JPH0643095A - Near-infrared analyzer - Google Patents

Near-infrared analyzer

Info

Publication number
JPH0643095A
JPH0643095A JP21872092A JP21872092A JPH0643095A JP H0643095 A JPH0643095 A JP H0643095A JP 21872092 A JP21872092 A JP 21872092A JP 21872092 A JP21872092 A JP 21872092A JP H0643095 A JPH0643095 A JP H0643095A
Authority
JP
Japan
Prior art keywords
absorbance
sample
temperature
measured
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21872092A
Other languages
Japanese (ja)
Other versions
JP2987014B2 (en
Inventor
Sadakazu Fujioka
定和 藤岡
Taiichi Mori
泰一 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP21872092A priority Critical patent/JP2987014B2/en
Publication of JPH0643095A publication Critical patent/JPH0643095A/en
Application granted granted Critical
Publication of JP2987014B2 publication Critical patent/JP2987014B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To provide a device for quantitatively analyzing accurately by utilizing near-infrared rays, without being influenced by fluctuation factors of the temperature and moisture of a sample, etc., in absorvance. CONSTITUTION:The measurement of a reference spectrum is made fixed times by a reference plate, and then the average thereof is found (S1 to S4). Similarly, the measurement of a spectrum is made fixed times about an unknown sample, and then the average thereof is found (S5 to S8). After the absorvance is found from both spectra, the differential processing thereof is made (S9, 10), and the temperature of the sample is operated on the basis of the measured spectrum data (S11). The difference between the found sample temperature and the reference temperature in the time when the analytical curve is generated is found (S12), and the shift quantity between the measured spectrum and the spectrum in the time when the analytical curve is generated is found from the temperature difference (S13). The operation for correcting it to the spectrum under the reference temperature is made by using the shift quantity (S14). After the corrected absorvance is secondarily differentiated (S15), the computation for estimating the concentration of a fixed component of the sample is made from the secondarily differentiated absorvance by using the analytical curve, to be displayed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、近赤外線を利用して定
量分析を行う近赤外分析装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a near-infrared analyzer for performing quantitative analysis using near-infrared rays.

【0002】[0002]

【従来の技術】従来、近赤外線を利用して定量分析を行
う場合に必要な検量線は、測定成分の濃度が既知の標準
サンプルに近赤外線を照射して吸光度を測定し、その測
定吸光度と既知の濃度とに基づいて作成していた。
2. Description of the Related Art Conventionally, a calibration curve necessary for performing quantitative analysis using near infrared rays is that a standard sample whose concentration of a measurement component is known is irradiated with near infrared rays and the absorbance is measured. It was created based on known concentrations.

【0003】[0003]

【発明が解決しようとする課題】ところが、吸光度は、
サンプルの温度、水分、粉砕粒度などの外的変動特性に
より変動するので、従来のように作成した検量線により
未知サンプルの成分濃度を推定すると、その推定値が不
安定となって実用に供することができず、未知サンプル
の温度管理の必要性などの問題が生じていた。
However, the absorbance is
Since it fluctuates due to external fluctuation characteristics such as sample temperature, water content, crushed particle size, etc., estimating the component concentration of an unknown sample with a calibration curve created as in the past will make the estimated value unstable and put it to practical use. However, there were problems such as the need to control the temperature of unknown samples.

【0004】そこで、本発明は、近赤外線を利用して定
量分析を行う場合に、サンプルの温度や水分などの吸光
度の変動要因に左右されずに精度よく行うことができる
装置を提供することを目的とする。
Therefore, the present invention is to provide an apparatus capable of performing a quantitative analysis accurately by utilizing near infrared rays without being influenced by factors such as the temperature of the sample and the fluctuation of the absorbance such as moisture. To aim.

