JPH0231013B2 - RINSANENGARASU - Google Patents

RINSANENGARASU

Info

Publication number
JPH0231013B2
JPH0231013B2 JP26993385A JP26993385A JPH0231013B2 JP H0231013 B2 JPH0231013 B2 JP H0231013B2 JP 26993385 A JP26993385 A JP 26993385A JP 26993385 A JP26993385 A JP 26993385A JP H0231013 B2 JPH0231013 B2 JP H0231013B2
Authority
JP
Japan
Prior art keywords
glass
present
total amount
transmittance
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26993385A
Other languages
Japanese (ja)
Other versions
JPS62128943A (en
Inventor
Makoto Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP26993385A priority Critical patent/JPH0231013B2/en
Publication of JPS62128943A publication Critical patent/JPS62128943A/en
Publication of JPH0231013B2 publication Critical patent/JPH0231013B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は燐酸塩ガラスに関し、例えば、カラー
VTRカメラの色補正のために使用されるフイル
ターガラス等に利用される。 [従来の技術] カラーVTRカメラに使用されている撮像管の
光電素子の分光感度は、可視域から近赤外域
950nmまで伸びているため、近赤外域をフイルタ
ーにより吸収しなければ、画像が赤身を帯び、良
好な色再現を得ることができない。このようなフ
イルターの目的は、近赤外域をカツトすることで
あるが、吸収が大き過ぎ、その吸収が可視域にま
で影響を及ぼし、可視域の透過率を下げると、逆
に色再現が悪くなる。従つて、このようなフイル
ターに求められる特性は近赤外域を十分にカツト
し、かつ、可視域はできるだけ透過率の高いもの
が良い。具体的には波長400〜550nmの光の透過
率が高く、波長600〜700nmの光の透過をシヤー
プに吸収カツトし、少なくとも波長950nmに至る
近赤外域の光を吸収する近赤外吸収フイルターが
必要とされる。 従来、このような近赤外吸収フイルターとして
は、ガラスにCuOを添加した赤外吸収ガラスフイ
ルターが用いられてきている。このフイルターは
CuOによる着色を目的に合う特性にするために、
燐酸塩ガラスをベースとして用いるのが通常であ
るが、周知の通り燐酸塩ガラスはもともと化学的
耐久性が悪く、その上に、透過率特性を向上させ
るために、例えば、特公昭52−5330号公報、特公
昭52−6734号公報にみられるように、アルカリ成
分、あるいはZnOを加えるという方法が採られて
きたため、一層化学的耐久性を悪化させ、実用上
十分なガラスが得られていなかつた。 [発明が解決しようとする問題点] 本発明は、このような従来技術の問題点を除去
するためになされたものであり、本発明の目的
は、カラーVTRカメラ用フイルター等に要求さ
れる近赤外吸収ガラスとしての透過率特性を損う
ことなく、実用に十分耐えうる化学的耐久性の高
い燐酸塩ガラスを提供することである。 [問題点を解決するための手段] 本発明の燐酸塩ガラスは、上記目的を達成する
ためになされたものであり、化学的耐久性を悪化
させるアルカリ成分及びZnOを用いることなく、
Al2O3、さらにBaO,MgO,CaO及びSrOのアル
カリ土類金属酸化物を必須成分として含有するこ
とを特徴とし、より詳しくは、本発明による燐酸
塩ガラスは重量百分率(%)でP2O5が60〜90、
Al2O3が7.5〜20、B2O3とSiO2の合量が0〜15、
BaOとMgOとCaOとSrOの合量が1〜25、Y2O3
とLa2O3とZrO2とTa2O5とTiO2の合量が0〜15、
PbOが0〜10なる基礎ガラス100重量部に対して、
CuOが0.4〜15.0重量部を添加することを特徴と
する。 次に、本発明の燐酸塩ガラスを構成する成分の
限定理由を記す。P2O5は、ガラス形成酸化物で、
60%以下では波長600〜700nmにおいてシャープ
な吸収が得られず、また、90%以上では、吸収は
シヤープになるが、ガラスの失透性が増し、か
つ、化学的耐久性が急激に悪くなる。Al2O3は、
化学的耐久性を改善するための成分で、7.5%以
下ではその効果は小さく、20%以上では、ガラス
の熔解性が悪くなり難熔性を増す。SiO2及び
B2O3は、ガラスを安定化し、熔解後のガラスの
成形を容易にするが、合量で15%を越えると波長
600〜700nmにおけるシヤープな吸収が得られな
くなる。BaO,MgO,CaO及びSrOのアルカリ
土類金属酸化物は、化学的耐久性を改善する上で
必要成分であり、特にAl2O3との共存下によりそ
のの効果を増す。更に、これらのアルカリ土類金
属酸化物は熔解性、耐失透性をも改善し、全体と
しての合量が、1%以下ではこれらの効果がな
く、25%以上ではガラスを不安定にし、失透性を
増す。PbOは、ガラスの粘性を下げ熔解性を良く
するが、10%を越えると、波長400nm近傍に吸収
が現れ、可視域の透過率を下げる。加えて、ガラ
スの硬度を下げ、欠け易い、傷が付き易いなど加
工性が悪くなる。さらに、Y2O3,La2O3,ZrO2
Ta2O5及びTiO2は、近赤外域シヤープカツト特
性に影響を与えることなく、化学的耐久性と耐摩
耗性を改善するが、合量で15%を越えると、ガラ
スが不安定となり失透性を増す。CuOは、近赤外
域シヤープカツトのための非須成分であり、0.4
%以下では近赤外域の吸収が十分でなく、15%以
上ではガラスが不安定となり失透性を増す。 [実施例] 次に、本発明の実施例を表及び図面にもとづい
て説明する。本発明の実施例及び比較例の酸化物
組成(重量%)、得られた耐水性の値を表に示し
た。表中、No.1〜14は本発明に係る実施例組成、
No.15及びNo.16はそれぞれ特公昭52−5330号公報及
び特公昭52−6734号公報に係る比較例である。
Dwは耐水性測定値(重量減%)を示す。
[Industrial Application Field] The present invention relates to phosphate glass, for example, color glass.
Used for filter glass used for color correction in VTR cameras. [Conventional technology] The spectral sensitivity of the photoelectric element in the image pickup tube used in color VTR cameras ranges from the visible region to the near-infrared region.
Since it extends to 950nm, unless the near-infrared region is absorbed by a filter, the image will have a reddish tinge and good color reproduction cannot be obtained. The purpose of such a filter is to cut out the near-infrared region, but if the absorption is too large and affects the visible region, and if the transmittance in the visible region is lowered, color reproduction will deteriorate. Become. Therefore, the characteristics required of such a filter are to sufficiently cut out the near-infrared region and to have as high a transmittance as possible in the visible region. Specifically, there is a near-infrared absorption filter that has high transmittance for light with a wavelength of 400 to 550 nm, sharply absorbs and cuts transmission of light with a wavelength of 600 to 700 nm, and absorbs at least light in the near-infrared region up to a wavelength of 950 nm. Needed. Conventionally, as such a near-infrared absorption filter, an infrared absorption glass filter in which CuO is added to glass has been used. This filter is
In order to make the coloration by CuO suitable for the purpose,
Phosphate glass is usually used as a base, but as is well known, phosphate glass originally has poor chemical durability, and in addition, in order to improve transmittance characteristics, As seen in Japanese Patent Publication No. 52-6734, methods of adding alkaline components or ZnO have been adopted, which further deteriorates chemical durability and makes it impossible to obtain glass that is sufficient for practical use. . [Problems to be Solved by the Invention] The present invention has been made to eliminate the problems of the prior art, and an object of the present invention is to solve the problems of the prior art. An object of the present invention is to provide a phosphate glass with high chemical durability that can withstand practical use without impairing its transmittance characteristics as an infrared absorbing glass. [Means for Solving the Problems] The phosphate glass of the present invention has been made to achieve the above object, and is made without using an alkaline component or ZnO that deteriorates chemical durability.
It is characterized by containing Al 2 O 3 and also alkaline earth metal oxides of BaO, MgO, CaO and SrO as essential components, and more specifically, the phosphate glass according to the invention contains P 2 in weight percentage (%). O5 is 60-90,
Al 2 O 3 is 7.5-20, total amount of B 2 O 3 and SiO 2 is 0-15,
Total amount of BaO, MgO, CaO, and SrO is 1 to 25, Y 2 O 3
and the total amount of La 2 O 3 , ZrO 2 , Ta 2 O 5 and TiO 2 is 0 to 15,
For 100 parts by weight of basic glass with PbO of 0 to 10,
It is characterized in that CuO is added in an amount of 0.4 to 15.0 parts by weight. Next, the reason for limiting the components constituting the phosphate glass of the present invention will be described. P2O5 is a glass-forming oxide,
If it is less than 60%, sharp absorption cannot be obtained at a wavelength of 600 to 700 nm, and if it is more than 90%, the absorption becomes sharp, but the devitrification of the glass increases and the chemical durability deteriorates rapidly. . Al2O3 is
This component is used to improve chemical durability. If it is less than 7.5%, the effect will be small, and if it is more than 20%, the meltability of the glass will deteriorate and it will become more difficult to melt. SiO2 and
B 2 O 3 stabilizes the glass and makes it easier to shape the glass after melting, but if the total amount exceeds 15%, the wavelength
Sharp absorption at 600 to 700 nm cannot be obtained. Alkaline earth metal oxides such as BaO, MgO, CaO, and SrO are necessary components for improving chemical durability, and their effects are particularly enhanced in coexistence with Al 2 O 3 . Furthermore, these alkaline earth metal oxides also improve the solubility and devitrification resistance, and if the total amount is less than 1%, these effects are absent, and if it is more than 25%, the glass becomes unstable, Increases devitrification. PbO lowers the viscosity of glass and improves its meltability, but if it exceeds 10%, absorption appears in the vicinity of a wavelength of 400 nm, reducing transmittance in the visible range. In addition, it lowers the hardness of the glass, making it more likely to chip or be scratched, resulting in poor workability. Furthermore, Y 2 O 3 , La 2 O 3 , ZrO 2 ,
Ta 2 O 5 and TiO 2 improve chemical durability and abrasion resistance without affecting near-infrared sharp cut properties, but if the total amount exceeds 15%, the glass becomes unstable and devitrification occurs. Increase sex. CuO is a non-essential component for near-infrared sharp cut, and 0.4
If it is less than 15%, absorption in the near-infrared region will not be sufficient, and if it is more than 15%, the glass will become unstable and devitrification will increase. [Example] Next, an example of the present invention will be described based on tables and drawings. The oxide compositions (wt%) and the obtained water resistance values of Examples and Comparative Examples of the present invention are shown in the table. In the table, Nos. 1 to 14 are example compositions according to the present invention,
No. 15 and No. 16 are comparative examples according to Japanese Patent Publication No. 52-5330 and Japanese Patent Publication No. 52-6734, respectively.
Dw indicates the water resistance measurement value (% weight loss).

【表】 実施例No.10にもとづいて具体的に説明する。
P2O5が80.0、Al2O3が13.3、MgOが6.7なる重量%
の基礎ガラス100重量部に対して、CuOが1.9重量
部となるように、原料として、燐酸アルミニウ
ム、炭酸マグネシウム、酸化第二銅、正燐酸(89
%)を所定量秤量し、液体である正燐酸を除く全
粉状原料をよく混合し、この混合原料をプラスチ
ツク容器に移し、正燐酸を加えてよく混合する。
次に、白金製ルツボを用いて、1300℃で熔解、撹
拌、清澄を行い、1200℃まで温度を下げた後、金
型に鋳込み、徐冷し、厚さ1mmに研磨してガラス
フイルターとした。なお、CuOは熔解清澄中、還
元され易いため、熔解は酸化性雰囲気下で行な
い、できるだけ低温で熔解する必要がある。さら
に、原料の選定にあたつて、他の実施例において
含有されるBaO,SrO等については可能な限り硝
酸塩を使用することである。斯くして得られたガ
ラスの重量減(%)による耐水性の値(日本光学
硝子工業会規格の粉末法による。)は0.03wt%で
あつた。この実施例No.10を含めて、本発明に係る
実施例No.1〜14の耐水性の値は0.01〜0.06wt%で
あり、比較例No.15,16はそれぞれ0.13、0.11wt%
と、本発明に係る実施例は全て、アルカリ、また
はZnOを含む比較例よりも、小さな耐水性の値を
示し、実用に十分耐え得る耐久性を有している。 更に、実施例中のNo.1,3,6,7,10,11及
び12と、比較例No.15,16の組成ガラスを30×30×
3mmに全面を研磨して、室温:1時間→65℃:7
時間→室温:1時間→65℃:15時間、を1サイク
ルとする温湿度サイクルをガラスに与えて、白ヤ
ケをガラス表面に生成させ、その程度を肉眼で観
察した。なお、上記65℃における相対湿度は95%
である。その結果、実施例No.1,3,6,7,
10,11及び12の組成ガラスは、10サイクル後でも
ガラス表面に殆ど白ヤケが生じなかつたが、一
方、比較例No.15,16の組成ガラスについては、5
サイクル目から白ヤケが目立ち始め、10サイクル
を経た時点では、表面が白く変質し、ガラスの透
明度を失うに至つた。以上のことからも、本発明
に係る組成ガラスは、非常に大きな化学的耐久性
を有していることが判る。 次に、実施例及び比較例の分光透過率曲線を図
面に示した。図面に示した曲線4,7,10,14,
15及び16は全て表中の組成No.と対応し、それぞれ
の組成No.のガラスの厚さは何れも1mmにしてい
る。前述の実施例No.10の分光透過率曲線は、他の
実施例と共に、図面に示した通りである。図に示
されるように本発明に係るガラスフイルターは、
アルカリ、またはZnOを含む比較例のガラスフイ
ルターに比べて、波長400〜550nmにおける透過
率が高く、それより長波長側においては透過率が
低い、優れた分光透過率特性を有する。 [発明の効果] 本発明によれば、従来技術において必須であつ
たアルカリ成分、ZnO成分を、Al2O3との共存下
にて、BaO,MgO,CaO及びSrOのアルカリ土
類に置き換えることにより、極めて化学的耐久性
に優れた理想的な燐酸塩ガラスを造ることができ
る。さらに、分光透過率特性についても、従来技
術よりも優れたものが得られる。
[Table] A detailed explanation will be given based on Example No. 10.
Weight % P2O5 is 80.0 , Al2O3 is 13.3 , MgO is 6.7
As raw materials, aluminum phosphate, magnesium carbonate, cupric oxide, orthophosphoric acid (89
%), thoroughly mix all the powdered raw materials except the liquid orthophosphoric acid, transfer the mixed raw materials to a plastic container, add orthophosphoric acid, and mix well.
Next, using a platinum crucible, melting, stirring, and clarification were performed at 1300℃, and after lowering the temperature to 1200℃, it was cast into a mold, slowly cooled, and polished to a thickness of 1 mm to form a glass filter. . In addition, since CuO is easily reduced during melting and clarification, it is necessary to perform the melting in an oxidizing atmosphere and at the lowest possible temperature. Furthermore, when selecting raw materials, nitrates should be used as much as possible for BaO, SrO, etc. contained in other examples. The water resistance value in terms of weight loss (%) of the glass thus obtained (according to the powder method according to the standards of the Japan Optical Glass Industry Association) was 0.03 wt%. Including this Example No. 10, the water resistance values of Examples Nos. 1 to 14 according to the present invention are 0.01 to 0.06 wt%, and Comparative Examples Nos. 15 and 16 are 0.13 and 0.11 wt%, respectively.
All of the examples according to the present invention exhibit smaller water resistance values than the comparative examples containing alkali or ZnO, and have durability sufficient for practical use. Furthermore, the composition glasses of Nos. 1, 3, 6, 7, 10, 11 and 12 in Examples and Comparative Examples Nos. 15 and 16 were prepared in a 30×30×
Polish the entire surface to 3mm, room temperature: 1 hour → 65℃: 7
The glass was subjected to a temperature/humidity cycle of time → room temperature: 1 hour → 65°C: 15 hours to generate white discoloration on the glass surface, and the extent of the discoloration was observed with the naked eye. The relative humidity at 65℃ above is 95%.
It is. As a result, Example Nos. 1, 3, 6, 7,
The composition glasses No. 10, 11, and 12 showed almost no white discoloration on the glass surface even after 10 cycles, but on the other hand, the composition glasses No. 15 and 16 of Comparative Example
White discoloration began to become noticeable after the first cycle, and by the 10th cycle, the surface had turned white and the glass had lost its transparency. From the above, it can be seen that the composition glass according to the present invention has extremely high chemical durability. Next, the spectral transmittance curves of Examples and Comparative Examples are shown in the drawings. Curves 4, 7, 10, 14, shown in the drawing
15 and 16 all correspond to the composition numbers in the table, and the thickness of the glass of each composition number is 1 mm. The spectral transmittance curve of the aforementioned Example No. 10 is as shown in the drawings along with the other examples. As shown in the figure, the glass filter according to the present invention is
Compared to comparative glass filters containing alkali or ZnO, it has excellent spectral transmittance characteristics, with higher transmittance at wavelengths of 400 to 550 nm and lower transmittance at longer wavelengths. [Effects of the Invention] According to the present invention, the alkaline component and ZnO component that were essential in the prior art can be replaced with alkaline earth elements such as BaO, MgO, CaO, and SrO in coexistence with Al 2 O 3 . This makes it possible to create an ideal phosphate glass with extremely high chemical durability. Furthermore, spectral transmittance characteristics that are superior to those of the prior art can also be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明の近赤外吸収ガラスと従来技術
によるガラスとの分光透過率の相違を示す特性図
である。
The drawing is a characteristic diagram showing the difference in spectral transmittance between the near-infrared absorbing glass of the present invention and the glass according to the prior art.

Claims (1)

【特許請求の範囲】[Claims] 1 重量百分率(%)でP2O5が60〜90、Al2O3
7.5〜20、B2O3とSiO2の合量が0〜15、BaOと
MgOとCaOとSrOの合量が1〜25、Y2O3
La2O3とZrO2とTa2O5とTiO2の合量が0〜15、
PbOが0〜10なる基礎ガラス100重量部に対して、
CuOが0.4〜15.0重量部を含有することを特徴と
する燐酸塩ガラス。
1 In terms of weight percentage (%), P 2 O 5 is 60-90, Al 2 O 3 is
7.5~20, total amount of B2O3 and SiO2 is 0~15, BaO and
The total amount of MgO, CaO and SrO is 1 to 25, Y 2 O 3 and
The total amount of La 2 O 3 , ZrO 2 , Ta 2 O 5 and TiO 2 is 0 to 15,
For 100 parts by weight of basic glass with PbO of 0 to 10,
A phosphate glass containing 0.4 to 15.0 parts by weight of CuO.
JP26993385A 1985-11-29 1985-11-29 RINSANENGARASU Expired - Lifetime JPH0231013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26993385A JPH0231013B2 (en) 1985-11-29 1985-11-29 RINSANENGARASU

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26993385A JPH0231013B2 (en) 1985-11-29 1985-11-29 RINSANENGARASU

Publications (2)

Publication Number Publication Date
JPS62128943A JPS62128943A (en) 1987-06-11
JPH0231013B2 true JPH0231013B2 (en) 1990-07-11

Family

ID=17479218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26993385A Expired - Lifetime JPH0231013B2 (en) 1985-11-29 1985-11-29 RINSANENGARASU

Country Status (1)

Country Link
JP (1) JPH0231013B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643254B2 (en) * 1988-02-29 1994-06-08 ホーヤ株式会社 Fluorophosphate glass
JPH04110903A (en) * 1990-08-31 1992-04-13 Hoya Corp Optical filter, solid state image pickup element having this optical filter and production of this optical filter
JP3396118B2 (en) * 1995-11-02 2003-04-14 オリンパス光学工業株式会社 Graded-index optical element and optical apparatus using the graded-index optical element
JPH11209144A (en) 1998-01-21 1999-08-03 Hoya Corp Glass for near infrared ray absorbing filter and near infrared ray absorbing filter using the same
JP3270423B2 (en) 1998-06-22 2002-04-02 オリンパス光学工業株式会社 Infrared absorbing glass and method for producing the same
DE102004011520A1 (en) * 2004-03-08 2005-10-06 Schott Ag Antimicrobial refractive index adapted phosphate glass
CN109761492A (en) * 2019-03-27 2019-05-17 湖北戈碧迦光电科技股份有限公司 Environmentally friendly lanthanum crown optical glass and its preparation method and application
CN114728837A (en) * 2019-11-14 2022-07-08 日本电气硝子株式会社 Glass article

Also Published As

Publication number Publication date
JPS62128943A (en) 1987-06-11

Similar Documents

Publication Publication Date Title
JP3236403B2 (en) Lead and barium-free crystal glass with high light transmission
US5668066A (en) Near infrared absorption filter glass
JP2747964B2 (en) Manufacturing method of optical glass
JP4351730B2 (en) Optical glass
TW201404757A (en) Coloured glasses
JPH04104918A (en) Near infrared absorbing glass
JPH07267673A (en) Low-melting-point durable phosphate glass and lense made of same
JPS6344698B2 (en)
JPS5915102B2 (en) Near infrared cut filter glass
JPH0427180B2 (en)
JPS6325245A (en) Filter glass for cutting near-infrared rays
JPH0231013B2 (en) RINSANENGARASU
JPH0455136B2 (en)
JP2510146B2 (en) Near infrared cut filter glass
JPH031246B2 (en)
JPH10167753A (en) Lead-free crown glass
JP2005320178A (en) Near infrared ray cut glass
JPH0578148A (en) Near infrared light cutting filter glass
JPH0383834A (en) Fluorophosphate glass
JP2000264675A (en) Glass for optical fiber
JP3749276B2 (en) Infrared transmission glass
JPH05353B2 (en)
JPH0774083B2 (en) Fluorophosphate glass
JPH048387B2 (en)
JPH0442344B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term