot be sufficiently obtained when the thickness of the optical glass is reduced, and when it is 25% or more, the visible region transmittance of the optical glass is lowered. It is not preferable because Cu + cannot be contained. The Cu 2+ content is preferably 0.2 to 24%, more preferably 0.3 to 23%, and still more preferably 0.4 to 22%.
 Cuは、Cl、Br、Iと反応しハロゲン化銅結晶として析出することで、光学ガラスに紫外線をシャープカットする効果を付与することができる。Cuの含有量は0.1~15%が好ましい。該含有量が0.1%未満であるとその効果が十分に得られず、15%を超えると光学ガラスの青色の強度を弱めるため好ましくない。Cuの含有量は、好ましくは0.2~13%、より好ましくは0.3~12%、さらに好ましくは0.4~11%である。 Cu + reacts with Cl, Br, and I and precipitates as a copper halide crystal, thereby giving the optical glass the effect of sharply cutting ultraviolet rays. The Cu + content is preferably 0.1 to 15%. If the content is less than 0.1%, the effect cannot be sufficiently obtained, and if it exceeds 15%, the blue intensity of the optical glass is weakened, which is not preferable. The content of Cu + is preferably 0.2 to 13%, more preferably 0.3 to 12%, and still more preferably 0.4 to 11%.
 実施形態2の光学ガラスは、任意のカチオン成分としてSb3+を0~1%含有してもよい。Sb3+は、必須成分ではないものの、可視領域透過率を高める効果がある。Sb3+を含有する場合、1%を超えるとガラスの安定性が低下するため好ましくない。Sb3+の含有量は、好ましくは0.01~0.8%、より好ましくは0.05~0.5%、さらに好ましくは0.1~0.3%である。 The optical glass of Embodiment 2 may contain 0 to 1% of Sb 3+ as an optional cation component. Sb 3+ is not an essential component, but has an effect of increasing the visible region transmittance. When Sb 3+ is contained, if it exceeds 1%, the stability of the glass is lowered, which is not preferable. The content of Sb 3+ is preferably 0.01 to 0.8%, more preferably 0.05 to 0.5%, and still more preferably 0.1 to 0.3%.
 実施形態2の光学ガラスは、さらに任意のカチオン成分として、Si、B等のフツリン酸ガラスが通常含有するその他の成分を本発明の効果を損なわない範囲で含有できる。これらの成分の含有量は合計で5%以下が好ましい。 The optical glass of Embodiment 2 can further contain, as an optional cation component, other components that are normally contained in a fluorophosphate glass such as Si and B within a range not impairing the effects of the present invention. The total content of these components is preferably 5% or less.
(アニオン成分)
 O2-は、ガラスを安定化させるため、光学ガラスの可視領域透過率を高めるため、強度や硬度や弾性率といった機械的特性を高めるため、紫外線透過率を低下させるための必須成分であり、含有量は30~90%が好ましい。O2-の含有量が、30%未満であるとその効果が十分得られず、90%を超えるとガラスが不安定となるため、耐候性が低下するため好ましくない。O2-の含有量は、より好ましくは30~80%、さらに好ましくは30~75%である。
(Anion component)
O 2− is an essential component for stabilizing the glass, increasing the visible region transmittance of the optical glass, increasing mechanical properties such as strength, hardness and elastic modulus, and decreasing the ultraviolet transmittance. The content is preferably 30 to 90%. If the content of O 2− is less than 30%, the effect cannot be sufficiently obtained, and if it exceeds 90%, the glass becomes unstable and weather resistance is lowered, which is not preferable. The content of O 2− is more preferably 30 to 80%, still more preferably 30 to 75%.
 Fは、ガラスを安定化させるため、耐候性を向上させるための必須成分であるが、10%未満であるとその効果が十分得られず、70%を超えると光学ガラスの可視領域透過率が低下する、強度や硬度や弾性率といった機械的特性が低下する、揮発性が高くなり脈理が増加するなどのおそれがあるため好ましくない。Fの含有量は、好ましくは10~50%、より好ましくは15~40%である。 F is an essential component for improving the weather resistance in order to stabilize the glass, but if it is less than 10%, the effect cannot be sufficiently obtained, and if it exceeds 70%, the visible region transmittance of the optical glass is not obtained. This is not preferred because there is a risk that mechanical properties such as strength, hardness and elastic modulus will decrease, volatility will increase and striae will increase. The content of F is preferably 10 to 50%, more preferably 15 to 40%.
 本発明の実施形態2の光学ガラスは、F成分を必須含有するため、耐候性に優れている。具体的には、雰囲気中の水分との反応による光学ガラス表面の変質や透過率の減少を抑制することができる。耐候性の評価は、例えば高温高湿槽を用いて、光学研磨した光学ガラスサンプルを65℃、相対温度90%の高温高湿槽中に1000時間保持する。そして、光学ガラス表面のヤケ状態を目視観察して評価することができる。また、高温高湿槽に投入する前の光学ガラスの透過率と高温高湿槽中に1000時間保持した後の光学ガラスの透過率とを比較して評価することもできる。 Since the optical glass of Embodiment 2 of the present invention contains the F component as an essential component, it has excellent weather resistance. Specifically, alteration of the optical glass surface and a decrease in transmittance due to reaction with moisture in the atmosphere can be suppressed. The weather resistance is evaluated by, for example, holding an optically polished optical glass sample in a high temperature and high humidity chamber at 65 ° C. and a relative temperature of 90% for 1000 hours using a high temperature and high humidity chamber. And the burnt state of the optical glass surface can be visually observed and evaluated. Moreover, the transmittance of the optical glass before being put into the high-temperature and high-humidity tank and the transmittance of the optical glass after being kept in the high-temperature and high-humidity tank for 1000 hours can also be compared and evaluated.
 実施形態2の光学ガラスは、さらに任意のアニオン成分としてS等のフツリン酸ガラスが通常含有するその他の成分を本発明の効果を損なわない範囲で含有できる。これらの成分の含有量は合計で5%以下が好ましい。 The optical glass of Embodiment 2 can further contain other components normally contained in a fluorophosphate glass such as S as an optional anion component within a range not impairing the effects of the present invention. The total content of these components is preferably 5% or less.