【0005】[0005]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明は以下のように構成した。すなわち、本発
明は、サンプルに対して近赤外線を照射して吸光度を測
定する吸光度測定手段と、既知のサンプルについて、検
量線作成用の基準吸光度および所定の外的変動特性値の
ときの吸光度を、前記吸光度測定手段によりあらかじめ
測定し、両者の吸光度のずれ量を求めるずれ量算出手段
と、算出したずれ量を記憶する記憶手段と、未知のサン
プルの外的変動特性値を測定する外的変動特性値測定手
段と、未知のサンプルについて、前記吸光度測定手段に
より吸光度を測定したときに、外的変動特性値測定手段
の測定値に応じて、その測定吸光度を前記記憶手段に記
憶するずれ量により前記基準吸光度に補正する測定吸光
度補正手段と、補正した吸光度に基づき、前記検量線に
よりサンプル成分を分析する分析手段と、を備えてな
る。
In order to achieve the above object, the present invention has the following constitution. That is, the present invention, the absorbance measurement means for irradiating the sample with near-infrared light to measure the absorbance, and known samples, the reference absorbance for creating a calibration curve and the absorbance at the time of a predetermined external variation characteristic value. , A deviation amount calculating means for preliminarily measuring by the absorbance measuring means and obtaining a deviation amount of both absorbances, a storage means for storing the calculated deviation amount, and an external fluctuation for measuring an external fluctuation characteristic value of an unknown sample Characteristic value measuring means and unknown sample, when the absorbance is measured by the absorbance measuring means, according to the measurement value of the external fluctuation characteristic value measuring means, the measured absorbance by the deviation amount stored in the storage means It is provided with a measurement absorbance correction unit that corrects to the reference absorbance and an analysis unit that analyzes the sample component by the calibration curve based on the corrected absorbance.

【0006】[0006]

【作用】このような構成の本発明では、吸光度測定手段
により、既知のサンプルについて、検量線作成用の基準
吸光度、および温度や水分値などの所定の外的変動特性
値のときの吸光度を、あらかじめ測定する。ずれ量算出
手段は、その両者の吸光度のずれ量を算出し、その算出
したずれ量は、記憶手段にあらかじめ記憶しておく。
In the present invention having such a configuration, the absorbance of the known sample is determined by the absorbance measuring means when the reference absorbance for creating the calibration curve and the predetermined external variation characteristic value such as temperature or water content are obtained. Measure in advance. The shift amount calculating means calculates the shift amount of the absorbance of the both, and the calculated shift amount is stored in the storage means in advance.

【0007】次に、未知のサンプルについて成分測定を
行うときには、吸光度測定手段によりそのサンプルの吸
光度を測定するとともに、外的変動特性値測定手段によ
りサンプルの外的変動特性値を測定する。測定吸光度補
正手段は、測定した外的変動特性値に応じて、その測定
吸光度を記憶手段に記憶するずれ量により基準吸光度に
補正する。分析手段は、補正した吸光度に基づき、基準
吸光度から求めてある検量線によりサンプル成分を分析
する。
Next, when the components of an unknown sample are measured, the absorbance of the sample is measured by the absorbance measuring means and the external fluctuation characteristic value of the sample is measured by the external fluctuation characteristic value measuring means. The measured absorbance correction means corrects the measured absorbance to the reference absorbance according to the measured external fluctuation characteristic value by the shift amount stored in the storage means. The analyzing means analyzes the sample components based on the corrected absorbance by a calibration curve obtained from the reference absorbance.

【0008】このように本発明では、外的変動特性値に
応じたサンプルの吸光度のずれ量により、測定吸光度を
検量線作成用の基準吸光度に補正して検量線にかけるよ
うにしたので、測定時において、サンプルの温度や水分
などの吸光度の変動要因に左右されずに精度よく定量分
析ができる。
As described above, according to the present invention, the measured absorbance is corrected to the reference absorbance for preparing the calibration curve by the deviation amount of the absorbance of the sample according to the external variation characteristic value, and the calibration curve is applied to the calibration curve. In some cases, quantitative analysis can be performed accurately without being affected by factors such as the temperature and water content of the sample that change in absorbance.

【0009】[0009]

【実施例】次に、本発明の実施例について、以下に図面
を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】この実施例は、図1に示すように近赤外線
分光装置1と、その近赤外線分光装置1の各部を制御す
るとともに、その装置1から得られるデータの処理を行
う制御処理装置2と、から構成する。
In this embodiment, as shown in FIG. 1, a near-infrared spectroscopic device 1 and a control processing device 2 for controlling each part of the near-infrared spectroscopic device 1 and processing data obtained from the device 1. ,,.

【0011】近赤外線分光装置1は、農産物などの試料
(サンプル)に波長を連続的に変化させて近赤外線を照
射し、その試料の透過光または反射光を検出するもので
ある。すなわち、近赤外線分光装置1は、光源3と、反
射鏡4と、回折格子駆動モータ5により駆動する回折格
子6と、試料を充填した試料セルを装着する試料セルホ
ルダ7と、試料の透過光を検出する透過光検出器8と、
試料からの反射光を検出する反射光検出器9とを図示の
ように配置する。
The near-infrared spectroscopic device 1 is for irradiating near-infrared rays on a sample (sample) such as an agricultural product by continuously changing the wavelength and detecting transmitted light or reflected light of the sample. That is, the near-infrared spectroscopic device 1 includes a light source 3, a reflecting mirror 4, a diffraction grating 6 driven by a diffraction grating driving motor 5, a sample cell holder 7 for mounting a sample cell filled with a sample, and a transmitted light of the sample. A transmitted light detector 8 for detecting,
A reflected light detector 9 for detecting reflected light from the sample is arranged as shown.

【0012】試料セルホルダ7は、測定時に試料セルを
所定位置にセットすると、試料セル移送モータ(図1に
は示さない)により測定位置まで移送され、測定終了後
には試料セルが所定位置まで戻るように構成する。
The sample cell holder 7 is moved to a measurement position by a sample cell transfer motor (not shown in FIG. 1) when the sample cell is set to a predetermined position during measurement, and the sample cell is returned to the predetermined position after the measurement is completed. To configure.

【0013】次に、このような構成の実施例の制御処理
系のブロック図を図2に示し、これについて説明する。
Next, a block diagram of the control processing system of the embodiment having such a configuration is shown in FIG. 2 and will be described.

【0014】図2において、20はワンチップ形態のC
PU(中央処理装置)であり、後述のような制御処理を
行う。CPU20には、入出力インタフェース21を介
して光源3、回折格子駆動モータ5、試料セル移送モー
タ22、透過光検出器8、および反射光検出器9を接続
する。また、CPU20には、入力インタフェース23
を介して入力キー24を接続するとともに、出力インタ
フェース25を介して表示装置26を接続する。さら
に、CPU20には、後述のような処理手順を記憶する
ROM、およびデータを一時的に記憶するRAMからな
る記憶装置27を接続する。
In FIG. 2, reference numeral 20 denotes a one-chip type C.
It is a central processing unit (PU) and performs control processing as described below. The light source 3, the diffraction grating drive motor 5, the sample cell transfer motor 22, the transmitted light detector 8, and the reflected light detector 9 are connected to the CPU 20 via the input / output interface 21. In addition, the CPU 20 has an input interface 23.
The input key 24 is connected via the, and the display device 26 is connected via the output interface 25. Further, the CPU 20 is connected to a storage device 27 including a ROM for storing a processing procedure described later and a RAM for temporarily storing data.

【0015】次に、このように構成する実施例の動作の
一例について、以下に詳細に説明する。
Next, an example of the operation of the embodiment thus constructed will be described in detail below.

【0016】この実施例では、試料が基準温度To(摂
氏20度近傍)における検量線を、以下のようにして求
める。
In this embodiment, the calibration curve of the sample at the reference temperature To (near 20 degrees Celsius) is determined as follows.

【0017】まず基準板を近赤外線分光装置1の測定位
置にセットし、近赤外線分光装置1を動作させると、光
源3から発射する近赤外線は、反射鏡4を経由して回折
格子6に到達し、ここで分光されたのち基準板で反射
し、その反射光は反射光検出器9で検出される。回折格
子6の回転に伴って反射光の波長が変わるので、反射光
検出器9では波長に応じた信号が連続的に検出される。
そこで、その検出信号を読み込む動作(対照スペクトル
の測定)を、所定回数行ったのち、そのスペクトルの平
均を求める。
First, when the reference plate is set at the measurement position of the near-infrared spectroscope 1 and the near-infrared spectroscope 1 is operated, the near-infrared rays emitted from the light source 3 reach the diffraction grating 6 via the reflecting mirror 4. Then, after being dispersed here, it is reflected by the reference plate, and the reflected light is detected by the reflected light detector 9. Since the wavelength of the reflected light changes with the rotation of the diffraction grating 6, the reflected light detector 9 continuously detects a signal corresponding to the wavelength.
Therefore, the operation of reading the detection signal (measurement of the reference spectrum) is performed a predetermined number of times, and then the average of the spectrum is obtained.

【0018】次に、測定成分の濃度がわかっている標準
試料(温度は摂氏20度近傍とする)の入った試料セル
を、試料セル移送モータ22の駆動により測定位置にセ
ットする。そして、近赤外線分光装置1が再び動作する
と、反射光検出器9は標準試料からの反射光を検出す
る。そこで、標準試料のスペクトルの測定を所定回数行
ったのち、その測定スペクトルの平均を求め、対照スペ
クトルと測定スペクトルとから吸光度を算出する。
Next, the sample cell containing the standard sample (the temperature is around 20 degrees Celsius) in which the concentration of the measurement component is known is set at the measurement position by driving the sample cell transfer motor 22. Then, when the near-infrared spectroscopic device 1 operates again, the reflected light detector 9 detects the reflected light from the standard sample. Therefore, after the spectrum of the standard sample is measured a predetermined number of times, the average of the measured spectra is obtained, and the absorbance is calculated from the control spectrum and the measured spectrum.

【0019】そして、濃度の異なる複数の標準試料につ
いて上述のように吸光度を求め、その測定吸光度と既知
の濃度に基づき、基準温度To(摂氏20度近傍)にお
ける検量線をあらかじめ求めておく。
Then, the absorbance is obtained as described above for a plurality of standard samples having different concentrations, and the calibration curve at the reference temperature To (near 20 degrees Celsius) is obtained in advance based on the measured absorbance and the known concentration.

【0020】さらに、測定成分がわかっている標準試料
について、例えば温度が摂氏3度近傍、摂氏20度近
傍、および摂氏34度近傍における各吸光度スペクトル
求め、引き続き、温度が摂氏20度のときの吸光度スペ
クトルを基準とし、それと温度が摂氏3度のときの吸光
度スペクトルとのずれ量を算出するとともに、温度が摂
氏34度のときの吸光度スペクトルと上記の基準スペク
トルとのずれ量をあらかじめ算出しておく。そして、こ
れら算出したずれ量を、記憶装置27にあらかじめ記憶
しておく。
Further, with respect to a standard sample whose measured components are known, for example, respective absorbance spectra at temperatures near 3 degrees Celsius, near 20 degrees Celsius, and around 34 degrees Celsius are obtained. Using the spectrum as a reference, calculate the amount of deviation between it and the absorbance spectrum when the temperature is 3 degrees Celsius, and in advance calculate the amount of deviation between the absorbance spectrum when the temperature is 34 degrees Celsius and the above-mentioned reference spectrum. . Then, the calculated shift amounts are stored in the storage device 27 in advance.

【0021】次に、未知の試料について上記のようにし
て求めた検量線、およびずれ量により成分測定を行う場
合の一例について、図3のフローチャートを参照して説
明する。
Next, an example of the case where the component is measured by the calibration curve and the deviation amount obtained as described above for an unknown sample will be described with reference to the flowchart of FIG.

【0022】まず、基準板を測定位置にセットし、近赤
外線分光装置1を動作させて、対照スペクトルRoの測
定を所定回数行ったのち、その対照スペクトルRoの平
均を求める(S1〜S4)。
First, the reference plate is set at the measurement position, the near-infrared spectroscopic device 1 is operated to measure the reference spectrum Ro a predetermined number of times, and then the average of the reference spectrum Ro is obtained (S1 to S4).

【0023】次に、測定試料の入った試料セルが測定位
置にセットされと、近赤外線分光装置1が再び動作し、
試料のスペクトルRの測定を所定回数行ったのち、その
測定スペクトルRの平均を求める(S5〜S8)。
Next, when the sample cell containing the sample to be measured is set at the measuring position, the near-infrared spectroscopic device 1 operates again,
After the spectrum R of the sample is measured a predetermined number of times, the average of the measured spectrum R is obtained (S5 to S8).

【0024】引き続き、上記のように求めた対照スペク
トルRoと測定スペクトルRとから吸光度ODを、次の
(1)式により算出する(S9)。
Subsequently, the absorbance OD is calculated from the control spectrum Ro and the measurement spectrum R obtained as described above by the following equation (1) (S9).

【0025】 OD=logRo/R (1) 次に、その求めた吸光度の微分処理を行ったのち(S1
0)、測定スペクトルデータに基づいて試料の温度Ts
を演算する(S11)。この演算は、試料の温度変化に
対して近赤外線の吸光度のずれがあり、両者には相関が
あることを利用して試料の温度Tsを推定するものであ
る。なお、この試料温度Tsの測定は、センサにより測
定してもよい。
OD = logRo / R (1) Next, the obtained absorbance is differentiated (S1
0), the temperature Ts of the sample based on the measured spectrum data
Is calculated (S11). This calculation is to estimate the temperature Ts of the sample by utilizing the fact that there is a shift in the absorbance of near-infrared light with respect to the temperature change of the sample and there is a correlation between the two. The sample temperature Ts may be measured by a sensor.

【0026】引き続いて、その推定した試料温度Tsと
検量線作成時の基準温度Toとの温度差△Tを、次の
(2)式により算出する(S12)。
Subsequently, the temperature difference ΔT between the estimated sample temperature Ts and the reference temperature To when the calibration curve is created is calculated by the following equation (2) (S12).

【0027】 △T=Ts−To (2) そして、その求めた温度差△Tにより、測定スペクトル
と検量線作成時のスペクトルとのずれ量△ODtを求め
る(S13)。ところで、検量線作成時の基準温度To
下におけるスペクトルと、外的変動特性を考慮した所定
温度下のスペクトルとのずれ量が、上記のように記憶装
置27に記憶してある。従って、上記のずれ量△ODt
は、その記憶してあるずれ量により、内挿近似として温
度差△Tから算出する。次に、その求めたずれ量△OD
tを用いて基準温度To下におけるスペクトルに補正す
るための演算を、次の(3)式により行う(S14)。
ΔT = Ts−To (2) Then, a deviation amount ΔODt between the measured spectrum and the spectrum at the time of creating the calibration curve is calculated from the calculated temperature difference ΔT (S13). By the way, the reference temperature To when the calibration curve is created
The shift amount between the spectrum below and the spectrum under a predetermined temperature in consideration of the external variation characteristic is stored in the storage device 27 as described above. Therefore, the above deviation amount ΔODt
Is calculated from the temperature difference ΔT as interpolation approximation by the stored deviation amount. Next, the calculated amount of deviation ΔOD
The calculation for correcting the spectrum under the reference temperature To using t is performed by the following equation (3) (S14).

【0028】OD´=OD−△ODt (3) (3)式において、OD´は補正された吸光度、ODは
ステップS9で求めた吸光度である。
OD '= OD-ΔODt (3) In equation (3), OD' is the corrected absorbance and OD is the absorbance determined in step S9.

【0029】引き続き、補正された吸光度OD´を2次
微分したのち(S15)、その2次微分吸光度により検
量線を用いて試料の所定成分の濃度を推定する計算を行
う(S16)。そして、その結果を表示装置26に表示
する(S17)。
Subsequently, the corrected absorbance OD 'is second-derivatively differentiated (S15), and then the concentration of a predetermined component of the sample is estimated using a calibration curve based on the second-order derivative absorbance (S16). Then, the result is displayed on the display device 26 (S17).

【0030】次に、本発明実施例による近赤外分析の精
度を確認するために、以下のような実験を行った。
Next, the following experiment was conducted in order to confirm the accuracy of the near infrared analysis according to the example of the present invention.

【0031】この試験では、試料としては非粉砕の玄米
とし、この玄米の蛋白質含有量を測定するための検量線
を、その試料温度が摂氏20度近傍であらかじめ作成し
ておいた。
In this test, unmilled brown rice was used as a sample, and a calibration curve for measuring the protein content of this brown rice was prepared in advance at a sample temperature of about 20 degrees Celsius.

【0032】次に、温度が摂氏34度近傍の試料につい
て、上記の検量線を用いて試料の蛋白質含有量を推定す
ると、図4で示す結果が得られた。さらに、温度が摂氏
3度近傍の試料について、上記の検量線を用いて試料の
蛋白質含有量を推定すると、図5で示す結果が得られ
た。一方、温度が未知な試料について、本発明実施例に
より蛋白質含有量を推定すると、図6で示すような結果
が得られた。
Next, when the protein content of the sample was estimated using the above calibration curve for the sample at a temperature near 34 degrees Celsius, the results shown in FIG. 4 were obtained. Furthermore, when the protein content of the sample was estimated using the above calibration curve for the sample at a temperature near 3 degrees Celsius, the results shown in FIG. 5 were obtained. On the other hand, when the protein content of a sample of unknown temperature was estimated according to the example of the present invention, the results shown in FIG. 6 were obtained.

【0033】そこで、これらの実験結果を比較すると、
本発明実施例により試料の成分濃度を推定すれば、精度
は実用上十分であることがわかる。
Therefore, comparing these experimental results,
If the component concentrations of the sample are estimated by the examples of the present invention, it can be seen that the accuracy is practically sufficient.

【0034】次に、以上のようにして求めた試料の成分
濃度を表示装置26に表示し、その試料の品質を評価す
る品質評価装置の一例について、以下に説明する。
Next, an example of a quality evaluation device for displaying the component concentration of the sample obtained as described above on the display device 26 and evaluating the quality of the sample will be described below.

【0035】この装置では、試料は非粉砕の玄米とし、
上述の手順で玄米成分中の蛋白質含量、および脂肪酸度
を測定する。そして、その測定結果を表示装置26の表
示画面のXY座標上の対応位置に、図7または図8で示
すようにドットで表示するように構成にする。これによ
り、XY座標上に蛋白質と脂肪酸とを関連して表示する
ことができるので、米の品質を把握するのに非常に分か
りやすい表示となり、もって米の品質の直観的な判断が
容易となる。
In this apparatus, the sample is unmilled brown rice,
The protein content and fatty acid content in the brown rice component are measured by the above-mentioned procedure. Then, the measurement result is displayed as dots at corresponding positions on the XY coordinates on the display screen of the display device 26 as shown in FIG. 7 or 8. This makes it possible to display the protein and the fatty acid in association with each other on the XY coordinates, which makes it very easy to understand the quality of the rice, which makes it easy to intuitively judge the quality of the rice. .

【0036】さらに、この表示装置26の表示画面の座
標上には、入力キー24の操作により図7または図8の
斜線部で示すように任意に領域を設定できるようにし、
その設定領域内に測定値が入った場合には、警告音、警
告表示、または制御出力を発するように構成する。これ
により、任意に設定する領域ごとに独立して品質管理が
可能となる。また警告音、警告表示によって設定領域の
サンプルの見落としなどを防止できる。さらに、制御出
力が発せられることにより、所望のサンプルの選別、品
質表示、または2次加工などが可能になる。
Further, an area can be arbitrarily set on the coordinates of the display screen of the display device 26 by operating the input key 24, as shown by the hatched portion in FIG. 7 or 8.
When a measured value is entered in the setting area, a warning sound, a warning display, or a control output is generated. As a result, quality control can be performed independently for each arbitrarily set area. Further, the warning sound and the warning display can prevent the sample in the setting area from being overlooked. Further, by issuing the control output, it becomes possible to select a desired sample, display quality, or perform secondary processing.

【0037】次に、品質評価装置の他の例について、以
下に説明する。
Next, another example of the quality evaluation device will be described below.

【0038】この装置では、試料は非粉砕の玄米とし、
上述の手順で玄米成分中の蛋白質含量、脂肪酸度などの
5種類の評価指標を測定する。そして、その測定結果の
うち2つの評価指標にかかるデータを、図7で示すよう
に表示装置26の表示画面に2次元表示するが、評価指
標が5種類のためにその表示すべき組み合わせは10通
りになる。そこで、図9で示すように、表示装置の表示
画面上に5種類の指標「A」〜「E」を表示し、操作者
がこれらの中から2つの指標を選択すると、その選択し
た指標からなるXY座標(マップ)上にデータが表示さ
れるとともに、その表示が拡大縮小できるように構成す
る。さらに、複数のマップを選択して同一画面に表示で
きるように構成する。このような構成により、評価指標
を組み合わせて表示する際の操作性が向上する。
In this apparatus, the sample is unmilled brown rice,
Five kinds of evaluation indexes such as protein content and fatty acid content in the brown rice component are measured by the above-mentioned procedure. Then, the data relating to the two evaluation indexes of the measurement results are two-dimensionally displayed on the display screen of the display device 26 as shown in FIG. 7. However, since there are five kinds of evaluation indexes, there are 10 combinations to be displayed. Get on the street. Therefore, as shown in FIG. 9, five types of indexes “A” to “E” are displayed on the display screen of the display device, and when the operator selects two indexes from these, the selected indexes are selected. The data is displayed on the XY coordinates (map) and the display can be enlarged or reduced. Furthermore, it is configured so that a plurality of maps can be selected and displayed on the same screen. With such a configuration, operability in displaying combined evaluation indexes is improved.

【0039】このように所定の指標を選択した表示例を
図10に示すが、図示のように脂肪酸度などは、例えば
0〜50mgの絶対軸上で等分割するよりも、0〜15
mg、15〜25mgなどのように不等分割したり、5
〜25mgの区間において等分割するなど、その表示区
間は操作者の設定により任意に設定できるようにするの
が、機能性、操作性のうえで好ましい。そこで、たとえ
ば図10の斜線部に示すように表示区間を設定すると、
図11で示すような表示に変換されるように構成する。
A display example in which the predetermined index is selected in this way is shown in FIG. 10. As shown in the figure, the degree of fatty acid is 0 to 15 rather than equally divided on the absolute axis of 0 to 50 mg.
mg, 15-25 mg, etc.
From the viewpoint of functionality and operability, it is preferable that the display section can be arbitrarily set by the operator's setting, for example, by equally dividing the section of 25 mg. Therefore, for example, if the display section is set as shown by the shaded area in FIG.
It is configured to be converted into the display as shown in FIG.

【0040】[0040]

【発明の効果】以上のように本発明では、外的変動特性
値に応じたサンプルの吸光度のずれ量により、測定吸光
度を検量線作成用の基準吸光度に補正して検量線にかけ
るようにしたので、測定時において、サンプルの温度や
水分などの吸光度の変動要因に左右されずに精度よく定
量分析ができる。
As described above, according to the present invention, the measured absorbance is corrected to the reference absorbance for preparing the calibration curve according to the deviation amount of the absorbance of the sample according to the external variation characteristic value, and the calibration curve is applied. Therefore, at the time of measurement, the quantitative analysis can be performed accurately without being affected by the fluctuation factors of the absorbance of the sample such as temperature and moisture.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例の全体の構成を示す図である。FIG. 1 is a diagram showing an overall configuration of an embodiment of the present invention.

【図2】その制御処理系のブロック図である。FIG. 2 is a block diagram of a control processing system thereof.

【図3】本発明実施例の動作例を示すブロック図であ
る。
FIG. 3 is a block diagram showing an operation example of an embodiment of the present invention.

【図4】従来の方法による玄米の蛋白質含有量の実測値
とその推定値との関係の一例を示す図である。
FIG. 4 is a diagram showing an example of a relationship between an actually measured value and an estimated value of a protein content of brown rice by a conventional method.

【図5】従来の方法による玄米の蛋白質含有量の実測値
とその推定値との関係の他の一例を示す図である。
FIG. 5 is a diagram showing another example of the relationship between the measured value and the estimated value of the protein content of brown rice by the conventional method.

【図6】本発明実施例よる玄米の蛋白質含有量の実測値
とその推定値との関係の一例を示す図である。
FIG. 6 is a diagram showing an example of a relationship between an actually measured value and an estimated value of a protein content of brown rice according to an example of the present invention.

【図7】試料の成分測定の結果を2次元表示した一例を
示す図である。
FIG. 7 is a diagram showing an example of a two-dimensional display of the results of component measurement of a sample.

【図8】試料の成分測定の結果を2次元表示した一例を
示す図である。
FIG. 8 is a diagram showing an example of a two-dimensional display of the results of component measurement of a sample.

【図9】試料の評価指標が複数の場合に、そのうちの2
つの指標から2次元表示を選択するための説明図であ
る。
FIG. 9 shows two of the cases where the evaluation index of the sample is plural.
It is an explanatory view for selecting two-dimensional display from one index.

【図10】所望の評価指標を選択したのちの表示例を示
す図である。
FIG. 10 is a diagram showing a display example after selecting a desired evaluation index.

【図11】表示区間変換後の表示例を示す図である。FIG. 11 is a diagram showing a display example after display section conversion.

【符号の説明】[Explanation of symbols]

1 近赤外線分光装置 2 制御処理装置 20 CPU 27 記憶装置 1 near-infrared spectroscopic device 2 control processing device 20 CPU 27 storage device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】サンプルに対して近赤外線を照射して吸光
度を測定する吸光度測定手段と、 既知のサンプルについて、検量線作成用の基準吸光度お
よび所定の外的変動特性値のときの吸光度を、前記吸光
度測定手段によりあらかじめ測定し、両者の吸光度のず
れ量を求めるずれ量算出手段と、 算出したずれ量を記憶する記憶手段と、 未知のサンプルの外的変動特性値を測定する外的変動特
性値測定手段と、 未知のサンプルについて、前記吸光度測定手段により吸
光度を測定したときに、外的変動特性値測定手段の測定
値に応じて、その測定吸光度を前記記憶手段に記憶する
ずれ量により前記基準吸光度に補正する測定吸光度補正
手段と、 補正した吸光度に基づき、前記検量線によりサンプル成
分を分析する分析手段と、 を備えてなる近赤外分析装置。
1. An absorbance measuring means for irradiating a sample with near-infrared rays to measure an absorbance, and a known sample, a reference absorbance for preparing a calibration curve and an absorbance at a predetermined external variation characteristic value, Displacement amount calculation means for obtaining the deviation amount between the two absorbances measured in advance by the absorbance measurement means, storage means for storing the calculated deviation amount, and external variation characteristic for measuring the external variation characteristic value of an unknown sample Value measuring means and unknown sample, when the absorbance is measured by the absorbance measuring means, the measured absorbance is stored in the storage means according to the measured value of the external fluctuation characteristic value measuring means, and Near-infrared light comprising: a measurement absorbance correction unit that corrects to a reference absorbance; and an analysis unit that analyzes a sample component by the calibration curve based on the corrected absorbance. Analysis apparatus.
JP21872092A 1992-07-27 1992-07-27 Near-infrared analyzer Expired - Fee Related JP2987014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21872092A JP2987014B2 (en) 1992-07-27 1992-07-27 Near-infrared analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21872092A JP2987014B2 (en) 1992-07-27 1992-07-27 Near-infrared analyzer

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP8190028A Division JPH08338804A (en) 1996-07-01 1996-07-01 Apparatus for displaying quality of rice
JP9203178A Division JPH1068692A (en) 1997-07-29 1997-07-29 Near infrared analyzer

Publications (2)

Publication Number Publication Date
JPH0643095A true JPH0643095A (en) 1994-02-18
JP2987014B2 JP2987014B2 (en) 1999-12-06

Family

ID=16724386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21872092A Expired - Fee Related JP2987014B2 (en) 1992-07-27 1992-07-27 Near-infrared analyzer

Country Status (1)

Country Link
JP (1) JP2987014B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08247932A (en) * 1995-03-13 1996-09-27 Dainichiseika Color & Chem Mfg Co Ltd Method for correcting colorimetric value

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105180233A (en) * 2015-08-27 2015-12-23 广东美的厨房电器制造有限公司 Method and device for correcting temperature measuring errors of infrared sensor of microwave oven

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62299743A (en) * 1986-06-19 1987-12-26 Satake Eng Co Ltd Measuring instrument for taste of rice
JPS63175747A (en) * 1987-01-16 1988-07-20 Satake Eng Co Ltd Instrument for measuring content of amylose or amylopectin of rice
JPS6449937A (en) * 1987-08-20 1989-02-27 Minolta Camera Kk Optical densitometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62299743A (en) * 1986-06-19 1987-12-26 Satake Eng Co Ltd Measuring instrument for taste of rice
JPS63175747A (en) * 1987-01-16 1988-07-20 Satake Eng Co Ltd Instrument for measuring content of amylose or amylopectin of rice
JPS6449937A (en) * 1987-08-20 1989-02-27 Minolta Camera Kk Optical densitometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08247932A (en) * 1995-03-13 1996-09-27 Dainichiseika Color & Chem Mfg Co Ltd Method for correcting colorimetric value

Also Published As

Publication number Publication date
JP2987014B2 (en) 1999-12-06

Similar Documents

Publication Publication Date Title
EP0743513B1 (en) Spectrometry and Optical Measuring Method and Apparatus
US4627008A (en) Optical quantitative analysis using curvilinear interpolation
US8352205B2 (en) Multivariate optical elements for nonlinear calibration
EP1086366B1 (en) A method in quality control of a spectrophotometer
US6122052A (en) Computer operated spectrometric instrument and associated calculator
JP7135608B2 (en) Gas absorption spectroscopy device and gas absorption spectroscopy method
US20070054404A1 (en) Method of hemoglobin correction due to temperature variation
EP0400342B1 (en) Method of infra red analysis
JP2671931B2 (en) Device and method for analyzing medical samples
JP3762729B2 (en) Multi-component analyzer
JPH1030982A (en) Method for analysing multicomponent aqueous solution
JPH07151677A (en) Densitometer
JPH0643095A (en) Near-infrared analyzer
JPH0572039A (en) Correcting method for spectrum of fluorescence spectrophotometer and fluorescence spectrophotometer with spectrum correcting function
JPH1068692A (en) Near infrared analyzer
WO2001036943A1 (en) Method for estimating measurement of absorbance and apparatus for estimating measurement of absorbance
JP3314630B2 (en) Chromatographic apparatus and chromatographic analysis method
JPH08338804A (en) Apparatus for displaying quality of rice
US20230102813A1 (en) Open-loop/closed-loop process control on the basis of a spectroscopic determination of undetermined substance concentrations
JP4626572B2 (en) Optical emission spectrometer
JP2967888B2 (en) Temperature estimation method by near infrared spectroscopy
JP3128163U (en) Spectrophotometer
JP2841664B2 (en) Diagnosis device for soil etc.
JPH0727703A (en) Quantitative analysis of multiple component substance
JPH05302890A (en) Method for near-infrared analysis

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees