JPH0643245B2 - Method for producing silicon hexachloride - Google Patents

Method for producing silicon hexachloride

Info

Publication number
JPH0643245B2
JPH0643245B2 JP16378986A JP16378986A JPH0643245B2 JP H0643245 B2 JPH0643245 B2 JP H0643245B2 JP 16378986 A JP16378986 A JP 16378986A JP 16378986 A JP16378986 A JP 16378986A JP H0643245 B2 JPH0643245 B2 JP H0643245B2
Authority
JP
Japan
Prior art keywords
raw material
silicon
reactor
reaction
silicon raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16378986A
Other languages
Japanese (ja)
Other versions
JPS6321211A (en
Inventor
正章 伊藤
達彦 服部
泰久 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP16378986A priority Critical patent/JPH0643245B2/en
Publication of JPS6321211A publication Critical patent/JPS6321211A/en
Publication of JPH0643245B2 publication Critical patent/JPH0643245B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (イ)発明の目的 〔産業上の利用分野〕 本発明はシリコン系半導体、アモルファスシリコン等の
製造原料用特殊ガスとして最近特に注目を浴びているジ
シランの製造原料として、極めて有用である六塩化珪素
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Purpose of the invention [Industrial field of application] The present invention provides a raw material for disilane, which has recently attracted particular attention as a special gas for producing raw materials such as silicon-based semiconductors and amorphous silicon. The present invention relates to a very useful method for producing silicon hexachloride.

〔従来の技術〕 六塩化珪素は、例えば水素気流中で熱分解させ、多結晶
シリコン、単結晶シリコンを製造したり、また耐熱性、
耐摩耗性、耐蝕性等に優れたSiC、Si3N4の化学蒸着
膜あるいは粉末の製造に、更には有機珪素化合物の合成
にと、従来の珪素塩化物にはない特長を有するものとし
て、今後の需要の大きな増加が期待し得るものである。
[Prior Art] Silicon hexachloride is thermally decomposed in, for example, a hydrogen stream to produce polycrystalline silicon or single crystal silicon, or heat resistance,
For the production of chemical vapor deposition films or powders of SiC, Si 3 N 4 which are excellent in wear resistance, corrosion resistance, etc., and for the synthesis of organic silicon compounds, it has the features not found in conventional silicon chlorides. It can be expected that the demand will greatly increase in the future.

六塩化珪素の製造方法は、通常フェロシリコン、カルシ
ュウムシリコン、マグネシウムシリコン等の珪素合金あ
るいは金属珪素を、高温で塩素と反応させることにより
行われる(米国特許第2602728号明細書、同第2
621111号明細書)。
The method for producing silicon hexachloride is usually carried out by reacting silicon alloy such as ferrosilicon, calcium silicon, magnesium silicon or silicon metal with chlorine at high temperature (US Pat. No. 2,602,728, No. 2).
621111).

上記反応を行うに際し、従来固定層式反応器あるいは流
動層式反応器が用いられて来たが、極めて発熱の大きな
固気反応であるため、六塩化珪素の生成に好適な反応条
件をコントロールすることがむずかしく、工業的な規模
で行なうには未完成な状況にあった。
In performing the above reaction, a fixed bed type reactor or a fluidized bed type reactor has been conventionally used, but since it is a solid gas reaction with extremely large heat generation, the reaction conditions suitable for the production of silicon hexachloride are controlled. It was difficult and unfinished to do on an industrial scale.

即ち反応条件を好適な条件コントロール出来ないと、六
塩化珪素以外に四塩化珪素、あるいは八塩化珪素以上の
高次珪素塩化物も生成し、六塩化珪素の収率は著しく低
下する。
That is, if the reaction conditions cannot be controlled under suitable conditions, in addition to silicon hexachloride, silicon tetrachloride or higher-order silicon chlorides of silicon octachloride or higher are also formed, and the yield of silicon hexachloride is significantly reduced.

〔発明が解決しようとする問題〕[Problems to be solved by the invention]

珪素合金または金属珪素(以下珪素原料という)と塩素
との反応は、従来主に固定層式反応器に珪素原料を充填
した後、高温で塩素と反応させる方法が行なわれていた
が、工業上次の様な問題があった。
Conventionally, the reaction between silicon alloy or silicon metal (hereinafter referred to as silicon raw material) and chlorine has been performed by charging a fixed bed reactor with the silicon raw material and then reacting with chlorine at a high temperature. There were the following problems.

1)反応が発熱反応である為、反応中、反応器内に温度
分布が生じ、均一に温度をコントロールすることが難し
い。
1) Since the reaction is exothermic, a temperature distribution occurs in the reactor during the reaction, and it is difficult to control the temperature uniformly.

2)反応の際副生する、塩化鉄、塩化カルシュウム等の
副生塩化物による体積膨張の為、反応残渣が固結し、反
応後の反応残渣の取り出した困難である。
2) The reaction residue solidifies due to volume expansion due to by-produced chlorides such as iron chloride and calcium chloride produced as a by-product during the reaction, and it is difficult to take out the reaction residue after the reaction.

3)珪素原料の反応率が低い。3) The reaction rate of the silicon raw material is low.

従って、固定層式反応器では反応器の大きさが限定され
る等、工業的規模で実施するには種々問題があった。
Therefore, the fixed bed reactor has various problems in that it can be carried out on an industrial scale, such as the size of the reactor being limited.

上記問題点のいくつかは流動層式反応器を用いることに
よりある程度改善され得る。例えば温度の均一性は保ち
易くなる。しかし流動層式反応器でも、 1)流動化に要する多量のガス流量が必要であり、多大
な設備及び用役を必要とする。
Some of the above problems can be alleviated to some extent by using a fluidized bed reactor. For example, it becomes easy to maintain the temperature uniformity. However, even in the fluidized bed reactor, 1) a large amount of gas flow required for fluidization is required, and a large amount of equipment and utilities are required.

2)副生する微粉状の塩化鉄、塩化カルシウム等の塩化
物が、流動化に必要な多量のガス流に同伴して、珪素塩
化物と共に反応器から流出するので、これらの分離が困
難であり、かつ該微粒子による配管等の閉塞が起こる。
2) By-products such as finely powdered chlorides such as iron chloride and calcium chloride are entrained in a large amount of gas flow necessary for fluidization and flow out from the reactor together with silicon chlorides, so that separation of these is difficult. In addition, the fine particles cause clogging of the piping and the like.

3)塩素の反応率が低く、未反応物あるいは副生物の除
害に多大な費用を要する。
3) The reaction rate of chlorine is low, and it requires a great deal of cost to remove unreacted substances or by-products.

等の欠点があり、工業上適当とはいえなかった。However, it was not industrially suitable.

以上の如き固定層式及び流動層式反応器の問題点に鑑
み、六塩化珪素を大規模に製造する際に生ずる反応温度
の制御性、残渣の取り扱いに起因する問題、配管等の閉
塞に関する問題等を解決すべく鋭意研究した結果、本発
明者らは珪素原料と塩素を反応させて六塩化珪素を製造
するに際し、振動式反応器を用いる事を特徴とする六塩
化珪素の製造方法を先に発明し特許出願した(特願昭6
0−151297、特願昭61−41422)。更に本
発明者らは、反応温度の制御がより容易で、六塩化珪素
の収率が高く、処理能力が大きく、工業的に安定して六
塩化珪素を生産し得る方法を鋭意研究し、本発明を完成
するに至った。
In view of the problems of the fixed bed type and fluidized bed type reactors as described above, the controllability of the reaction temperature that occurs during the large-scale production of silicon hexachloride, the problem caused by the handling of the residue, and the problem related to the clogging of the piping, etc. As a result of diligent research to solve the above problems, the present inventors first conducted a method for producing silicon hexachloride characterized by using a vibration reactor when producing silicon hexachloride by reacting a silicon raw material with chlorine. Invented and applied for a patent (Japanese Patent Application No. 6)
0-151297, Japanese Patent Application No. 61-41422). Furthermore, the inventors of the present invention have earnestly studied a method in which the reaction temperature can be controlled more easily, the yield of silicon hexachloride is high, the processing capacity is large, and the silicon hexachloride can be produced industrially stably. The invention was completed.

(ロ)発明の構成 〔問題点を解決する為の手段〕 本発明は珪素合金および金属珪素から選ばれた珪素原料
と塩素を反応させて六塩化珪素を製造するに際し、振動
式反応器を用い、該反応器の振動により前記珪素原料を
該反応器の珪素原料供給口から出口方向へ移送させつつ
反応させることを特徴とする六塩化珪素の製造方法であ
る。
(B) Structure of the Invention [Means for Solving the Problems] The present invention uses a vibration reactor when reacting a silicon raw material selected from a silicon alloy and metallic silicon with chlorine to produce silicon hexachloride. The method for producing silicon hexachloride is characterized in that the silicon raw material is reacted while being transferred from the silicon raw material supply port of the reactor toward the outlet by vibrating the reactor.

〔作用〕[Action]

本発明の方法は振動式反応器を用いて反応器を振動させ
ることにより、反応器内の珪素原料に振動を伝え、珪素
原料同志の移動、混合を起こし、珪素原料と気相部の塩
素との有効接触面積を増大させ、反応を起こり易くする
ものであり、それ故固定層式反応器の場合にあるよう
に、反応残渣の固結や、器壁への付着の問題も起きず、
また流動層式反応器の場合の如く、流動化に必要な多量
のガス量に起因する問題も生じない。
According to the method of the present invention, by vibrating the reactor using a vibration type reactor, vibration is transmitted to the silicon raw material in the reactor, the silicon raw materials move and mix, and the silicon raw material and chlorine in the vapor phase part are mixed. To increase the effective contact area and facilitate the reaction. Therefore, as in the case of a fixed bed reactor, there is no problem of solidification of reaction residues and adhesion to the vessel wall.
Further, unlike the case of the fluidized bed reactor, the problem caused by the large amount of gas required for fluidization does not occur.

更に本発明は、珪素原料を反応器の振動によって珪素原
料供給口から出口方向へ移送させつつ反応させることに
より、反応温度の制御を格段に容易とするものである。
Further, according to the present invention, the silicon raw material is reacted while being transferred from the silicon raw material supply port toward the outlet by the vibration of the reactor, whereby the control of the reaction temperature is significantly facilitated.

珪素原料と塩素の反応においてはその反応熱が大きく、
所望の反応温度を維持するには反応熱を効果的に除くこ
とが必要である。珪素原料と塩素との反応における大き
な反応熱を除く為には、珪素原料層の伝熱効率を高める
必要があるが、珪素原料層の攪拌、移動が不充分である
と、温度分布が生じ易く、総括的な伝熱係数が低くな
り、また円滑な反応を期すことが困難である。
The heat of reaction is large in the reaction between the silicon raw material and chlorine,
It is necessary to effectively remove the heat of reaction to maintain the desired reaction temperature. In order to remove a large reaction heat in the reaction between the silicon raw material and chlorine, it is necessary to enhance the heat transfer efficiency of the silicon raw material layer, but if the stirring and movement of the silicon raw material layer are insufficient, temperature distribution easily occurs, The overall heat transfer coefficient becomes low, and it is difficult to expect a smooth reaction.

本発明は、珪素原料に振動を与えて、該原料を流動させ
ると共に反応器の珪素原料供給口から出口方向へ移送す
ることにより、珪素原料間の伝熱あるいは珪素原料と外
部ジャケット等の冷却用熱媒体の器壁との伝熱を良好と
し、効率的な除熱を行なうことができ、また本発明の方
法では反応器と珪素原料との間の伝熱面積を大きくする
ことが比較的容易であり、さらに反応熱の局部的な蓄積
を防止することが可能である。一方、本発明によれば、
特に後述するような未反応珪素原料の循環方式を採用す
る場合は、反応器内に存在する珪素原料の量を少なくし
て、即ち珪素原料層の厚みを薄くして反応を行うことが
可能であるので一層除熱効率が高く温度制御が容易であ
る。
According to the present invention, the silicon raw material is vibrated so that the silicon raw material is fluidized and transferred from the silicon raw material supply port of the reactor in the direction of the outlet to transfer heat between the silicon raw materials or cool the silicon raw material and the outer jacket. The heat transfer between the heat medium and the vessel wall is good, and efficient heat removal can be performed. Further, in the method of the present invention, it is relatively easy to increase the heat transfer area between the reactor and the silicon raw material. Furthermore, it is possible to prevent local accumulation of reaction heat. On the other hand, according to the present invention,
In particular, when an unreacted silicon material circulation system as described below is adopted, it is possible to carry out the reaction by reducing the amount of silicon material present in the reactor, that is, by reducing the thickness of the silicon material layer. Therefore, the heat removal efficiency is higher and the temperature control is easier.

〔反応原料〕[Reaction material]

本発明における珪素原料の1つである珪素合金は、例え
ばカルシウムシリコン、マグネシウムシリコン、フェロ
シリコン等が挙げられ、特に好ましくはフェロシリコン
である。珪素合金における珪素含有量は、その種類にも
よるが、30重量%以上が好ましい。30重量%未満で
は珪素合金の珪素以外の合金元素も塩素化されるため、
塩素原単位が大となる可能性がある。
Examples of the silicon alloy, which is one of the silicon raw materials in the present invention, include calcium silicon, magnesium silicon, and ferrosilicon, and ferrosilicon is particularly preferable. The silicon content in the silicon alloy is preferably 30% by weight or more, though it depends on the kind. If it is less than 30% by weight, alloy elements other than silicon of the silicon alloy are chlorinated.
Chlorine intensity may be large.

珪素原料は単独でも又、混合物であってもよく、アルミ
ニウム、マンガン等他種金属等を含有するものであって
も差し支えない。
The silicon raw materials may be used alone or as a mixture, and may contain other metals such as aluminum and manganese.

反応温度をより低く、又六塩化珪素をより高収率で得る
ことが出来る点等より、珪素合金を用いる事はより好ま
しい。
It is more preferable to use a silicon alloy because the reaction temperature is lower and silicon hexachloride can be obtained in a higher yield.

珪素原料は通常粒子状のものを使用する事が好ましく、
大粒子の場合は粉砕して適当な粒径に揃えて使用すると
よい。粒径は好ましくは5メッシュ篩通過品〜300メ
ッシュ篩上品、更に好ましくは20メッシュ篩通過品〜
200メッシュ篩上品である。5メッシュ篩通過品を超
えるような粗粒子は塩素との反応性が小さくなる可能性
があり、300メッシュ篩上品未満の様な微粒子では、
例えば反応生成ガスや反応系に供給されている不活性ガ
ス等に同伴され、配管等の閉塞原因となる場合がある。
It is usually preferable to use a silicon raw material in the form of particles,
In the case of large particles, it is advisable to grind them to obtain an appropriate particle size before use. The particle size is preferably 5 mesh sieve passed product to 300 mesh sieve passed product, more preferably 20 mesh sieve passed product to
It is a 200 mesh sieve product. Coarse particles that exceed the size of 5 mesh screen may have low reactivity with chlorine.
For example, it may be accompanied by a reaction product gas, an inert gas supplied to the reaction system, or the like, and may cause a clogging of a pipe or the like.

本発明の塩素は、特に限定するわけではないが通常良く
乾燥した塩素ガスを使用するのが好ましく、例えばボン
ベ充填品又は乾燥剤を通したものを使用すればよい。
The chlorine of the present invention is not particularly limited, but normally it is preferable to use well-dried chlorine gas, for example, a cylinder-filled product or a product passed through a desiccant may be used.