 また、実施形態2の光学ガラスは、上記のとおり結晶を含有し、好ましくは、CuCl、CuBr及びCuIから選ばれる少なくとも1種の結晶を含有するものである。なお、実施形態2の光学ガラスにおける結晶成分の含有量は、フィルタガラスの結晶化度として上記と同様の範囲が好ましい。 The optical glass of Embodiment 2 contains crystals as described above, and preferably contains at least one crystal selected from CuCl, CuBr, and CuI. In addition, content of the crystal component in the optical glass of Embodiment 2 has the preferable range similar to the above as a crystallinity degree of filter glass.
 実施形態2の光学ガラスは、さらに、任意のカチオン成分としてAgを含有してもよい。実施形態2の光学ガラスにおけるAgの含有量及び含有形態は上記のとおりである。 The optical glass of Embodiment 2 may further contain Ag as an optional cation component. The content and form of Ag in the optical glass of Embodiment 2 are as described above.
 次いで、本発明の実施形態1の光学ガラス及び実施形態2の光学ガラスに共通する、上記各成分以外の任意成分である、その他成分の含有量について説明する。なお、本明細書において、実質的に含有しない、とは、原料として意図して用いないことを意味しており、原料成分や製造工程から混入する不可避不純物については含有していないとみなす。 Next, the content of other components, which are optional components other than the above-described components, common to the optical glass of Embodiment 1 and the optical glass of Embodiment 2 of the present invention will be described. In the present specification, “substantially not contained” means that it is not intended to be used as a raw material, and it is regarded as not containing a raw material component or an inevitable impurity mixed from a manufacturing process.
 本発明の光学ガラスは、PbO、As、V、YbF、及びGdFのいずれも実質的に含有しないことが好ましい。PbOは、ガラスの粘度を下げ、製造作業性を向上させる成分である。また、Asは、幅広い温度域で清澄ガスを発生できる優れた清澄剤として作用する成分である。しかし、PbO及びAsは、環境負荷物質であるため、できるだけ含有しないことが望ましい。Vは、可視領域に吸収をもつため、可視領域透過率が高いことが要求される固体撮像素子用近赤外線カットフィルタガラスにおいては、できるだけ含有しないことが望ましい。YbF、GdFは、ガラスを安定化させる成分であるものの、原料が比較的高価であり、コストアップにつながるので、できるだけ含有しないことが望ましい。 The optical glass of the present invention preferably contains substantially no PbO, As 2 O 3 , V 2 O 5 , YbF 3 , or GdF 3 . PbO is a component that lowers the viscosity of the glass and improves manufacturing workability. As 2 O 3 is a component that acts as an excellent clarifier that can generate a clarified gas in a wide temperature range. However, since PbO and As 2 O 3 are environmentally hazardous substances, it is desirable not to contain them as much as possible. Since V 2 O 5 has absorption in the visible region, it is desirable that V 2 O 5 is not contained as much as possible in the near-infrared cut filter glass for a solid-state imaging device that is required to have high visible region transmittance. YbF 3 and GdF 3 are components that stabilize the glass, but since the raw materials are relatively expensive and lead to an increase in cost, it is desirable that YbF 3 and GdF 3 are not contained as much as possible.
 本発明の光学ガラスは、ガラスを形成する陽イオンをもった硝酸塩化合物や硫酸塩化合物を、酸化剤あるいは清澄剤として添加することができる。酸化剤は、光学ガラス中のCu全量におけるCu2+イオンの割合を増加させることで近赤外線のカット性を向上させる効果がある。硝酸塩化合物や硫酸塩化合物の添加量は、原料混合物に対し外割添加で0.5~10質量%が好ましい。添加量が0.5質量%未満では透過率改善の効果が出にくく、10質量%を超えるとガラスの形成が困難になりやすい。より好ましくは1~8質量%であり、一層好ましくは3~6質量%である。 In the optical glass of the present invention, a nitrate compound or a sulfate compound having a cation forming glass can be added as an oxidizing agent or a clarifying agent. The oxidizing agent has an effect of improving the near-infrared cutting property by increasing the ratio of Cu 2+ ions in the total amount of Cu in the optical glass. The addition amount of the nitrate compound or sulfate compound is preferably 0.5 to 10% by mass based on the external addition to the raw material mixture. If the addition amount is less than 0.5% by mass, the effect of improving the transmittance is difficult to be obtained, and if it exceeds 10% by mass, glass formation tends to be difficult. More preferably, it is 1 to 8% by mass, and still more preferably 3 to 6% by mass.
 硝酸塩化合物としては、Al(NO、LiNO、NaNO、KNO、Mg(NO、Ca(NO、Sr(NO、Ba(NO、Zn(NO、Cu(NO等がある。硫酸塩化合物としては、Al(SO・16HO、LiSO、NaSO、KSO、MgSO、CaSO、SrSO、BaSO、ZnSO、CuSO等がある。 As nitrate compounds, Al (NO 3 ) 3 , LiNO 3 , NaNO 3 , KNO 3 , Mg (NO 3 ) 2 , Ca (NO 3 ) 2 , Sr (NO 3 ) 2 , Ba (NO 3 ) 2 , Zn (NO 3 ) 2 , Cu (NO 3 ) 2 and the like. The sulfate compounds, Al 2 (SO 4) 3 · 16H 2 O, Li 2 SO 4, Na 2 SO 4, K 2 SO 4, MgSO 4, CaSO 4, SrSO 4, BaSO 4, ZnSO 4, CuSO 4 Etc.
 また、本発明の光学ガラスは、波長450~600nmにおける光の平均透過率が80%以上であることが好ましい。 The optical glass of the present invention preferably has an average light transmittance of 80% or more at a wavelength of 450 to 600 nm.
 また、本発明の光学ガラスは肉厚0.03~0.3mmにした場合、透過率50%となる波長が600~650nmであることが好ましい。このような条件とすることで、薄型が要求されるセンサーにおいて所望の光学特性を実現することが可能となる。さらに、肉厚0.03~0.3mmにした場合、波長450nmにおける透過率が80%以上であることで、可視領域の光の透過率が高い光学特性を有した近赤外線カットフィルタとなる。 Further, when the optical glass of the present invention has a thickness of 0.03 to 0.3 mm, the wavelength at which the transmittance is 50% is preferably 600 to 650 nm. By satisfying such conditions, it is possible to realize desired optical characteristics in a sensor that is required to be thin. Further, when the wall thickness is 0.03 to 0.3 mm, the transmittance at a wavelength of 450 nm is 80% or more, so that a near-infrared cut filter having optical characteristics with high transmittance of light in the visible region is obtained.
 透過率の値は、肉厚0.03~0.3mmの場合の値となるように換算を行った。透過率の換算は、以下の式1を用いて行った。なお、Ti1は、測定サンプルの内部透過率(表裏面の反射ロスを除いたデータ)、tは、測定サンプルの肉厚(mm)、Ti2は、換算値の透過率、tは、換算する肉厚(本発明の場合0.03~0.3mm)を指す。 The transmittance was converted so as to be a value in the case of a wall thickness of 0.03 to 0.3 mm. The transmittance was converted using the following formula 1. T i1 is the internal transmittance of the measurement sample (data excluding front and back reflection loss), t 1 is the thickness (mm) of the measurement sample, T i2 is the transmittance of the converted value, and t 2 is The wall thickness to be converted (in the present invention, 0.03 to 0.3 mm).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、本発明の光学ガラスは、撮像デバイスやその搭載機器の小型化・薄型化に対応するため、光学ガラスの肉厚が薄い状態であっても良好な分光特性が得られる。光学ガラスの肉厚としては、好ましくは1mm以下、より好ましくは0.8mm以下、さらに好ましくは0.6mm以下、最も好ましくは0.4mm以下である。また光学ガラスの肉厚の下限値は特に限定はされないが、光学ガラス製造時や撮像装置に組み込む際の搬送において破損しがたい強度を考慮すると、好ましくは0.03mm以上、より好ましくは0.05mm以上、さらに好ましくは0.07mm以上、最も好ましくは0.1mm以上である。 In addition, since the optical glass of the present invention can cope with the downsizing and thinning of the imaging device and the equipment on which it is mounted, good spectral characteristics can be obtained even when the optical glass is thin. The thickness of the optical glass is preferably 1 mm or less, more preferably 0.8 mm or less, still more preferably 0.6 mm or less, and most preferably 0.4 mm or less. Further, the lower limit value of the thickness of the optical glass is not particularly limited. However, in view of the strength that is difficult to break during the manufacture of the optical glass or when it is incorporated into the imaging apparatus, it is preferably 0.03 mm or more, more preferably 0.00. It is 05 mm or more, more preferably 0.07 mm or more, and most preferably 0.1 mm or more.
 本発明の光学ガラスは、光学ガラス単体で前述の光学特性を備えることを特徴とするが、さらなる光学特性の向上や水分等からの光学ガラスの保護を目的として、光学ガラス表面に反射防止膜や赤外線カット膜、紫外線および赤外線カット膜などの光学薄膜を設けてもよい。これらの光学薄膜は、単層膜や多層膜よりなるものであって、蒸着法やスパッタリング法などの公知の方法により形成することができる。また、前述と同様に光学特性の向上や水分等からの光学ガラスの保護を目的として、赤外線や紫外線を吸収する色素成分を含有した樹脂膜を光学ガラス表面に設けてもよい。 The optical glass of the present invention is characterized in that the optical glass alone has the above-mentioned optical characteristics, but for the purpose of further improving the optical characteristics and protecting the optical glass from moisture etc., an antireflection film or You may provide optical thin films, such as an infrared cut film, an ultraviolet-ray, and an infrared cut film. These optical thin films are composed of a single layer film or a multilayer film, and can be formed by a known method such as a vapor deposition method or a sputtering method. Similarly to the above, a resin film containing a dye component that absorbs infrared rays or ultraviolet rays may be provided on the surface of the optical glass for the purpose of improving optical characteristics and protecting the optical glass from moisture or the like.
 本発明の光学ガラスは、次のようにして作製することができる。
 まず、得られる光学ガラスが上記組成範囲になるように原料を秤量、混合する(混合工程)。この原料混合物を白金ルツボに収容し、電気炉内において700~1300℃の温度で加熱溶解する(溶解工程)。十分に撹拌・清澄した後、金型内に鋳込み、結晶を析出させる工程(結晶析出工程)を行った後、切断・研磨して所定の肉厚の平板状に成形する(成形工程)。
The optical glass of the present invention can be produced as follows.
First, raw materials are weighed and mixed so that the obtained optical glass is in the above composition range (mixing step). This raw material mixture is placed in a platinum crucible and heated and melted at a temperature of 700 to 1300 ° C. in an electric furnace (melting step). After sufficiently stirring and clarifying, a step of casting into a mold and precipitating crystals (crystal precipitation step) is performed, followed by cutting and polishing to form a flat plate having a predetermined thickness (molding step).
 上記製造方法の溶解工程において、フツリン酸ガラスと結晶からなる光学ガラス、例えば実施形態2の光学ガラスにおいてはガラス溶解中のガラスの最も高い温度を950℃以下に、リン酸ガラスと結晶からなる光学ガラス、例えば実施形態1の光学ガラスにおいては1280℃以下にすることが好ましい。ガラス溶解中のガラスの最も高い温度が上記温度を超えると、透過率特性が悪化する、及びフツリン酸ガラスにおいてはフッ素の揮散が促進されガラスが不安定になるためである。上記温度は、フツリン酸ガラスにおいてより好ましくは900℃以下、さらに好ましくは850℃以下である。リン酸ガラスにおいてより好ましくは1250℃以下、さらに好ましくは1200℃以下である。 In the melting step of the manufacturing method, an optical glass composed of fluorophosphate glass and crystals, for example, in the optical glass of Embodiment 2, the highest temperature of the glass during glass melting is 950 ° C. or lower, and an optical glass composed of phosphate glass and crystals. In the glass, for example, the optical glass of Embodiment 1, the temperature is preferably 1280 ° C. or lower. When the highest temperature of the glass during glass melting exceeds the above temperature, the transmittance characteristics deteriorate, and in the fluorophosphate glass, the volatilization of fluorine is promoted and the glass becomes unstable. The temperature is more preferably 900 ° C. or less, and further preferably 850 ° C. or less in the fluorophosphate glass. In phosphate glass, it is more preferably 1250 ° C. or lower, and further preferably 1200 ° C. or lower.
 また、上記溶解工程における温度は低くなりすぎると、溶解中に失透が発生する、溶け落ちに時間がかかるなどの問題が生じるため、フツリン酸ガラスにおいて好ましくは700℃以上、より好ましくは750℃以上である。リン酸ガラスにおいてより好ましくは800℃以上、さらに好ましくは850℃以上である。本発明の光学ガラスの製造方法においては、以下の結晶析出工程より前にガラス成分が結晶化しないことが好ましく、そのために溶解工程における温度は上記の範囲とすることが好ましい。 In addition, if the temperature in the melting step becomes too low, problems such as devitrification occur during melting and it takes a long time to melt off are caused. Therefore, in a fluorophosphate glass, it is preferably 700 ° C. or higher, more preferably 750 ° C. That's it. In the phosphate glass, it is more preferably 800 ° C. or higher, and further preferably 850 ° C. or higher. In the method for producing an optical glass of the present invention, it is preferable that the glass component does not crystallize before the following crystal precipitation step, and therefore the temperature in the melting step is preferably within the above range.
 上記溶解工程に引き続いて行われる結晶析出工程は、徐冷又は、徐冷及び熱処理によって行うことが好ましい。徐冷は、フツリン酸ガラスにおいては0.1~2℃/分の速度で200~250℃になるまで行うことが好ましい。リン酸ガラスにおいては0.1~2℃/分の速度で200~250℃になるまでで行うことが好ましい。 The crystal precipitation step performed subsequent to the dissolution step is preferably performed by slow cooling or by slow cooling and heat treatment. The slow cooling is preferably performed at a rate of 0.1 to 2 ° C./min until it reaches 200 to 250 ° C. for fluorophosphate glass. In the case of phosphate glass, it is preferably performed at a rate of 0.1 to 2 ° C./min until the temperature reaches 200 to 250 ° C.
また、結晶析出工程を徐冷及び熱処理により行う場合は、上記徐冷の条件と同様の徐冷を行った後、フツリン酸ガラスにおいては徐冷後の温度から、400~600℃にまで昇温させる熱処理を行うことが好ましい。同様にリン酸ガラスにおいては上記徐冷の条件と同様の徐冷を行った後、徐冷後の温度から、350~600℃にまで昇温させる熱処理を行うことが好ましい。 In the case where the crystal precipitation step is performed by gradual cooling and heat treatment, after gradual cooling similar to the above-mentioned gradual cooling conditions, in the fluorophosphate glass, the temperature is increased from 400 to 600 ° C. from the temperature after gradual cooling. It is preferable to perform heat treatment. Similarly, it is preferable that the phosphate glass is subjected to a heat treatment in which the temperature is raised from 350 to 600 ° C. after the slow cooling under the same slow cooling conditions as described above.
 本発明の光学ガラスの製造方法では、このような結晶析出工程においてガラス中に結晶が析出する。得られる本発明の光学ガラスは、非晶質(ガラス)部分と結晶部分からなる光学ガラスである。なお、結晶析出工程では、ガラス中にCuCl、CuBr及びCuIから選ばれる少なくとも1種の結晶を析出させることが好ましい。CuCl、CuBr、CuIの結晶を析出することで、得られる光学ガラスにおいて結晶部分を除く非晶質(ガラス)部分のCuの量を減らすことができ、且つ紫外線のシャープカット効果を付与することもできるため好ましい。 In the method for producing an optical glass of the present invention, crystals are precipitated in the glass in such a crystal precipitation step. The obtained optical glass of the present invention is an optical glass composed of an amorphous (glass) portion and a crystalline portion. In the crystal precipitation step, it is preferable to deposit at least one crystal selected from CuCl, CuBr, and CuI in the glass. By precipitating CuCl, CuBr, and CuI crystals, the amount of Cu + in the amorphous (glass) portion excluding the crystal portion in the obtained optical glass can be reduced, and a sharp cut effect of ultraviolet rays can be provided. It is also preferable because it can be used.
 本発明の光学ガラスは、近赤外線カットフィルタとして好適に用いることができる。デジタルカメラ等に用いられる固体撮像素子は、高感度化や高精細化が進展しており、近紫外線のカット特性が良好であり、可視領域の光の透過率(特に青色光の透過率)が高い本発明の光学ガラスを固体撮像装置の近赤外線カットフィルタとして用いることで、色再現性が良好であり、フレア・偽色・ゴースト等のノイズ成分の発生が抑制された撮像画像を得ることができる。 The optical glass of the present invention can be suitably used as a near infrared cut filter. Solid-state image sensors used in digital cameras, etc. have been improved in sensitivity and definition, have good near-UV cut characteristics, and have a visible light transmittance (especially blue light transmittance). By using the high optical glass of the present invention as a near-infrared cut filter of a solid-state imaging device, it is possible to obtain a captured image in which color reproducibility is good and generation of noise components such as flare, false color, and ghost is suppressed. it can.
 以下に本発明の実施例および比較例を示す。 Examples and comparative examples of the present invention are shown below.
 本発明の実施例と比較例とを表1~表3に示す。例1-1、例1-2はリン酸ガラスに係る本発明の光学ガラスに関する実施例であり、例1-3はリン酸ガラスに係る本発明の光学ガラスに関する比較例である。例2-1、例2-4~例2-8はフツリン酸ガラスに係る本発明の光学ガラスに関する実施例であり、例2-2、例2-3はフツリン酸ガラスに係る本発明の光学ガラスに関する比較例である。 Tables 1 to 3 show examples of the present invention and comparative examples. Examples 1-1 and 1-2 are examples relating to the optical glass of the present invention relating to phosphate glass, and Example 1-3 is a comparative example relating to the optical glass of the present invention relating to phosphate glass. Examples 2-1 and 2-4 to 2-8 are examples relating to the optical glass of the present invention relating to a fluorophosphate glass, and Examples 2-2 and 2-3 are examples of the optical glass of the present invention relating to a fluorophosphate glass. It is a comparative example regarding glass.
[光学ガラスの作製]
 表1に示す組成(酸化物基準の質量%表示)及び表2、表3に示す組成(カチオン%、アニオン%)となるよう原料を秤量・混合し、内容積約400ccの白金ルツボ内に入れて、800~1300℃の温度で2時間溶融、清澄、撹拌後、およそ300~500℃に予熱した縦50mm×横50mm×高さ20mmの長方形のモールドに鋳込んだ。
[Production of optical glass]
The raw materials are weighed and mixed so as to have the composition shown in Table 1 (expressed by mass% based on oxide) and the compositions shown in Table 2 and Table 3 (cation%, anion%), and put into a platinum crucible having an internal volume of about 400 cc. After melting, clarifying and stirring at a temperature of 800 to 1300 ° C. for 2 hours, it was cast into a rectangular mold having a length of 50 mm × width 50 mm × height 20 mm preheated to about 300 to 500 ° C.
 本発明の実施例(例1-1、例1-2、例2-1、例2-4~例2-8)については、長方形のモールドに鋳込んだ後、徐冷、又は、徐冷及び熱処理(例1-1・例1-2:460℃で1時間保持した後、1℃/分で室温まで冷却、次いで480℃で1時間保持した後、1℃/分で室温まで冷却、例2-1:360℃で1時間保持した後、1℃/分で室温まで冷却、例2-4、例2-6~例2-8:360℃で1時間保持した後、1℃/分で室温まで冷却、次いで410℃で2時間保持した後、1℃/分で室温まで冷却、例2-5:410℃で1時間保持した後、1℃/分で室温まで冷却)を行った。比較例(例1-3、例2-2、例2-3)については、徐冷(例1-3:460℃で1時間保持した後、1℃/分で室温まで冷却、例2-2、例2-3:360℃で1時間保持した後、1℃/分で室温まで冷却)とした。各例において縦50mm×横50mm×厚さ20mmのブロック状の光学ガラスを得た。この光学ガラスを研削した後、所望の厚さになるまで研磨したガラス板を評価に用いた。 For the examples of the present invention (Example 1-1, Example 1-2, Example 2-1, Example 2-4 to Example 2-8), after casting into a rectangular mold, slow cooling or slow cooling And heat treatment (Example 1-1 and Example 1-2: held at 460 ° C. for 1 hour, cooled to room temperature at 1 ° C./minute, then held at 480 ° C. for 1 hour, then cooled to room temperature at 1 ° C./minute, Example 2-1: Hold at 360 ° C. for 1 hour, then cool to room temperature at 1 ° C./min, Example 2-4, Example 2-6 to Example 2-8: Hold at 360 ° C. for 1 hour, then 1 ° C. / Cool to room temperature in minutes, then hold at 410 ° C. for 2 hours, then cool to room temperature at 1 ° C./minute, Example 2-5: Hold at 410 ° C. for 1 hour, then cool to room temperature at 1 ° C./minute) It was. For the comparative examples (Example 1-3, Example 2-2, and Example 2-3), slow cooling (Example 1-3: holding at 460 ° C. for 1 hour, then cooling to room temperature at 1 ° C./minute, Example 2- 2, Example 2-3: held at 360 ° C. for 1 hour and then cooled to room temperature at 1 ° C./minute). In each example, a block-shaped optical glass of 50 mm length × 50 mm width × 20 mm thickness was obtained. After this optical glass was ground, a glass plate polished to a desired thickness was used for evaluation.
 なお、各光学ガラスの原料は、P5+の場合はHPO及び/またはAl(POを、Al3+の場合はAlF、Al(PO及び/またはAlを、Liの場合はLiF、LiNO、LiCO及び/またはLiPOを、Mg2+の場合はMgF及び/またはMgO及び/またはMg(POを、Sr2+の場合はSrF、SrCO及び/またはSr(POを、Ba2+の場合はBaF、BaCO及び/またはBa(POを、NaはNaCl及び/またはNaBr及び/またはNaI及び/またはNaF及び/またはNa(PO)を、K、Ca2+、Zn2+の場合はフッ化物、炭酸塩及び/またはメタリン酸塩を、Sb3+の場合はSbを、Cu2+、Cuの場合はCuO、CuCl、CuBrを、それぞれ使用した。Agの場合はAgNOを使用した。 The raw materials for each optical glass are H 3 PO 4 and / or Al (PO 3 ) 3 in the case of P 5+ , and AlF 3 , Al (PO 3 ) 3 and / or Al 2 O 3 in the case of Al 3+. the, in the case of Li + LiF, a LiNO 3, Li 2 CO 3 and / or LiPO 3 a, in the case of Mg 2+ MgF 2 and / or MgO and / or Mg (PO 3) 2, the case of Sr 2+ is the SrF 2, SrCO 3 and / or Sr (PO 3) 2, a BaF 2, BaCO 3 and / or Ba (PO 3) 2 in the case of Ba 2+, Na + is NaCl and / or NaBr and / or NaI and / Or NaF and / or Na (PO 3 ), fluorides, carbonates and / or metaphosphates in the case of K + , Ca 2+ , Zn 2+ , Sb in the case of Sb 3+ In the case of 2 O 3 and Cu 2+ and Cu + , CuO, CuCl, and CuBr were used, respectively. In the case of Ag + , AgNO 3 was used.
[評価]
 各例で得られたガラス板について、結晶析出の有無は、透過型電子顕微鏡(TEM:Transmission Electron Microscope)等により確認することができる。さらに、紫外可視近赤外分光光度計(日本分光社製、V570)により波長450~600nmの光の透過率を測定した。例1-1~例1-3については、肉厚0.3mmに換算した透過率(ガラス板の表面反射ありで算出)を得た。例2-1~例2-8については、肉厚0.05mmに換算した透過率(ガラス板の表面反射ありで算出)を得た。表1、2、3に、結晶の有無、波長450~600nmの光の平均透過率および450nmの光の透過率を示す。また、表1にはCu(Cu2+,Cuの合計)のカチオン%での含有量、およびCl+Br+Iのアニオン%での含有量を示す。
[Evaluation]
About the glass plate obtained in each example, the presence or absence of crystal precipitation can be confirmed with a transmission electron microscope (TEM: Transmission Electron Microscope) or the like. Further, the transmittance of light having a wavelength of 450 to 600 nm was measured with an ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO Corporation, V570). For Examples 1-1 to 1-3, the transmittance (calculated with the surface reflection of the glass plate) converted to a thickness of 0.3 mm was obtained. For Examples 2-1 to 2-8, the transmittance (calculated with the surface reflection of the glass plate) converted to a thickness of 0.05 mm was obtained. Tables 1, 2, and 3 show the presence or absence of crystals, the average transmittance of light having a wavelength of 450 to 600 nm, and the transmittance of light having a wavelength of 450 nm. Table 1 shows the content of Cu (total of Cu 2+ and Cu + ) in cation% and the content of Cl + Br + I in anion%.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 以上のようにして作製した各光学ガラスの光学特性について、以下の項目を評価した。 The following items were evaluated for the optical characteristics of each optical glass produced as described above.
(波長と透過率の近似直線の傾き)
 傾き(S)の決定方法は以下のとおりである。
 光学ガラスの分光透過率を測定する。次いで、300nm~450nmの波長帯域の光の透過率が50%にとなる波長(整数値、λ50(300-450))を特定する。ここで、分光透過率を示す曲線より得られる波長が整数値とならない場合は、最も近い整数値を透過率が50%となる波長とする。そして、λ50(300-450)を中心とし、λ50(300-450)から短波長側および長波長側にそれぞれ3nm離れた波長まで1nmごとの透過率データを7点決定する。そして、この7点のデータより波長をX軸、透過率をY軸とした近似直線を作成し、得られる近似直線の傾きを前述の波長と透過率との近似直線の傾きとする。
 この方法で決定した実施例・比較例の傾き(S)を表4、表5、表6に示す。
(Slope of approximate straight line between wavelength and transmittance)
The method for determining the slope (S) is as follows.
The spectral transmittance of the optical glass is measured. Next, the wavelength (integer value, λ 50 (300-450) ) at which the transmittance of light in the wavelength band of 300 nm to 450 nm is 50% is specified. Here, when the wavelength obtained from the curve indicating the spectral transmittance does not become an integer value, the nearest integer value is set as a wavelength at which the transmittance is 50%. Then, seven points of transmittance data for each 1 nm are determined from λ 50 (300-450) as the center to a wavelength 3 nm away from λ 50 (300-450) on the short wavelength side and the long wavelength side. Then, an approximate straight line with the wavelength as the X axis and the transmittance as the Y axis is created from the data of these seven points, and the slope of the obtained approximate straight line is set as the slope of the approximate straight line between the wavelength and the transmittance.
Tables 4, 5, and 6 show the slopes (S) of Examples and Comparative Examples determined by this method.
(波長450nm~480nmの波長帯域の光の平均透過率)
 光学ガラスの分光透過率を測定する。そして、得られた分光透過率から、波長450nm~480nmの波長帯域の光の平均透過率を算出する。
 この方法で得られた実施例・比較例の平均透過率を表4、表5、表6に示す。
(Average transmittance of light in the wavelength band of 450 nm to 480 nm)
The spectral transmittance of the optical glass is measured. Then, from the obtained spectral transmittance, the average transmittance of light in a wavelength band of 450 nm to 480 nm is calculated.
Tables 4, 5 and 6 show the average transmittances of Examples and Comparative Examples obtained by this method.
(紫外線側の透過率50%の波長と赤外線側の透過率50%の波長との差)
 上記で得られたλ50(300-450)を紫外線側の透過率50%の波長とする。同様に600nm~700nmの波長帯域の光の透過率が50%にとなる波長(整数値、λ50(600-700))を特定する。そして、両データの差分から波長の差(λ50(600-700)-λ50(300-450))を算出する。
 この方法で得られた実施例・比較例の波長の差を表4、表5、表6に示す。
(Difference between the wavelength of 50% transmittance on the ultraviolet side and the wavelength of 50% transmittance on the infrared side)
Obtained above lambda 50 an (300-450) and 50% transmittance of wavelengths of ultraviolet light side. Similarly, the wavelength (integer value, λ 50 (600−700) ) at which the transmittance of light in the wavelength band of 600 nm to 700 nm is 50% is specified. Then, a wavelength difference (λ 50 (600−700) −λ 50 (300−450) ) is calculated from the difference between the two data.
Table 4, Table 5, and Table 6 show the wavelength differences of Examples and Comparative Examples obtained by this method.
(平均吸光係数の比率)
 光学ガラスの平均吸光係数の比率の決定方法は以下のとおりである。
 光学ガラスの分光透過率を測定する。そして、得られた分光透過率から、波長450nm~480nmの波長帯域の平均吸光係数(ε(450-480))および波長700nm~850nmの波長帯域の平均吸光係数(ε(700-850))をそれぞれ算出する。そして、波長700nm~850nmの波長帯域の平均吸光係数を、波長450nm~480nmの波長帯域の平均吸光係数で割ることで平均吸光係数の比率(ε(700-850)/ε(450-480))を決定する。
 この方法で得られた実施例・比較例の平均吸光係数の比率を表4、表5、表6に示す。
(Average extinction coefficient ratio)
The method for determining the ratio of the average extinction coefficient of the optical glass is as follows.
The spectral transmittance of the optical glass is measured. Then, from the obtained spectral transmittance, the average extinction coefficient in the wavelength band of the wavelength 450nm ~ 480nm (ε (450-480) ) and the average absorption coefficient in the wavelength band of the wavelength 700nm ~ 850nm (ε (700-850) ) Calculate each. Then, the ratio of the average extinction coefficient (ε (700-850) / ε (450-480) ) is obtained by dividing the average extinction coefficient in the wavelength range of 700 nm to 850 nm by the average extinction coefficient of the wavelength range of 450 nm to 480 nm. To decide.
Tables 4, 5 and 6 show the ratios of the average extinction coefficients of Examples and Comparative Examples obtained by this method.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表4、表5、表6より、本発明の実施例の各光学ガラスは、比較例の各光学ガラスに対し、近紫外線のカット特性が急峻(傾き(S)が急)である。これにより、不要な近紫外線の透過率を極めて低くできるため、撮像画像におけるフレア、偽色、ゴースト等の発生を抑制することができる。 From Table 4, Table 5, and Table 6, each optical glass of the examples of the present invention has a steep near-ultraviolet cut characteristic (slope (S) is steep) with respect to each optical glass of the comparative example. Thereby, since the transmittance of unnecessary near ultraviolet rays can be extremely reduced, the occurrence of flare, false color, ghost, and the like in the captured image can be suppressed.
 本発明の実施例の各光学ガラスは、比較例の各光学ガラスに対し、可視領域の青色光の透過率が特に高い。これにより、色再現性が良好な撮像画像を得ることができる。
 本発明の実施例の各光学ガラスは、可視領域の波長帯の幅(λ50(600-700)-λ50(300-450))が広い。これにより、色再現性が良好な撮像画像を得ることができる。
Each optical glass of the Example of this invention has especially high transmittance | permeability of the blue light of a visible region with respect to each optical glass of a comparative example. Thereby, a captured image with good color reproducibility can be obtained.
Each optical glass of the embodiment of the present invention has a wide wavelength band in the visible region (λ 50 (600-700) −λ 50 (300-450) ). Thereby, a captured image with good color reproducibility can be obtained.
 本発明の実施例の各光学ガラスは、比較例の各光学ガラスに対し、平均吸光係数の比率(ε(700-850)/ε(450-480))が高い。すなわち、本発明の実施例の各光学ガラスは、遮蔽すべき近赤外線の光を確実にカットしつつ、透過したい可視領域の青色光の透過率が高い。このように、メリハリのある光学特性を備えるため、色再現性が良好な撮像画像を得ることができる。 Each optical glass of the example of the present invention has a higher ratio of average extinction coefficient (ε (700-850) / ε (450-480) ) than that of the optical glass of the comparative example. That is, each optical glass of the embodiment of the present invention has a high transmittance of blue light in the visible region to be transmitted while reliably cutting near infrared light to be shielded. As described above, since the optical characteristics are sharp, it is possible to obtain a captured image with good color reproducibility.
 本発明によれば、近紫外線を確実にカットすることで偽色やフレア等の発生を抑制し、かつ可視領域の光(特に青色光)の透過率の高い光学ガラスが得られるため、高感度化・高精細化する固体撮像装置の近赤外線カットフィルタガラスに用いた場合、特に青色光の透過率が高く色再現性が良好である。また、近紫外線のカット特性が高いため、撮像画像におけるフレア、偽色、ゴースト等のノイズの発生を抑制することができる。 According to the present invention, the near-ultraviolet rays are surely cut to suppress generation of false colors and flares, and an optical glass having a high transmittance of light in the visible region (particularly blue light) can be obtained. When used in near-infrared cut filter glass of a solid-state imaging device that is becoming higher in definition, the blue light transmittance is particularly high and the color reproducibility is good. In addition, since the near-ultraviolet cut characteristic is high, it is possible to suppress the occurrence of noise such as flare, false color, and ghost in the captured image.

Claims (11)

  1.  赤外線および紫外線を吸収する光学ガラスであって、
    前記光学ガラスは、300nm~450nmの波長帯域で光の透過率が50%となる波長の前後3nmの波長の範囲で算出される、波長と透過率との近似直線の傾きが3以上であることを特徴とする光学ガラス。
    An optical glass that absorbs infrared rays and ultraviolet rays,
    In the optical glass, the slope of the approximate straight line between the wavelength and the transmittance calculated in the wavelength range of 3 nm before and after the wavelength at which the light transmittance is 50% in the wavelength band of 300 nm to 450 nm is 3 or more. Optical glass characterized by
  2.  波長450nm~480nmの光の平均透過率が80%以上であることを特徴とする請求項1記載の光学ガラス。 2. The optical glass according to claim 1, wherein an average transmittance of light having a wavelength of 450 nm to 480 nm is 80% or more.
  3.  600nm~700nmの波長帯域での光の透過率が50%となる波長から、300nm~450nmの波長帯域での光の透過率が50%となる波長を引いた値が、200nm~300nmの範囲にあることを特徴とする請求項1または請求項2に記載の光学ガラス。 The value obtained by subtracting the wavelength at which the light transmittance in the wavelength band of 300 nm to 450 nm is 50% from the wavelength at which the light transmittance in the wavelength band of 600 nm to 700 nm is 50% is in the range of 200 nm to 300 nm. The optical glass according to claim 1, wherein the optical glass is provided.
  4.  波長450nm~480nmの平均吸光係数に対する波長700nm~850nmの平均吸光係数の比率が33以上であることを特徴とする請求項1ないし請求項3のいずれか1項に記載の光学ガラス。 4. The optical glass according to claim 1, wherein a ratio of an average extinction coefficient at a wavelength of 700 nm to 850 nm to an average extinction coefficient at a wavelength of 450 nm to 480 nm is 33 or more.
  5.  カチオン成分としてP及びCuを必須で含有し、
     アニオン成分としてCl、Br及びIから選ばれる少なくとも1種を含有し、
     前記Cuの含有量はカチオン%で0.5~25%であり、かつ
     結晶を含有することを特徴とする請求項1ないし請求項4のいずれか1項に記載の光学ガラス。
    Containing P and Cu as a cation component,
    Containing at least one selected from Cl, Br and I as an anionic component;
    The optical glass according to any one of claims 1 to 4, wherein the Cu content is 0.5 to 25% in terms of cation%, and contains crystals.
  6.  前記Cl、Br及びIから選ばれる少なくとも1種の含有量が、アニオン%で0.01~20%であることを特徴とする請求項5に記載の光学ガラス。 6. The optical glass according to claim 5, wherein the content of at least one selected from Cl, Br and I is 0.01 to 20% in terms of anion%.
  7.  前記結晶は、CuCl、CuBr及びCuIから選ばれる少なくとも1種の結晶を含むことを特徴とする、請求項5または請求項6に記載の光学ガラス。 The optical glass according to claim 5 or 6, wherein the crystal includes at least one crystal selected from CuCl, CuBr, and CuI.
  8.  カチオン成分としてAgを含有し、
     前記Agの含有量がカチオン%で0.01~5%であることを特徴とする請求項5ないし請求項7のいずれか1項記載の光学ガラス。
    Containing Ag as a cation component,
    8. The optical glass according to claim 5, wherein the Ag content is 0.01 to 5% in terms of cation%.
  9.  酸化物基準の質量%表示で
    :35~75%
    Al:5~15%
    O:3~30%(但し、ROはLiO、NaO及びKOの合量を表す。)
    R’O:3~35%(但し、R’OはMgO、CaO、SrO、BaO、及びZnOの合量を表す。)
    CuO:0.5~20%
    を含有することを特徴とする、請求項5ないし請求項8のいずれか1項に記載の光学ガラス。
    P 2 O 5 : 35 to 75% in terms of mass% based on oxide
    Al 2 O 3 : 5 to 15%
    R 2 O: 3 to 30% (where R 2 O represents the total amount of Li 2 O, Na 2 O and K 2 O)
    R′O: 3 to 35% (where R′O represents the total amount of MgO, CaO, SrO, BaO, and ZnO)
    CuO: 0.5-20%
    The optical glass according to claim 5, further comprising:
  10.  カチオン%で
    5+:20~50%
    Al3+:5~20%
    :15~40%(但し、RはLi、Na、及びKの合量を表す)
    R’2+:5~30%(但し、R’2+はMg2+、Ca2+、Sr2+、Ba2+、及びZn2+の合量を表す)
    Cu2+とCuの合量:0.5~25%
     アニオン%で
    :10~70%
    を含有することを特徴とする、請求項5ないし請求項8のいずれか1項に記載の光学ガラス。
    P 5+ in cation%: 20-50 %
    Al 3+: 5 ~ 20%
    R + : 15 to 40% (where R + represents the total amount of Li + , Na + , and K + )
    R ′ 2+ : 5 to 30% (where R ′ 2+ represents the total amount of Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , and Zn 2+ )
    Total amount of Cu 2+ and Cu + : 0.5-25%
    Anion% F : 10-70%
    The optical glass according to claim 5, further comprising:
  11.  請求項1ないし請求項10のいずれか1項に記載の光学ガラスを備える近赤外線カットフィルタ。 A near-infrared cut filter comprising the optical glass according to any one of claims 1 to 10.
PCT/JP2017/026640 2016-07-29 2017-07-24 Optical glass and near-infrared cut filter WO2018021222A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780046493.4A CN109562981A (en) 2016-07-29 2017-07-24 Optical glass and near infrared cut-off filters
JP2018529868A JP7024711B2 (en) 2016-07-29 2017-07-24 Optical glass and near infrared cut filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-150155 2016-07-29
JP2016150155 2016-07-29

Publications (1)

Publication Number Publication Date
WO2018021222A1 true WO2018021222A1 (en) 2018-02-01

Family

ID=61016401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026640 WO2018021222A1 (en) 2016-07-29 2017-07-24 Optical glass and near-infrared cut filter

Country Status (4)

Country Link
JP (1) JP7024711B2 (en)
CN (1) CN109562981A (en)
TW (1) TWI725213B (en)
WO (1) WO2018021222A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020057009A (en) * 2019-12-16 2020-04-09 日本板硝子株式会社 Optical filter and information terminal with camera
CN114839709A (en) * 2022-03-22 2022-08-02 大连海事大学 Cu 2+ Ion-doped perovskite quantum dot glass optical filter
US11585968B2 (en) 2017-07-27 2023-02-21 Nippon Sheet Glass Company, Limited Optical filter and camera-equipped information device
US11592603B2 (en) 2017-07-27 2023-02-28 Nippon Sheet Glass Company, Limited Optical filter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110255897B (en) * 2019-06-25 2020-02-18 成都光明光电股份有限公司 Glass, glass product and manufacturing method thereof
CN114538772B (en) * 2022-03-24 2022-12-02 成都光明光电股份有限公司 Glass, glass element and optical filter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105865A (en) * 1991-03-18 1993-04-27 Isuzu Seiko Glass Kk Ultraviolet screening material
JPH09202644A (en) * 1995-12-12 1997-08-05 Carl Zeiss:Fa Aluminophosphate salt glass containing copper (ii) oxide
WO2007058185A1 (en) * 2005-11-15 2007-05-24 Isuzu Glass Co., Ltd. Blue-violet light blocking glass
JP2014012630A (en) * 2012-06-22 2014-01-23 Schott Ag Colored glass
JP2014101255A (en) * 2012-11-21 2014-06-05 Nippon Electric Glass Co Ltd Method for producing fluorophosphate glass
JP2015013773A (en) * 2013-07-05 2015-01-22 日本電気硝子株式会社 Glass for ir cut filter
JP2015522500A (en) * 2012-04-11 2015-08-06 成都光明光▲電▼股▲分▼有限公司 Near infrared light absorbing glass, near infrared light absorbing element, and near infrared light absorbing optical filter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3550705B2 (en) * 1993-06-08 2004-08-04 旭硝子株式会社 Near infrared absorbing material
JP5105865B2 (en) 2006-12-28 2012-12-26 東芝燃料電池システム株式会社 Polymer electrolyte fuel cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105865A (en) * 1991-03-18 1993-04-27 Isuzu Seiko Glass Kk Ultraviolet screening material
JPH09202644A (en) * 1995-12-12 1997-08-05 Carl Zeiss:Fa Aluminophosphate salt glass containing copper (ii) oxide
WO2007058185A1 (en) * 2005-11-15 2007-05-24 Isuzu Glass Co., Ltd. Blue-violet light blocking glass
JP2015522500A (en) * 2012-04-11 2015-08-06 成都光明光▲電▼股▲分▼有限公司 Near infrared light absorbing glass, near infrared light absorbing element, and near infrared light absorbing optical filter
JP2014012630A (en) * 2012-06-22 2014-01-23 Schott Ag Colored glass
JP2014101255A (en) * 2012-11-21 2014-06-05 Nippon Electric Glass Co Ltd Method for producing fluorophosphate glass
JP2015013773A (en) * 2013-07-05 2015-01-22 日本電気硝子株式会社 Glass for ir cut filter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11585968B2 (en) 2017-07-27 2023-02-21 Nippon Sheet Glass Company, Limited Optical filter and camera-equipped information device
US11592603B2 (en) 2017-07-27 2023-02-28 Nippon Sheet Glass Company, Limited Optical filter
US11885993B2 (en) 2017-07-27 2024-01-30 Nippon Sheet Glass Company, Limited Optical filter and method of manufacturing
JP2020057009A (en) * 2019-12-16 2020-04-09 日本板硝子株式会社 Optical filter and information terminal with camera
CN114839709A (en) * 2022-03-22 2022-08-02 大连海事大学 Cu 2+ Ion-doped perovskite quantum dot glass optical filter
CN114839709B (en) * 2022-03-22 2024-03-29 大连海事大学 Cu (copper) alloy 2+ Ion doped perovskite quantum dot glass filter

Also Published As

Publication number Publication date
CN109562981A (en) 2019-04-02
JPWO2018021222A1 (en) 2019-05-16
JP7024711B2 (en) 2022-02-24
TWI725213B (en) 2021-04-21
TW201806895A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
JP7024711B2 (en) Optical glass and near infrared cut filter
JP6448835B2 (en) Filter glass
JP6332916B2 (en) Colored glass
JP5605400B2 (en) Near-infrared cut filter glass
JP5921877B2 (en) Fluorophosphate glass
US8476177B2 (en) Highly refractive and highly transparent optical glass
JP3965352B2 (en) Copper-containing glass, near infrared light absorption element, and near infrared light absorption filter
WO2015156163A1 (en) Near infrared cut-off filter glass
US10150693B2 (en) Near infrared cutoff filter glass
JP5251365B2 (en) Near-infrared cut filter glass
US10358378B2 (en) Near infrared cutoff filter glass
JP6992494B2 (en) Near infrared cut filter glass and near infrared cut filter
JP6962322B2 (en) Near infrared cut filter glass
TWI743073B (en) Optical glass, preform and optical element
JP3668900B2 (en) Optical glass without solarization
JP6048403B2 (en) Optical glass and optical element
WO2022138299A1 (en) Fluorophosphate glass and near infrared ray cut filter
JP2003160358A (en) Filter glass for cutting near-infrared ray

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834228

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018529868

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834228

Country of ref document: EP

Kind code of ref document: A1