塩素は単独でもあるいは希釈ガスにより希釈されたもの
でも良い。希釈ガスとしては六塩化珪素と反応しないガ
スならば何でも良く、例えばN、He、Ar、四塩化
珪素等が挙げられる。
Chlorine may be used alone or diluted with a diluent gas. The diluent gas may be any gas as long as it does not react with silicon hexachloride, and examples thereof include N 2 , He, Ar, and silicon tetrachloride.

珪素原料に対する塩素の供給割合は特に限定されるもの
ではなく、その最適割合は珪素原料の粒径、振動式反応
器の振動条件、移送条件、反応温度、仕切板等の条件に
より異なるが、反応器内に存在する珪素原料単位量(k
g)当り、5〜100/hrが好ましい。5/hr未満
では反応時間がかゝりすぎ好ましいとは云えず、100
/hrを超えると未反応塩素が多くなる可能性がある。
The supply ratio of chlorine to the silicon raw material is not particularly limited, and the optimum ratio varies depending on the particle size of the silicon raw material, the vibration conditions of the vibration reactor, the transfer conditions, the reaction temperature, the partition plate, etc. Unit amount of silicon raw material (k
5-100 / hr is preferred per g). If it is less than 5 / hr, the reaction time is too long, and it cannot be said that it is preferable.
If it exceeds / hr, unreacted chlorine may increase.

塩素を希釈ガスと共に反応系に供給する場合、反応熱の
コントロールがし易い等の利点が生じその際の希釈比は
希釈ガス/塩素ガスが0.05〜5の範囲が好ましく、通常
1以下で十分である。
When chlorine is supplied to the reaction system together with the diluting gas, there are advantages such as easy control of reaction heat, and the diluting ratio in that case is preferably in the range of 0.05 to 5 of diluting gas / chlorine gas, and usually 1 or less is sufficient. is there.

〔反応器〕[Reactor]

本発明で使用される振動式反応器は、反応器および該反
応器を振動させる発振装置より構成されるものである。
The vibrating reactor used in the present invention comprises a reactor and an oscillating device for vibrating the reactor.

反応器は発振装置を具備し、珪素原料を振動式反応器の
珪素原料供給口から出口方向へ移送しうるものであれば
形状を問うものではなく、例えば縦型、横型のものが挙
げられる。
The reactor is not limited to any shape as long as it has an oscillating device and can transfer the silicon raw material from the silicon raw material supply port of the vibration type reactor to the outlet direction, and examples thereof include a vertical type and a horizontal type.

その一例として反応器の断面が長方形の横型反応器で、
珪素原料を横方向に移送する形式のもの、あるいは珪素
原料の移送面がら旋状に取り付けられた縦型反応器で、
珪素原料を円を描いて移動させ結果的に縦方向に移送す
る形式のもの等が挙げられる。
As an example, a horizontal reactor with a rectangular cross section,
A type in which the silicon raw material is transferred laterally, or a vertical reactor in which the silicon raw material transfer surface is attached in a spiral shape,
Examples include a type in which a silicon raw material is moved in a circle and consequently is transferred in the vertical direction.

反応器の外面には通常反応温度を制御する為の熱媒体を
通すジャケット等を設け、また反応器は珪素原料、塩
素、希釈ガスの供給口、生成ガス、未反応塩素、希釈ガ
スの出口、反応後の珪素原料の出口を有しており、これ
ら供給口、出口の配管は振動を吸収するため夫々、フレ
キシブルテューブ、コイル状の管で各配管、機器に接続
されている。
The outer surface of the reactor is usually provided with a jacket for passing a heat medium for controlling the reaction temperature, and the reactor has a silicon raw material, chlorine, diluent gas supply port, generated gas, unreacted chlorine, diluent gas outlet, It has an outlet for the silicon raw material after the reaction, and the pipes of these supply port and outlet are connected to each pipe and equipment by a flexible tube and a coiled pipe in order to absorb vibration.

反応器の気相部に仕切板を設けると更に望ましい。すな
わち反応器の気相部に仕切板を設けることにより、塩素
の珪素原料への拡散を促進し、反応温度を適切に制御す
ることが容易となり、反応率を更に向上する事が可能で
ある。
It is more desirable to provide a partition plate in the gas phase portion of the reactor. That is, by providing a partition plate in the gas phase portion of the reactor, diffusion of chlorine into the silicon raw material can be promoted, the reaction temperature can be easily controlled appropriately, and the reaction rate can be further improved.

仕切板は反応器内の反応気相部に設けられ、その材質は
塩素に侵されず反応温度に耐えるものであれば特にその
種類を問うものではないが、通常ステンレス鋼、耐熱性
プラスチック等が用いられる。
The partition plate is provided in the reaction gas phase portion in the reactor, and its material is not particularly limited as long as it can withstand the reaction temperature without being attacked by chlorine, but usually stainless steel, heat resistant plastic, etc. Used.

仕切板の形状は、反応器内の気相部において気流の流通
を防げ、これによって塩素の珪素原料への拡散を促進し
得るものであればいかなるものでも良いが、気相部に接
触する反応器内壁に接しかつその形状が気相部の断面
(気流の通過方向に対して直角に切断したときの断面、
以下同じ)と一致して気相部の少なくとも上部を遮蔽で
きるものが適している。仕切板の大きさは、珪素原料の
移送を防げるものではない事が必要であるが、気相部の
断面積(気流の流通方向に対して直角に切断したときの
断面積)に対し反応器の上部より3分の1以上ないし珪
素原料層に接する程度までの空間を遮蔽できるものが望
ましく、特に気相部断面積の3分の2ないし始動状態に
おいて珪素原料の移送を防げず、珪素原料層とわずかな
間隙が出来る程度の大きさの仕切板を設けるのが望まし
い。上記遮蔽面積が3分の1未満では塩素ガスが素通り
して反応に関与しないまま排出される可能性がある。
The shape of the partition plate may be any shape as long as it can prevent the flow of the air flow in the gas phase part in the reactor and thereby promote the diffusion of chlorine into the silicon raw material, but the reaction in contact with the gas phase part The shape is in contact with the inner wall of the vessel and its shape is a cross section of the gas phase part (cross section when cut at right angles to the passage direction of the air flow
The same applies hereinafter), which can shield at least the upper part of the vapor phase part is suitable. It is necessary that the size of the partition plate does not prevent the transfer of the silicon raw material, but the reactor relative to the cross-sectional area of the gas phase part (cross-sectional area when cut at right angles to the flow direction of the air flow) It is desirable to be able to shield the space from the upper part to more than one-third or up to the extent of contact with the silicon raw material layer. Especially, in the two-thirds of the cross-sectional area of the gas phase portion or the starting state, the transfer of the silicon raw material cannot be prevented and the silicon raw material can be prevented. It is desirable to provide a partition plate large enough to allow a slight gap between the layers. If the shielding area is less than one-third, chlorine gas may pass through and be discharged without participating in the reaction.

仕切板は、反応気相部のガス流を妨げ気流の滞留部が効
率的に形成されるように生成ガス出口の直前に取り付け
るのが通常望ましい。また塩素供給口を反応器に複数個
設ける場合は、供給口毎に仕切板を設けて区面すること
も可能である。この場合は夫々の区画に対応して塩素の
供給量あるいは熱媒の温度を変化させる等更に細かな運
転管理が可能となる。勿論塩素供給口が複数ある場合で
あっても、仕切板を反応生成ガス出口の直前に1枚設け
る態様でも構わない。仕切板の反応器本体に取り付ける
方法としては、熔接、ネジ止めあるいはフランジで挾む
等の手段を用いることにより行える。また、反応器内各
部の温度を測定する為、温度計がとりつけられていても
よい。
It is usually desirable to install the partition plate immediately before the produced gas outlet so that the gas flow in the reaction gas phase part is obstructed and the stagnant part of the air flow is efficiently formed. Further, when a plurality of chlorine supply ports are provided in the reactor, it is possible to provide a partition plate for each supply port to divide the surfaces. In this case, it is possible to perform more detailed operation management such as changing the amount of chlorine supply or the temperature of the heat medium corresponding to each section. Of course, even when there are a plurality of chlorine supply ports, one partition plate may be provided immediately before the reaction product gas outlet. The partition plate can be attached to the reactor body by welding, screwing, or clamping with a flange. A thermometer may be attached to measure the temperature of each part in the reactor.

発振装置は反応器に振動を起こさせる装置ならどんなも
のでも良く、例えば化学装置便覧(化学工業協会編、昭
和45年6月15日発行)第844頁にあるように、工
業的には不平衡おもり式発振装置偏心軸またはクラ
ンク式発振装置電磁式発振装置等が挙げられる。
The oscillator may be any device that causes the reactor to vibrate. For example, as shown in page 844 of the Handbook of Chemical Equipment (edited by the Chemical Industry Association, published June 15, 1945), it is industrially unbalanced. A weight type oscillating device, an eccentric shaft, a crank type oscillating device, an electromagnetic oscillating device, or the like.

本発明の反応における発振装置の振動条件は、珪素原料
に充分な振動を与え、良好な流動状態とし、温度分布の
充分なコントロールを可能とし、珪素原料の移送、発振
装置の適正な設備費、塩素、生成ガス、熱媒用配管と反
応器との接続におけるフレキシブルチューブの選択の容
易性を考慮すると、振動数300〜3,600cpmおよび振幅
0.5〜30mmが好ましく、更に好ましくは振動数400
〜1,8000cpmおよび振幅1〜10mmである。
The oscillation condition of the oscillator in the reaction of the present invention is that the silicon raw material is sufficiently vibrated to be in a good flow state, the temperature distribution can be sufficiently controlled, the silicon raw material is transferred, and the appropriate equipment cost of the oscillator is provided. Considering the ease of selecting flexible tubes for connecting chlorine, product gas, and heat medium piping to the reactor, the vibration frequency is 300 to 3,600 cpm and the amplitude.
0.5 to 30 mm is preferable, more preferably 400
.About.1,8000 cpm and amplitude 1-10 mm.

また反応器の振動方向としては水平方向、鉛直方向、な
ゝめ方向のいずれでもよく、直線、円、楕円、ねじり、
旋回運動のいずれでもよいが、珪素原料の移送を、振動
を与えることにより行なうためには、振動方向が水平方
向に対し斜めであることが望ましい。
Further, the vibration direction of the reactor may be horizontal, vertical, or straight, and may be straight, circular, oval, twisted,
Although any of the turning motions may be used, in order to transfer the silicon raw material by applying vibration, it is desirable that the vibration direction is oblique to the horizontal direction.

振動式反応器は通常、支持基台との間に弾性支持する為
の防振装置を備えているのが望ましい。防振装置には鋼
製のコイルバネ、板バネ、空気バネ等が用いられる。
It is generally desirable that the vibration reactor is equipped with a vibration isolator for elastically supporting the support base. A steel coil spring, a leaf spring, an air spring, or the like is used as the vibration isolator.

〔移送〕〔transfer〕

本発明において、珪素原料を振動式反応器の珪素原料の
供給口から出口方向へ移送させつつ、塩素と反応させる
手段は、振動式反応器自体の振動を利用するが、該振動
により珪素原料を移送する方法としては、反応熱の除熱
が効率よく行なわれ、工業的規模で珪素原料を順次一定
方向に移送し得る点を考慮すると、水平方向(鉛直方向
に対し90°で接する方向)に対し斜め方向の振動を珪
素原料を与えることにより、珪素原料を移送方向に向っ
て斜上方に飛ばして珪素原料出口方向へ移送させる方法
が望ましい。珪素原料に与える振動方向が鉛直方向であ
ると、珪素原料は主として上下方向に振動するだけなの
で移送が起こりにくく、一方水平方向の振動を与えただ
けでは珪素原料が移送面を往復することに留まり、移送
の目的を達しにくい。
In the present invention, the means for reacting with chlorine while transferring the silicon raw material from the supply port of the silicon raw material of the vibration type reactor to the chlorine utilizes the vibration of the vibration type reactor itself. As a method of transferring, considering that the reaction heat can be removed efficiently and the silicon raw material can be transferred sequentially in a certain direction on an industrial scale, the horizontal direction (direction in contact with the vertical direction at 90 °) is considered. On the other hand, it is desirable that the silicon raw material is oscillated obliquely upward in the transfer direction by the vibration of the silicon raw material being imparted to the silicon raw material, and the silicon raw material is transferred to the silicon raw material outlet direction. When the vibration direction given to the silicon raw material is the vertical direction, the silicon raw material vibrates mainly in the vertical direction, so that the transfer does not easily occur. On the other hand, when the horizontal vibration is applied, the silicon raw material reciprocates on the transfer surface. , It is difficult to achieve the purpose of transfer.

振動方向の好ましい角度は、反応器における珪素原料の
移送面に対し20°〜85°であり、又更に好ましくは
30°〜80°である。20°未満では移送速度が大き
すぎて珪素原料が反応に充分関与しないまゝ移送される
恐れがあり、85°を越えると適度な移送速度が得られ
ず移送が不均一となり、温度分布を生じるおそれがあ
る。
The preferred angle of the vibration direction is 20 ° to 85 °, and more preferably 30 ° to 80 ° with respect to the transfer surface of the silicon raw material in the reactor. If it is less than 20 °, the transfer rate is too high and the silicon raw material may be transferred until it sufficiently participates in the reaction. If it exceeds 85 °, an appropriate transfer rate cannot be obtained and transfer becomes non-uniform, resulting in temperature distribution. There is a risk.

上述のごとく珪素原料を移送し得る装置としては、いわ
ゆる振動コンベヤー、振動エレベーター、振動フィーダ
ーと呼ばれる型式のもので、通常、粉、粒、塊等の輸送
用に使用されている装置であって、それ自体が振動式反
応器として利用できるものが挙げられる。該装置の代表
的な構造は例えば化学装置便覧(化学工学協会編、昭和
45年6月15日発行)814頁にあるように、輸送材
料をのせる被振動体すなわちトラフ(本発明の場合は反
応器がこれに相当する)、ばね、駆動部および基礎フレ
ームからなっている。駆動部としては、モーターの回転
運動をクランク軸とロッドにより正弦直線運動としてト
ラフに与えるもの、電磁石の吸引力を利用するもの、モ
ーターの両端にアンバランスウェートを取り付け、その
回転により発生する遠心力を利用するもの(振動モータ
ー)等があり、いずれもばねの取り付け角度と相俟って
その直線振動方向が移送面に対し、ある角度を持つ様に
取り付けられている。
As a device capable of transferring the silicon raw material as described above, a so-called vibrating conveyor, a vibrating elevator, a vibrating feeder, which is a device generally used for transporting powder, granules, lumps, etc., The reactor itself can be used as a vibration type reactor. A typical structure of the device is, for example, as shown in page 814 of Chemical Device Handbook (edited by Chemical Engineering Society, published June 15, 1945), a vibrated body on which a transport material is placed, that is, a trough (in the case of the present invention, The reactor corresponds to this), the spring, the drive and the base frame. As the drive unit, one that gives the trough a rotary motion of the motor as a sinusoidal linear motion by the crankshaft and rod, one that uses the attractive force of the electromagnet, and an unbalanced weight attached to both ends of the motor, the centrifugal force generated by its rotation. There is something that uses the (vibration motor), etc., and both are attached so that the linear vibration direction has an angle with the transfer surface in combination with the attachment angle of the spring.

珪素原料の移送速度は振動数、振幅、振動角度により影
響されるが0.1〜20m/mmが好ましく、更に好ましく
は0.5〜15m/mmである。0.1m/mm未満では珪素原料
の移送が不均一となり温度分布を生じることがあり、ま
た20m/mmを超えても塩素との反応性、温度の均一性
等にほとんど変わらず珪素原料の循環量が増加するのみ
で効率が悪くなる恐れがある。
The transfer rate of the silicon raw material is affected by the frequency, amplitude and vibration angle, but is preferably 0.1 to 20 m / mm, more preferably 0.5 to 15 m / mm. If it is less than 0.1 m / mm, the transfer of silicon raw material may become non-uniform and a temperature distribution may occur, and if it exceeds 20 m / mm, the reactivity with chlorine, the temperature uniformity, etc. are almost unchanged and the circulating amount of silicon raw material. There is a risk that the efficiency will be deteriorated only by increasing.

反応器内の珪素原料の滞留量は副生物と合算して、反応
器内の有効伝熱面積あたり、200kg/m2以下の比較的
薄い層状になるようにすることが好ましく、2.5〜12
5kg/m2がより好ましい。200kg/m2を越えると反応
器内の温度を所定の温度に制御することが困難になり、
全体的な伝熱系数も低くなり、反応結果に悪影響が出て
くる。又、後述の様に珪素原料を循環して使用する場
合、循環量が増大し、循環させるに必要なエネルギーを
浪費する恐れがある。逆に2.5kg/m2未満では反応器内
の珪素原料の流れが不均一となり、有効伝熱面積を生か
せない恐れがある。
The retention amount of the silicon raw material in the reactor is preferably combined with the by-product so as to form a relatively thin layer of 200 kg / m 2 or less per effective heat transfer area in the reactor.
5 kg / m 2 is more preferable. When it exceeds 200 kg / m 2 , it becomes difficult to control the temperature in the reactor to a predetermined temperature,
The overall heat transfer coefficient is also reduced, which adversely affects the reaction results. Further, when the silicon raw material is circulated and used as will be described later, the amount of circulation is increased, and there is a possibility that the energy required for circulation is wasted. On the contrary, if it is less than 2.5 kg / m 2 , the flow of the silicon raw material in the reactor becomes non-uniform and the effective heat transfer area may not be utilized.

〔反応方法〕[Reaction method]

本発明の反応方法を具体的に説明すると例えば次の通り
である。十分に乾燥した珪素原料を第1図の如くの反応
器に供給する。反応器内に滞留させる珪素原料の量は前
記の通りであり、例えば第1図の如き反応器の場合ホッ
パー下部のロータリーバルブの供給量でコントロールす
ることが出来る。発振装置による振動条件および移送す
る際の移送条件は前記の通りである。
The reaction method of the present invention is specifically described as follows, for example. A sufficiently dried silicon raw material is fed to a reactor as shown in FIG. The amount of silicon raw material retained in the reactor is as described above, and in the case of the reactor as shown in FIG. 1, for example, it can be controlled by the supply amount of the rotary valve below the hopper. The vibration conditions by the oscillator and the transfer conditions at the time of transfer are as described above.

本発明では、珪素原料を移送しつつ塩素と反応させる
が、珪素原料を1回反応器を通過させたときの反応量は
それ程大きくない。それ故、珪素原料出口から出てくる
部分的に塩素化された珪素原料の全量、あるいは一部
を、反応器の珪素原料の供給口に戻し、循環して使用す
ることが望ましい。珪素原料の循環手段としては、外気
と遮断された方式であれば、コンベアー式、スクリュー
式、気流式等、通常の粉体輸送手段に用いられる手段で
良い。また反応器をら旋状にして垂直上方向に珪素原料
を移送させる形式では重力により戻すことが出来る。
In the present invention, the silicon raw material is reacted with chlorine while being transferred, but the reaction amount when the silicon raw material is once passed through the reactor is not so large. Therefore, it is desirable to return all or part of the partially chlorinated silicon raw material coming out from the silicon raw material outlet to the silicon raw material supply port of the reactor and circulate it for use. As a means for circulating the silicon raw material, a means used for ordinary powder transportation means such as a conveyor type, a screw type, an air flow type, etc. may be used as long as it is a system that is shielded from the outside air. Further, in the form in which the silicon raw material is transferred vertically upward by making the reactor spiral, it can be returned by gravity.

反応器の珪素原料の供給口には、反応の開始時あるいは
珪素原料を循環させるときの珪素原料の変動及び反応に
より生成する金属塩化物の影響による容積の増加を吸収
する目的等のために、例えば第1図に示したホッパー等
を設け、それらのバッハーとすることが望ましい。
At the silicon raw material supply port of the reactor, for the purpose of absorbing an increase in volume due to the fluctuation of the silicon raw material at the start of the reaction or when the silicon raw material is circulated and the influence of metal chloride produced by the reaction, For example, it is desirable to provide the hopper shown in FIG.

また珪素原料を循環する方法を採用した場合、反応器の
珪素原料出口から出てくる部分的に塩素化された珪素原
料の全量あるいは一部を抜き出し、副生した金属塩化物
を分離してから、再度反応系へ戻す処置をとることがよ
り望ましい。すなわち、珪素原料として珪素合金を用い
た場合、例えばフェロシリコンを用いた場合には塩化第
二鉄、カルシウムシリコンを用いた場合には塩化カルシ
ウムを夫々主成分とする金属塩化物が、また金属珪素を
用いた場合にでも、その不純物に起因する金属塩化物が
反応系内に蓄積して塩素との反応性を低下する恐れがあ
る。従って上記副生金属塩化物を分離して珪素原料を循
環させることは、更に効率的に反応を行う事を可能とす
るものである。
When the method of circulating the silicon raw material is adopted, all or part of the partially chlorinated silicon raw material coming out from the silicon raw material outlet of the reactor is extracted, and the by-produced metal chloride is separated off. It is more desirable to take the action of returning to the reaction system again. That is, when a silicon alloy is used as a silicon raw material, for example, when ferrosilicon is used, ferric chloride is used, and when calcium silicon is used, a metal chloride containing calcium chloride as a main component, and a metal silicon Even when using, the metal chlorides resulting from the impurities may accumulate in the reaction system and reduce the reactivity with chlorine. Therefore, separating the by-product metal chloride and circulating the silicon raw material enables the reaction to be carried out more efficiently.

副生金属塩化物を分離する方法としては、水洗により金
属塩化物を溶解させ乾燥する方法、珪素原料と金属塩化
物の粒度の差を利用してふるい分けや気流により分級す
る方法、加熱により金属塩化物を昇華させる方法等が挙
げられる。
As a method of separating the by-product metal chloride, a method of dissolving the metal chloride by washing with water and drying, a method of sieving by utilizing the difference in particle size between the silicon raw material and the metal chloride or a method of classifying by an air flow, and a method of heating the metal chloride Examples include a method of sublimating an object.

珪素原料を反応器に供給し、振動、移送条件を設定した
後、反応器ジャケットに熱媒体を通し、所定温度まで昇
温させる。この際窒素等の希釈ガスを流しておくのが望
ましい。
After supplying the silicon raw material to the reactor and setting vibration and transfer conditions, a heating medium is passed through the reactor jacket to raise the temperature to a predetermined temperature. At this time, it is desirable to flow a diluent gas such as nitrogen.

反応温度は珪素原料の種類により異なるが、100〜5
00℃が好ましい。100℃未満では塩素の反応率が低
くなり易く、500℃を越えると六塩化珪素の収率の低
下につながる。例えば珪素原料がフエロシリコン、カル
シウムシリコンの場合には120〜250℃、金属珪素
の場合には300〜500℃が好ましい。
The reaction temperature varies depending on the type of silicon raw material, but is 100 to 5
00 ° C is preferred. If it is less than 100 ° C, the reaction rate of chlorine tends to be low, and if it exceeds 500 ° C, the yield of silicon hexachloride is reduced. For example, when the silicon raw material is ferrosilicon or calcium silicon, 120 to 250 ° C. is preferable, and when metallic silicon is 300 to 500 ° C.

反応温度をコントロールする方法として反応器ジャケッ
トに冷却用熱媒体を通す方式、電気ヒーターにより反応
器壁の温度を制御する方式等、反応により発生する熱量
を有効に除去できる方式ならどんな方法でも良い。
As a method for controlling the reaction temperature, any method can be used as long as it can effectively remove the amount of heat generated by the reaction, such as a method of passing a cooling heat medium through the reactor jacket and a method of controlling the temperature of the reactor wall by an electric heater.

所定温度にまで昇温させた後、必要あれば希釈ガスと共
に、塩素を反応器好ましくは反応器の気相部に供給す
る。塩素の供給は1ケ所でも複数カ所からでも良いが、
特に複数の供給口を設けた場合には、夫々の供給口の近
くに設けた温度計の信号から塩素の供給量を制御するこ
とが出来、反応器全体の温度制御を容易にする事が出来
るので望ましい。
After the temperature is raised to a predetermined temperature, chlorine is supplied to a reactor, preferably a gas phase part of the reactor, together with a diluent gas if necessary. Chlorine may be supplied from one location or multiple locations,
Especially when a plurality of supply ports are provided, the supply amount of chlorine can be controlled from the signals of thermometers provided near the respective supply ports, and the temperature control of the entire reactor can be facilitated. So desirable.

また塩素ガスの流れ方向は、珪素原料の移送方向と併流
でも向流でもよい。塩素の供給割合は前記の通りであ
る。
The flow direction of chlorine gas may be cocurrent or countercurrent with the transfer direction of the silicon raw material. The chlorine supply rate is as described above.

反応の終了は反応系外の廃ガス出口管に導かれた廃ガス
中の未反応塩素濃度を測定することによって把持でき、
該塩素濃度が所定の値以上になった時をもって塩素の供
給を停止すれば良い。
The end of the reaction can be grasped by measuring the concentration of unreacted chlorine in the waste gas introduced into the waste gas outlet pipe outside the reaction system,
The chlorine supply may be stopped when the chlorine concentration exceeds a predetermined value.

上記のごとくして反応させ、生成した六塩化珪素を含む
生成物は、通常ガス状で反応器の生成ガス出口より冷却
管に導かれ、冷却後生成液として取得する。
The product containing silicon hexachloride produced by the reaction as described above is usually introduced into the cooling pipe from the product gas outlet of the reactor in a gaseous state, and is obtained as a product liquid after cooling.

生成液中には六塩化珪素の他、四塩化珪素、八塩化珪素
等が含まれ、蒸留法等により精製して六塩化珪素を得
る。
The product liquid contains silicon hexachloride, silicon tetrachloride, silicon octachloride, etc. and is purified by a distillation method or the like to obtain silicon hexachloride.

本発明は回分式反応のほか連続反応にても実施できる
が、工業的に生産するには連続反応が好ましい。連続反
応の場合は振動式反応器に珪素原料連続供給装置及び珪
素原料連続排出装置を設置すれば良い。
The present invention can be carried out not only as a batch reaction but also as a continuous reaction, but a continuous reaction is preferable for industrial production. In the case of continuous reaction, a silicon raw material continuous supply device and a silicon raw material continuous discharge device may be installed in the vibration reactor.

〔実施例〕〔Example〕

以下に本発明を実施例を挙げて具体的に説明するが本発
明は実施例に限定されるものではない。
The present invention will be specifically described below with reference to examples, but the present invention is not limited to the examples.

実施例1 第1図の様な巾0.5m、高さ0.2m、長さ4.0mの振動コ
ンベヤー式ステンレス製反応器(外部ジャケット付き、
有効伝熱面積2.0m2;支持基台3とはばね5を介してい
る。)1に珪素原料供給用ホッパー16、反応残渣リサ
イクル用チューブコンベアー15等を備えた装置を用い
て六塩化珪素を製造した。
Example 1 A vibration conveyor type stainless steel reactor with a width of 0.5 m, a height of 0.2 m and a length of 4.0 m as shown in FIG. 1 (with an outer jacket,
Effective heat transfer area 2.0m 2 ; Support base 3 and spring 5 are interposed. 1) was equipped with a hopper 16 for supplying a silicon raw material, a tube conveyor 15 for recycling a reaction residue, and the like to produce silicon hexachloride.

尚、反応器内には気相部に0.5m×0.15m、厚み5mmの
仕切り板27が2枚取りつけてある。まずホッパー16
にフェロンシリコン4(珪素含有量50重量%40メッ
シュ篩通過品)35kg仕込み、反応器1を発振装置2に
より振動数650cpm、振幅5mm(振動角度:反応器1
の水平面に対し60°)の振動条件で振動させながら供
給量750kg/hrに設定したロータリーバルブ17によ
りフェロシリコン4を供給した。反応器内のフェロシリ
コン4は与えられた振動により移送され、珪素原料出口
管14より排出され、チューブコンベヤー15によりホ
ッパー16に戻り循環させた。反応器内でのフェロシリ
コンの有効伝熱面積当りの滞留量は12.5kg/m2であり、
移送速度は2m/mmであった。
Two partition plates 27 of 0.5 m × 0.15 m and 5 mm in thickness are attached to the inside of the reactor. First hopper 16
35 kg of ferron silicon 4 (silicon content of 50% by weight passed through 40 mesh sieve) was charged, and the reactor 1 was oscillated by the oscillator 2 at a frequency of 650 cpm and an amplitude of 5 mm (vibration angle: reactor 1
Ferrosilicon 4 was supplied by a rotary valve 17 set at a supply amount of 750 kg / hr while vibrating under a vibration condition of 60 ° with respect to the horizontal plane. The ferrosilicon 4 in the reactor was transferred by the given vibration, discharged from the silicon raw material outlet pipe 14, and returned to the hopper 16 by the tube conveyor 15 for circulation. The amount of residence of ferrosilicon in the reactor per effective heat transfer area is 12.5 kg / m 2 ,
The transfer speed was 2 m / mm.

次いで希釈ガス供給管9よりNガスを各200/hr
流しながら外部ジャケット10に熱媒体を循環させて加
温し、160℃まで昇温させた。その後Nガスを各2
5/hrにしぼり反応温度を160℃に制御しながら塩
素供給管8より塩素を500/hrずつ計1.0m3/hr流
し反応させた。
Then, N 2 gas is supplied from the dilution gas supply pipe 9 for each 200 / hr.
While flowing, the heat medium was circulated through the outer jacket 10 to heat it, and the temperature was raised to 160 ° C. After that, N 2 gas is added to each 2
While controlling the reaction temperature to 5 ° C./hr and controlling the reaction temperature to 160 ° C., chlorine was flowed through the chlorine supply pipe 8 at a rate of 500 m / hr for a total of 1.0 m 3 / hr for reaction.

塩素供給管8の口径は20mmφであり、塩素の線速は約
0.5m/secであったが反応中塩素の反応率はほとんど9
9〜99.9%であり、塩素の反応率が95%になった時点
をもって反応終了とした。
The diameter of the chlorine supply pipe 8 is 20 mmφ and the linear velocity of chlorine is about
It was 0.5 m / sec, but the reaction rate of chlorine during the reaction was almost 9
It was 9 to 99.9%, and the reaction was terminated when the reaction rate of chlorine reached 95%.

供給した塩素量は合計28.2m3であった。尚反応中珪素原
料層内の、反応器長さ方向の等間隔4ケ所において温度
を測定していたが、4ケ所のうち最高温度と最低温度の
差はほとんど2℃以内であった。生成したガス及び未反
応塩素は生成ガス出口管21より、沈降式集塵装置22
により随伴した微粉状物を除去した後、冷却管23の内
管に通し、外管に通じた5℃の冷水にて冷却した。凝縮
した珪素塩化物は生成液受器24内に生成液25として
得た。反応により得られた生成液量は70.7kgであり、そ
の組成は六塩化珪素58.5重量%、四塩化珪素40.9重量
%、高次塩化物(八塩化珪素以上)0.6重量%であっ
た。反応器1、ホッパー16、チューブコンベヤー15
等内のフェロシリコン反応残渣の性状は粉粒状であり、
反応器内壁等への付着はほとんどなく、又生成ガス出口
管21等の閉塞の兆候は全く認められなかった。
The total amount of chlorine supplied was 28.2 m 3 . During the reaction, the temperature was measured at four places in the silicon raw material layer at equal intervals in the reactor length direction, but the difference between the highest temperature and the lowest temperature was almost 2 ° C. or less among the four places. The generated gas and unreacted chlorine are discharged from the generated gas outlet pipe 21 to a sedimentation dust collector 22.
After removing the associated fine powdery substance with, the mixture was passed through the inner pipe of the cooling pipe 23 and cooled with 5 ° C. cold water passed through the outer pipe. The condensed silicon chloride was obtained as a product liquid 25 in the product liquid receiver 24. The amount of the produced liquid obtained by the reaction was 70.7 kg, and the composition was 58.5% by weight of silicon hexachloride, 40.9% by weight of silicon tetrachloride, and 0.6% by weight of higher chlorides (silicon octachloride or more). Reactor 1, hopper 16, tube conveyor 15
The property of the ferrosilicon reaction residue in the etc. is powdery,
There was almost no adhesion to the inner wall of the reactor or the like, and there was no sign of clogging of the produced gas outlet pipe 21 or the like.

この反応残渣を分析した所、主体は塩化第二鉄(無水)
であり、その他未反応のフェロシリコン、原料フェロシ
リコンの不純物に起因する塩化アルミニウム等の金属塩
化物が存在した。
When the reaction residue was analyzed, the main component was ferric chloride (anhydrous).
In addition, other unreacted ferrosilicon and metal chlorides such as aluminum chloride due to impurities in the raw ferrosilicon were present.

未反応のフェロシリコンは7.3kgであり、フェロシリコ
ンの反応率は79.1%であった。
Unreacted ferrosilicon was 7.3 kg, and the reaction rate of ferrosilicon was 79.1%.

実施例2 実施例1の装置のチューブコンベヤー15上部に珪素原
料抜き出し口、及びホッパー16上部に珪素原料供給口
を設け、珪素原料抜き出し口より抜き出した部分的に塩
素化された珪素原料は水洗・口過し、未反応のフェロシ
リコンを回収乾燥後珪素原料供給口より再度反応系へ戻
す方式で六塩化珪素を連続的に製造した。
Example 2 In the apparatus of Example 1, a silicon raw material withdrawing port was provided above the tube conveyor 15 and a silicon raw material supply port was provided above the hopper 16, and the partially chlorinated silicon raw material withdrawn from the silicon raw material withdrawing port was washed with water. Silicon hexachloride was continuously produced by a method of recovering and drying unreacted ferrosilicon through the mouth, and then returning to the reaction system again from the silicon raw material supply port.

連続反応を行う前段階として実施例1と全く同一の方法
で反応を行なった。そして塩素ガスを20m3流した時点
より連続反応に移り、新規にフェロシリコンを1時間に
1.04kgずつ間欠的にホッパー上部の珪素原料供給口より
ホッパー16へ供給した。
The reaction was carried out in exactly the same manner as in Example 1 as a step before the continuous reaction. Then, when chlorine gas of 20 m 3 was flowed, the continuous reaction was started, and ferrosilicon was newly added in 1 hour.
Each 1.04 kg was intermittently supplied to the hopper 16 from the silicon raw material supply port on the upper part of the hopper.

連続反応中、Nガスを希釈ガス供給管9より各25
/hr流し、反応温度を160℃にコントロールしながら
塩素供給管8より塩素を各500/hrずつ計1m3/hr
流し反応した。
During the continuous reaction, N 2 gas was supplied from the dilution gas supply pipe 9 to each 25
Per hour, while controlling the reaction temperature at 160 ° C, chlorine is supplied from the chlorine supply pipe 8 at a rate of 500 m / hr for a total of 1 m 3 / hr.
It reacted in the sink.

反応器1より出た部分的に反応した珪素原料はチューブ
コンベヤー15によりホッパー16に戻りリサイクルす
るが、その一部を1時間に2.2kgずつ間欠的にチューブ
コンベヤー上部の珪素原料を抜き出し口より抜き出し
た。
The partially-reacted silicon raw material discharged from the reactor 1 is returned to the hopper 16 by the tube conveyor 15 for recycling, and a part of the silicon raw material is intermittently withdrawn by 2.2 kg per hour from the upper portion of the tube conveyor through the outlet. It was

抜き出した部分的に反応した珪素原料は未反応のフェロ
シリコンを回収する為に水処理し、塩化第二鉄等の金属
塩化物を溶解し、固液分離し、回収したフェロシリコン
は乾燥装置で乾燥した後、新規のフェロシリコンと共に
ホッパー上部の珪素原料供給口よりホッパー16へ供給
した。回収フェロシリコンの供給は1時間に0.71kgずつ
間欠的に行なった。
The extracted partially reacted silicon raw material is treated with water to recover unreacted ferrosilicon, dissolves metal chlorides such as ferric chloride and solid-liquid separates, and the recovered ferrosilicon is dried in a dryer. After drying, it was supplied to the hopper 16 together with new ferrosilicon through the silicon raw material supply port on the upper part of the hopper. The recovered ferrosilicon was intermittently supplied by 0.71 kg per hour.

連続反応は合計100時間行なったが反応中の塩素の反
応率は99〜99.9%であった。又反応中反応器各部の内
温を実施例1と同様4カ所にて測定したが、最高温度と
最低温度の差はほとんど2℃以内であった。
The continuous reaction was carried out for a total of 100 hours, but the reaction rate of chlorine during the reaction was 99 to 99.9%. During the reaction, the internal temperature of each part of the reactor was measured at 4 points as in Example 1, but the difference between the maximum temperature and the minimum temperature was almost within 2 ° C.

供給した塩素量は合計121m3、供給したフェロシリコ
ンは139kg、得られた生成液量は314.1kgであった。
生成液の組成は六塩化珪素58.9重量%、四塩化珪素40.1
重量%、高次塩化物(八塩化珪素以上)1.0重量%であ
った。
The total amount of supplied chlorine was 121 m 3 , the supplied amount of ferrosilicon was 139 kg, and the amount of the produced liquid was 314.1 kg.
The composition of the product solution is 58.9% by weight of silicon hexachloride and 40.1% of silicon tetrachloride.
% By weight, and 1.0% by weight of higher chlorides (silicon octachloride and above).

フェロシリコンの利用率は、未反応フェロシリコンを回
収して反応させた為、ロス分を含めても約94%であっ
た。
The utilization rate of ferrosilicon was about 94% including the loss because unreacted ferrosilicon was recovered and reacted.

反応後内部点検した所反応器1、ホッパー16、チュー
ブコンベヤー15等内のフェロシリコン反応残渣の性状
は粉粒状であり、反応器内壁等への付着はほとんどな
く、又生成ガス出口管21等の閉塞の兆候は全く認めら
れなかった。
After the reaction, the inside of the reactor was inspected, and the properties of the ferrosilicon reaction residue in the reactor 1, the hopper 16, the tube conveyor 15, etc. were powdery, there was almost no adhesion to the inner wall of the reactor, and the produced gas outlet pipe 21 etc. No signs of blockage were noted.

(ハ)発明の効果 本発明は振動式反応器を用い、かつ珪素原料を該反応器
の振動により反応器内を移送させながら塩素化すること
により、珪素原料と塩素との有効接触面積を大とし、珪
素原料と反応器の間の熱交換効率を高め、しかも反応器
内の反応温度の容易な制御を可能にする。
(C) Effect of the Invention The present invention uses a vibrating reactor and chlorinates a silicon raw material while transferring the silicon raw material by the vibration of the reactor, thereby increasing the effective contact area between the silicon raw material and chlorine. The heat exchange efficiency between the silicon raw material and the reactor is improved, and the reaction temperature in the reactor can be easily controlled.

本発明によれば、反応器全体で均一な反応を行わしめる
ことを可能とし、それ故振動式反応器の特徴と相俟って
相乗的に反応温度のコントロールを容易にし、反応熱の
大きい本反応を工業的規模で安定に操業出来る事を可能
にしたものである。
According to the present invention, it is possible to carry out a uniform reaction in the entire reactor, and therefore, in combination with the characteristics of the vibration type reactor, synergistically facilitate the control of the reaction temperature and increase the reaction heat. This enables the reaction to be stably operated on an industrial scale.

更に、本発明方法において反応器の気相部に仕切板を設
置すると塩素が素通りして排出される割合を減ずると同
時に、塩素の珪素原料層への拡散を従進させ、塩素の反
応率を高め又、反応器内壁等への付着、配管の閉塞問題
を解決する事が可能である。
Further, in the method of the present invention, if a partition plate is installed in the gas phase part of the reactor, the rate of chlorine passing through is reduced, and at the same time, the diffusion of chlorine into the silicon raw material layer is promoted to increase the reaction rate of chlorine. In addition, it is possible to solve the problem of adhesion to the inner wall of the reactor and clogging of piping.

又、移送されて珪素原料出口より排出された部分的に塩
素化された珪素原料の全量もしくは一部を再度反応器へ
循環させることにより、反応器内の珪素原料層の厚みを
容易に薄くすることができ、その結果除熱効率が高まる
ので温度制御は一層容易となることに加えて、珪素原料
の利用率が格段に向上し、工業的に安価で効率よく、高
収率で六塩化珪素を製造することが可能である。
Further, by circulating all or part of the partially chlorinated silicon raw material transferred and discharged from the silicon raw material outlet to the reactor again, the thickness of the silicon raw material layer in the reactor can be easily reduced. As a result, the heat removal efficiency is improved, and the temperature control is further facilitated. In addition, the utilization rate of the silicon raw material is significantly improved, and it is industrially inexpensive and efficient, and silicon hexachloride can be produced in high yield. It is possible to manufacture.

更に反応器に戻される珪素原料の全量もしくは一部か
ら、該珪素原料より副生した金属塩化物を分離する処理
を行なった後に珪素原料を反応器へ戻すことにより、珪
素原料の利用率は更に一段と向上し、本発明方法は工業
的により有利なものとなる。
Further, the utilization rate of the silicon raw material is further improved by returning the silicon raw material to the reactor after performing a treatment of separating the metal chloride by-produced from the silicon raw material from all or part of the silicon raw material returned to the reactor. Further improvement, the method of the present invention becomes industrially more advantageous.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法を実施する為の装置の一例の縦断面
概略図である。 1……反応器 2……発振装置(クランク式発振装置) 3……支持基台 4……フェロシリコン 5……ばね 8……塩素供給管 10……外部ジャケット 14……珪素原料出口管 15……チューブコンベアー 16……ホッパー(珪素原料供給用) 17……ロータリーバルブ 21……生成ガス出口管 25……生成液
FIG. 1 is a schematic vertical sectional view of an example of an apparatus for carrying out the method of the present invention. 1 ... Reactor 2 ... Oscillator (crank type oscillator) 3 ... Support base 4 ... Ferrosilicon 5 ... Spring 8 ... Chlorine supply pipe 10 ... External jacket 14 ... Silicon raw material outlet pipe 15 ...... Tube conveyor 16 ...... Hopper (for supplying silicon raw material) 17 ...... Rotary valve 21 ...... Product gas outlet pipe 25 ...... Product liquid

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】珪素合金および金属珪素から選ばれた珪素
原料と塩素を反応させて六塩化珪素を製造するに際し、
振動式反応器を用い、該反応器の振動により前記珪素原
料を該反応器の珪素原料供給口から出口方向へ移送させ
つつ反応させることを特徴とする六塩化珪素の製造方
法。
1. When reacting a silicon raw material selected from a silicon alloy and metallic silicon with chlorine to produce silicon hexachloride,
A method for producing silicon hexachloride, characterized in that a vibrating reactor is used and the reaction is carried out by transferring the silicon raw material from a silicon raw material supply port of the reactor toward an outlet by vibrating the reactor.
JP16378986A 1986-07-14 1986-07-14 Method for producing silicon hexachloride Expired - Fee Related JPH0643245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16378986A JPH0643245B2 (en) 1986-07-14 1986-07-14 Method for producing silicon hexachloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16378986A JPH0643245B2 (en) 1986-07-14 1986-07-14 Method for producing silicon hexachloride

Publications (2)

Publication Number Publication Date
JPS6321211A JPS6321211A (en) 1988-01-28
JPH0643245B2 true JPH0643245B2 (en) 1994-06-08

Family

ID=15780735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16378986A Expired - Fee Related JPH0643245B2 (en) 1986-07-14 1986-07-14 Method for producing silicon hexachloride

Country Status (1)

Country Link
JP (1) JPH0643245B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4736214B2 (en) * 2001-03-19 2011-07-27 大日本印刷株式会社 Microwave paper cup
JP4736248B2 (en) * 2001-06-20 2011-07-27 大日本印刷株式会社 Microwave-compatible paper cup
WO2013057996A1 (en) * 2011-10-18 2013-04-25 東亞合成株式会社 Method for producing chloropolysilane, and device for producing chloropolysilane

Also Published As

Publication number Publication date
JPS6321211A (en) 1988-01-28

Similar Documents

Publication Publication Date Title
US6887448B2 (en) Method for production of high purity silicon
US4784840A (en) Polysilicon fluid bed process and product
JPH06102532B2 (en) Polysilicon manufacturing method and polysilicon product
JP6446164B2 (en) Residue disposal method and method for producing trichlorosilane
JP2004002138A (en) Method for manufacturing silicon
JP2002060212A (en) Method and apparatus for separating metal chloride from gaseous reaction mixture obtained at synthesizing chlorosilane
US4447663A (en) Process for continuous fluorination of carbon
JP5946835B2 (en) Fabrication of polycrystalline silicon in a substantially closed loop method and system
WO2007119605A1 (en) Method and apparatus for producing silicon
US8974761B2 (en) Methods for producing silane
JP5772982B2 (en) Method for producing high purity chloropolysilane
KR20130128397A (en) Preparation of chlorosilanes from very finely divided ultra-pure silicon
JPH0643245B2 (en) Method for producing silicon hexachloride
JP2013212957A (en) Method and device for producing high purity chlorosilane
JP2855578B2 (en) Method for producing disilicon hexachloride
JP2010235341A (en) Nitrogen-containing silane compound powder and method for producing the same
JPS6212607A (en) Production of silicon hexachloride
JPH04130011A (en) Production of disilicon hexachloride
JPS59182222A (en) Production of polychlorosilane
WO2011009390A1 (en) Reactor and method for converting silicon gas
JPH051207B2 (en)
JPS60145908A (en) Production of silicon hexachloride
US5684218A (en) Preparation of tetrafluoroethylene
JP2002173313A (en) Method for manufacturing silicon tetrachloride
JPS583965B2 (en) Continuous carbon fluorination method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees