JPH0642181B2 - Fuel cell power generation system - Google Patents

Fuel cell power generation system

Info

Publication number
JPH0642181B2
JPH0642181B2 JP1037155A JP3715589A JPH0642181B2 JP H0642181 B2 JPH0642181 B2 JP H0642181B2 JP 1037155 A JP1037155 A JP 1037155A JP 3715589 A JP3715589 A JP 3715589A JP H0642181 B2 JPH0642181 B2 JP H0642181B2
Authority
JP
Japan
Prior art keywords
power
fuel cell
signal
storage battery
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1037155A
Other languages
Japanese (ja)
Other versions
JPH02214910A (en
Inventor
周二 門屋
俊博 田中
友義 鴨下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIKOKU DENRYOKU KK
Fuji Electric Co Ltd
Shikoku Electric Power Co Inc
Original Assignee
SHIKOKU DENRYOKU KK
Fuji Electric Co Ltd
Shikoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIKOKU DENRYOKU KK, Fuji Electric Co Ltd, Shikoku Electric Power Co Inc filed Critical SHIKOKU DENRYOKU KK
Priority to JP1037155A priority Critical patent/JPH0642181B2/en
Publication of JPH02214910A publication Critical patent/JPH02214910A/en
Publication of JPH0642181B2 publication Critical patent/JPH0642181B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Control Of Electrical Variables (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は移動用電源等の独立電源として使用されるハ
イブリッド方式燃料電池発電システム、ことにその制御
装置に関する。
Description: TECHNICAL FIELD The present invention relates to a hybrid fuel cell power generation system used as an independent power source such as a mobile power source, and particularly to a control device therefor.

〔従来の技術〕[Conventional technology]

一般に燃料電池と燃料改質器とを組み合わせて構成した
燃料電池発電システムでは、改質器の応答速度が遅いこ
とおよび発電システムの起動停止動作を行わせるため
に、燃料電池のバックアップ電源として燃料電池の出力
側に蓄電池を接続し、起動停止時にはこの蓄電池を発電
システムの制御電源として起動停止動作に必要な制御機
器を動作させるとともに、発電中は急激な負荷上昇に対
しては燃料電池の発電量が負荷に追従するまでの電力不
足量を蓄電池より放電し、軽負荷時に燃料電池の余剰電
力で蓄電池を回復充電するようにしたハイブリッド方式
の燃料電池発電システムが提案されている。
Generally, in a fuel cell power generation system configured by combining a fuel cell and a fuel reformer, the fuel cell is used as a backup power source of the fuel cell in order to make the response speed of the reformer slow and to start / stop the power generation system. A storage battery is connected to the output side of the fuel cell, and at the time of start and stop, this storage battery is used as the control power supply of the power generation system to operate the control equipment required for start and stop operation, and during power generation, the power generation amount of the fuel cell against the sudden load increase. A hybrid fuel cell power generation system has been proposed in which the shortage of electric power until the vehicle follows the load is discharged from the storage battery, and the storage battery is recovered and charged by the surplus power of the fuel cell when the load is light.

ところで、軽負荷運転状態が長時間継続した状態で燃料
電池より蓄電池を充電し続けると、蓄電池が過充電とな
って蓄電池電圧が上昇する。一方、燃料電池の制御装置
の構成機器として通常定電圧制御装置が用いられてお
り、この定電圧制御装置は一定の電圧範囲で正常に動作
するようになっているため、蓄電池電圧が上昇すると定
電圧装置の許容範囲を超過して制御装置が正常に動作し
なくなるという問題が生ずる。
By the way, if the storage battery is continuously charged from the fuel cell while the light load operation state continues for a long time, the storage battery becomes overcharged and the storage battery voltage rises. On the other hand, a constant voltage control device is usually used as a component of the fuel cell control device, and this constant voltage control device operates normally in a certain voltage range. The problem arises that the allowable range of the voltage device is exceeded and the control device does not operate normally.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

前記したように、この種の燃料電池発電システムを正常
に動作させるためには常に蓄電池の電圧を制御装置が正
常に動作し得る範囲に保つことが必要である。このため
には常に蓄電池の充電量を適正に保ち過充電を防止する
ことが必要である。
As described above, in order to normally operate this type of fuel cell power generation system, it is necessary to always keep the voltage of the storage battery within a range in which the control device can normally operate. For this purpose, it is necessary to always maintain a proper charge amount of the storage battery and prevent overcharge.

この発明は上記の課題を解決して蓄電池電圧を所定の範
囲に保ち燃料電池発電システムを正常に動作させること
を目的とする。
An object of the present invention is to solve the above problems and keep the storage battery voltage within a predetermined range so that the fuel cell power generation system operates normally.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記課題を解決するために、この発明によれば、燃料電
池の出力側が出力電流の検出器およびDC/DCチョッ
パを介してバックアップ電源としての蓄電池,負荷回
路,および定電圧制御装置を有する補機制御回路に接続
されたハイブリッド方式の燃料電池発電システムにおい
て、前記蓄電池電圧の検出信号およびその設定値信号と
を受け両信号の差に比例した蓄電池の充電電力信号を発
する充電電力演算部と、この充電電力信号,補機電力の
検出信号,および負荷電力の検出信号を加算して前記燃
料電池の発電量信号を発数る発電量演算部と、この発電
量信号および燃料電池電圧の検出信号を受けて前記DC
/DCチョッパの出力電流指令値信号を発する出力電流
演算部とを含む演算制御回路を備え、前記出力電流検出
器の出力信号と出力電流指令値信号との差に基づいてD
C/DCチョッパ出力電流、および補機制御回路を制御
するよう構成してなるものとする。
In order to solve the above-mentioned problems, according to the present invention, an auxiliary machine having a storage battery as a backup power source, a load circuit, and a constant voltage controller on the output side of a fuel cell via an output current detector and a DC / DC chopper In a hybrid fuel cell power generation system connected to a control circuit, a charging power calculation unit that receives a detection signal of the storage battery voltage and a set value signal thereof and issues a charging power signal of the storage battery proportional to the difference between the two signals, and A power generation amount calculation unit for adding the charging power signal, the auxiliary power detection signal, and the load power detection signal to generate the power generation signal of the fuel cell, and the power generation amount signal and the fuel cell voltage detection signal. DC received
/ DC chopper is provided with an operation control circuit including an output current operation unit that issues an output current command value signal, and D is calculated based on a difference between the output signal of the output current detector and the output current command value signal.
It is configured to control the C / DC chopper output current and the accessory control circuit.

〔作用〕[Action]

上記手段において、蓄電池の充電電力演算部で蓄電池電
圧の設定値に対する検出値の差に例えば燃料電池の発電
能力に見合う比例係数を乗じて蓄電池電圧をその設定値
に回復充電するに必要な充電電力を算出して指令信号と
し、発電量演算部で充電電力指令値に負荷電力検出値お
よび補機電力検出値を加算した総発電量を算出し、出力
電力演算部で発電量算出値を燃料電池の出力電圧検出値
で除した出力電力指令値を算出し、この指令信号を遅延
回路により改質器の応答速度に相応したタイミング調整
をして、DC/DCチョッパ制御回路および補機制御回
路に加えて発電量およびチョッパ出力電流を制御するよ
う構成したことにより、燃料電池の起動時や負荷の急増
時に蓄電池が負荷電力や補機電力を供給してその端子電
圧が低下した場合、その検出電圧と設定電圧との差が広
がることによって出力電流指令値が増大し、これに基づ
いて燃料電池の発電量およびDC/DCチョッパの出力
電流が増すので、これによって蓄電池が回復充電され、
蓄電池電圧の検出値がその設定電圧に到達した時点で蓄
電池の回復充電が終了する。したがって、蓄電池電圧の
上昇が回避され、電圧上昇に起因する蓄電池の過充電、
および補機制御回路に設けられた定電圧制御装置の不安
定動作が回避され、発電システムの運転を安定化でき
る。
In the above means, the charging power required for recovering and charging the storage battery voltage to the set value by multiplying the difference in the detected value with respect to the set value of the storage battery voltage by the proportional coefficient corresponding to the power generation capacity of the fuel cell, for example, in the charging power calculation unit of the storage battery. Is calculated as a command signal, and the power generation amount calculation unit calculates the total power generation amount by adding the load power detection value and the auxiliary device power detection value to the charging power command value, and the output power calculation unit calculates the power generation amount calculation value as the fuel cell. The output power command value divided by the output voltage detection value of is calculated, and the command signal is adjusted in timing by the delay circuit according to the response speed of the reformer, and the DC / DC chopper control circuit and the auxiliary machine control circuit are controlled. In addition, when the storage battery supplies load power or auxiliary power and the terminal voltage drops when the fuel cell starts up or the load increases rapidly by configuring to control the amount of power generation and the chopper output current. Since the output current command value by spreading the difference between the detected voltage and the setting voltage is increased, the output current of the power generation amount and DC / DC chopper of the fuel cell increases based on this, this battery is recovered charged by,
The recovery charging of the storage battery ends when the detected value of the storage battery voltage reaches the set voltage. Therefore, the increase in the storage battery voltage is avoided, and the storage battery is overcharged due to the increase in the voltage.
Also, the unstable operation of the constant voltage control device provided in the auxiliary machine control circuit can be avoided, and the operation of the power generation system can be stabilized.

〔実施例〕〔Example〕

以下この発明を実施例に基づいて説明する。 The present invention will be described below based on examples.

第1図はこの発明の実施例装置を簡略化して示すシステ
ム構成図、第2図は実施例装置の負荷電力急増時におけ
る動作を示すタイムチャート、第3図は実施例装置にお
ける蓄電池の充放電特性を示す電圧−電流特性線図であ
る。第1図において、1は原燃料タンク、2は原燃料を
水蒸気改質して水素リッチな燃料ガスを生成する改質
器、3は燃料電池であり、原料ポンプ7により原料タン
ク1から改質器2に供給される原燃料としての例えばメ
タノールは、改質器2のバーナに燃料電池3から送られ
るオフガスおよびブロワ8から送られる燃焼空気の燃焼
熱によって所定温度下で水蒸気改質され、発生した燃料
ガスが燃料電池3においてブロワ9から送られる反応空
気と電気化学反応することにより発電が行われる。
FIG. 1 is a system configuration diagram showing a simplified embodiment device of the present invention, FIG. 2 is a time chart showing the operation of the embodiment device when the load power rapidly increases, and FIG. 3 is a charging / discharging of a storage battery in the embodiment device. It is a voltage-current characteristic diagram which shows a characteristic. In FIG. 1, 1 is a raw fuel tank, 2 is a reformer for steam-reforming raw fuel to produce hydrogen-rich fuel gas, 3 is a fuel cell, and a raw material pump 7 reforms the raw material tank 1 For example, methanol as a raw fuel supplied to the reactor 2 is steam-reformed at a predetermined temperature by the off-gas sent from the fuel cell 3 to the burner of the reformer 2 and the combustion heat of the combustion air sent from the blower 8 to generate steam. The generated fuel gas electrochemically reacts with the reaction air sent from the blower 9 in the fuel cell 3 to generate electricity.

燃料電池3の出力側はDC/DCチョッパ4を介して負
荷回路5に接続されて発生した電力を負荷回路5に供給
するとともに、DC/DCチョッパ4の出力側にはバッ
クアップ電源としての蓄電池6が設けられ、装置の起動
時や負荷電力の急増時に燃料電池3の発電電力の不足分
を供給するとともに、軽負荷時の余剰電力により回復充
電される。
The output side of the fuel cell 3 is connected to the load circuit 5 via the DC / DC chopper 4 to supply the generated electric power to the load circuit 5, and the output side of the DC / DC chopper 4 has a storage battery 6 as a backup power source. Is provided to supply a shortage of the generated power of the fuel cell 3 when the device is started up or when the load power rapidly increases, and is recovered and charged by the surplus power when the load is light.

10は上記発電装置の制御部であり、DC/DCチョッパ
の出力側に定電圧制御装置(AVR)13を介して接続さ
れた補機制御回路14と、この補機制御回路14およびDC
/DCチョッパ4の制御回路16とに電流指令信号Ifc
発する演算制御部20とで構成される。
Reference numeral 10 denotes a control unit of the above-described power generator, which includes an accessory control circuit 14 connected to the output side of the DC / DC chopper via a constant voltage controller (AVR) 13, and the accessory control circuit 14 and the DC.
The control circuit 16 of the / DC chopper 4 and the operation control unit 20 which issues the current command signal I fc .

演算制御部20は、蓄電池電圧の検出器11の検出信号V
と、その電圧設定値15の出力信号Vbsとの差に比例係数
Kを乗じて得られる蓄電池充電電力P=K(Vbs−V
)を算出し出力する充電電力演算部21と、この蓄電池
の充電電力指令信号Pに負荷電力検出器17の出力信号
、および補機7,8,および9に供給する補機電力の検
出器18の出力信号Pを算出し出力する発電電力演算部
22と、得られる発電電力Pを燃料電池3の出力電圧検出
器19の検出信号Vfcで除して得られる出力電流指令値I
fcを算出し出力する出力電流演算部23との三つの演算部
と、遅延回路24とで構成される。
The arithmetic and control unit 20 detects the detection signal V b of the detector 11 for the storage battery voltage.
If, battery charging power P b = K (V bs -V obtained by multiplying a proportional coefficient K to the difference between the output signal V bs of the voltage set value 15
a charging power calculating unit 21 for b) calculating an output, the output signal P o, and the auxiliary power supply to the auxiliary device 7, 8, and 9 of the charging power command signal P b to the load power detector 17 of the storage battery Generation power calculation unit for calculating and outputting the output signal P c of the detector 18 of
22 and an output current command value I obtained by dividing the obtained generated power P by the detection signal V fc of the output voltage detector 19 of the fuel cell 3.
The delay circuit 24 includes three calculation units, an output current calculation unit 23 that calculates and outputs fc .

演算制御部20の出力指令信号Ifcは、改質器2や燃料電
池3の応答速度に対応して遅延回路24によってその出力
タイミングが制御され、補機制御回路14に供給されてポ
ンプ7による原燃料の制御,ブロワ8および9による空
気量制御が出力電流指令値Ifcに対応して制御されると
ともに、燃料電池3の出力電流の検出器12の出力電流実
際値Iとその指令値Ifcとの差Ifc−Iに基づいて
DC/DCチョッパ4の制御装置16がフィードバック制
御されることにより、DC/DCチョッパ4の出力電流
は指令値Ifcに近づくよう制御される。
The output command signal I fc of the arithmetic control unit 20 has its output timing controlled by the delay circuit 24 in accordance with the response speed of the reformer 2 and the fuel cell 3, and is supplied to the accessory control circuit 14 to be supplied by the pump 7. The control of the raw fuel and the air amount control by the blowers 8 and 9 are controlled corresponding to the output current command value I fc, and the output current actual value If of the detector 12 of the output current of the fuel cell 3 and its command value. by the control device 16 of the DC / DC chopper 4 is feedback controlled based on the difference I fc -I f the I fc, the output current of the DC / DC chopper 4 is controlled so as to approach the command value I fc.

上述のように構成された実施例燃料電池発電システムに
おいて、負荷電力Pの急増時におけるタイムチャート
を第2図に,この時の蓄電池の電圧−電流特性の変化を
第3図に示すように、負荷電力Pが軽負荷Po1で運転
され、したがって時刻tにおいて燃料電池出力PAの一
部によって蓄電池6が充電電流IBAによって回復充電
され、その端子電圧VBがVBAにまで回復充電され、
第3図にA点で示す残容量x%に到達した状態で負荷
電力PがPo2に急増したと仮定する。負荷電力P
増大はバックアップ電源としての蓄電池6の放電電流I
BがIBBが急増することによって供給され、蓄電池電
圧VBは第3図のA点に相応するVBAから,B点に相
応するVBB,C点に相応するVBCへと低下し、その
残容量もx%からx%へと低下する。
In the fuel cell power generation system of the embodiment configured as described above, a time chart when the load power Po is rapidly increased is shown in FIG. 2, and a change in the voltage-current characteristic of the storage battery at this time is shown in FIG. , The load power P o is operated at a light load P o1 , and therefore at time t 1 , the storage battery 6 is recovered and charged by the charging current IBA by a part of the fuel cell output PA, and its terminal voltage VB is recovered and charged to VBA,
It is assumed that the load power P o sharply increases to P o2 in a state where the remaining capacity x 1 % indicated by point A in FIG. 3 is reached. The increase in the load power Po is due to the discharge current I of the storage battery 6 as a backup power source.
B is supplied by the rapid increase of IBB, and the storage battery voltage VB decreases from VBA corresponding to the point A in FIG. 3 to VBB corresponding to the point B and VBC corresponding to the point C, and the remaining capacity thereof is x. It decreases from 1 % to x 2 %.

このとき、負荷電力Pの急増は負荷電力検出器17のよ
って検出されて充電電力演算部に入力される負荷電力検
出信号がPo1からPo2に更新され、電池電圧VBの低下
は電圧検出器11によって検出された検出信号Vとその
設定信号Vbsとの差が増大するので、この差に比例した
充電電力指令信号Pが増大する。したがって、発電電
力演算部21の出力信号P,および出力電力演算部23の出
力指令信号Ifcも増大し、遅延回路24を介して出力電流
の増加を求める指令信号IfcがDC/DCチョッパ4の
制御回路16および補機制御回路14に向けて出力される。
これに伴って燃料電池3の出力電力Pは時刻tからt
にかけてPAからPDに向けて増大するので、この分
蓄電池の放電電流IBBは第3図におけるC点からD点
に向けて減少し、時刻tで放電電流から充電電流に変
わり、時刻tでD点に到達し、さらにE点に向けて回
復充電される。放電電流の減少および充電電流の増加に
よる回復充電に伴って蓄電池電圧VBもVBCからVB
D,VBEへと上昇し、VBEでその設定電圧VBSと
等しくなると、充電電力演算部21の充電電力指令信号P
は零となり、蓄電池電圧VBがVBSが保持された状
態を保持して負荷電力Pと補機電力Pがすべて燃料
電池3の出力電力Pによって供給される定常運転状態と
なる。
At this time, proliferation of load power P o is the load power detection signal input to the charging power calculation unit is detected by the load power detector 17 is updated from P o1 to P o2, decrease in battery voltage VB is the voltage detected Since the difference between the detection signal V b detected by the device 11 and its setting signal V bs increases, the charging power command signal P b proportional to this difference increases. Therefore, the output signal P of the generated power calculating unit 21, and the output command signal I fc of output power calculating unit 23 also increases, the command signal I fc is DC / DC chopper 4 to determine the increase in the output current through the delay circuit 24 Is output to the control circuit 16 and the accessory control circuit 14.
As a result, the output power P of the fuel cell 3 changes from time t 1 to t
As it increases from PA to PD over 3 , the discharge current IBB of this storage battery decreases from point C to point D in FIG. 3, changes from the discharge current to the charge current at time t 2 , and changes to time t 3 At point D, point D is reached, and the battery is recovered and charged toward point E. The storage battery voltage VB is also changed from VBC to VB with the recovery charge due to the decrease of the discharge current and the increase of the charge current.
When the voltage rises to D, VBE and becomes equal to the set voltage VBS at VBE, the charging power command signal P of the charging power calculation unit 21
b becomes zero, and the storage battery voltage VB maintains the state in which VBS is held, and the load power P o and the auxiliary device power P c are all in the steady operation state supplied by the output power P of the fuel cell 3.

このように、蓄電池電圧VBが回復充電によってほぼ一
定の設定電圧値VBSに保持されるので、蓄電池6の過
充電が防止され、かつ定電圧制御装置13の安定動作が保
持される。また、電流指令信号Ifcの増加率が遅延回路
24によって改質器および燃料電池3の応答速度に対応し
て制御されるので、DC/DCチョッパ4が過大な電流
を要求することによって燃料電池3に燃料不足や電圧降
下などの悪影響を及ぼさない範囲でその発電電力Pを増
大制御することができる。
In this way, since the storage battery voltage VB is held at the substantially constant set voltage value VBS by the recovery charge, overcharge of the storage battery 6 is prevented and the stable operation of the constant voltage controller 13 is held. In addition, the rate of increase of the current command signal I fc
Since it is controlled according to the response speed of the reformer and the fuel cell 3 by the 24, the DC / DC chopper 4 does not exert an adverse effect such as fuel shortage or voltage drop on the fuel cell 3 by requesting an excessive current. The generated power P can be controlled to increase within the range.

負荷電力Pが急増すると、蓄電池電圧の検出値と設定
値との差も急増し、これに基づいて演算制御部20が燃料
電池の出力電力Pの急増を要求することになるが、充電
電力演算部21にその出力指令信号Pを所定レベルで飽
和させるリミッターを設けることにより、電流指令信号
fcを容易に抑えることが可能であり、遅延回路24と併
せて燃料電池3に及ぼす悪影響を排除することができ
る。
When the load power Po increases sharply, the difference between the detected value of the storage battery voltage and the set value also increases sharply, and the calculation control unit 20 requests a sharp increase in the output power P of the fuel cell based on this, but the charging power By providing a limiter for saturating the output command signal P b at a predetermined level in the calculation unit 21, it is possible to easily suppress the current command signal I fc, and to prevent the adverse effect on the fuel cell 3 together with the delay circuit 24. Can be eliminated.

なお、軽負荷状態の発電運転が継続した場合でも、蓄電
池電圧VBがその設定電圧VBSに保持されるので蓄電
池6の過充電を防止できる。また、起動時に蓄電池が補
機電力を供給することによって生ずる蓄電池電圧VBの
低下も、演算制御部20が充電電力指令信号Pと補機電
力Pの和に相応する発電電力Pを求め、これに相応す
る出力電流指令信号IfcをDC/DCチョッパ4および
補機制御回路14に向けて出力することにより、燃料電池
3の発電電力Pの増加とともに蓄電池6の回復充電が行
われ、その後負荷回路5を接続した時点では負荷電力の
急増時と同様に制御を行うことができる。
Even when the power generation operation in the light load state continues, the storage battery voltage VB is held at the set voltage VBS, so that the overcharge of the storage battery 6 can be prevented. Further, even when the storage battery voltage VB is lowered by the storage battery supplying the auxiliary power at the time of startup, the calculation control unit 20 obtains the generated power P corresponding to the sum of the charging power command signal P b and the auxiliary power P c , By outputting the output current command signal I fc corresponding to this to the DC / DC chopper 4 and the auxiliary machine control circuit 14, the regenerative charging of the storage battery 6 is performed with the increase of the generated power P of the fuel cell 3, and thereafter. When the load circuit 5 is connected, control can be performed in the same manner as when the load power is rapidly increased.

〔発明の効果〕〔The invention's effect〕

この発明は前述のように、蓄電池電圧の検出信号とその
設定信号との差に比例した蓄電池の充電電力指令信号を
出力する充電電力演算部と、この充電電力指令信号に負
荷電力検出信号および補機電力検出信号を加算して燃料
電池の発電電力信号を出力する発電電力演算部と、この
発電電力信号を燃料電池の出力電圧検出信号で除した出
力電流指令信号を出力する出力電流演算部、およびこの
出力電流指令信号をタイミング制御して出力する遅延回
路とで演算制御部を構成し、電流指令信号を補機制御部
およびDC/DCチョッパの制御回路に供給して燃料電
池の出力電力およびDC/DCチョッパの出力電流を制
御するよう構成した。その結果、燃料電池の出力電力に
占める負荷電力および補機電力は実測値に基づいて、残
る蓄電池の充電電力は蓄電池電圧の実測値がその設定値
に対して持つ差電圧に比例した指令値として与えられ、
かつ差電圧に乗ずる比例定数Kの設定の仕方により燃料
電池の発電能力を勘案して調整できるので、蓄電池の回
復充電を負荷電力および補機電力の軽量に対応して燃料
電池が過負荷にならない範囲で行うことができ、かつ蓄
電池電圧をその設定値を超えない範囲に抑制できるの
で、従来技術で問題となった蓄電池電圧の上昇に起因す
る蓄電池の過充電およびこれに基づく蓄電池の劣化と、
電圧上昇に基づいて生ずる定電圧制御装置の動作の不安
定性が排除され、負荷電力の急増や起動時においても燃
料電池が正常に動作しうる範囲で回復充電を行うことが
でき、かつ軽負荷状態が継続しても蓄電池電圧がその設
定値に安定して保持され、蓄電池の過充電を生ずること
なく安定運転できる燃料電池発電システムを提供するこ
とができる。
As described above, the present invention provides a charging power calculation unit that outputs a charging power command signal for a storage battery that is proportional to the difference between the detection signal of the storage battery voltage and its setting signal, and a load power detection signal and a supplementary signal for this charging power command signal. A generated power calculation unit that adds a machine power detection signal and outputs a generated power signal of the fuel cell; and an output current calculation unit that outputs an output current command signal obtained by dividing the generated power signal by the output voltage detection signal of the fuel cell, And a delay circuit for timing-controlling and outputting the output current command signal to form an arithmetic control unit, and supplying the current command signal to the accessory control unit and the control circuit of the DC / DC chopper to output the output power of the fuel cell and It is configured to control the output current of the DC / DC chopper. As a result, the load power and the auxiliary power that account for the output power of the fuel cell are based on the measured value, and the charging power of the remaining storage battery is a command value proportional to the difference voltage that the measured value of the storage battery voltage has with respect to the set value. Given,
In addition, since the power generation capacity of the fuel cell can be adjusted by adjusting the proportional constant K that is multiplied by the difference voltage, the recovery charge of the storage battery can be adjusted so as to reduce the load power and auxiliary power, and the fuel cell will not be overloaded. Since it can be performed in a range, and because the storage battery voltage can be suppressed to a range that does not exceed the set value, overcharge of the storage battery caused by the increase in the storage battery voltage and a deterioration of the storage battery based on this, which are problems in the conventional technology,
The instability of the operation of the constant voltage control device caused by the voltage rise is eliminated, and the recovery charge can be performed within the range where the fuel cell can operate normally even when the load power suddenly increases or at the time of startup, and the light load state It is possible to provide a fuel cell power generation system in which the storage battery voltage is stably maintained at the set value even if the above condition continues, and stable operation can be performed without causing overcharge of the storage battery.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の実施例装置を簡略化して示すシステ
ム構成図、第2図は実施例装置の負荷急増時における動
作を示すタイムチャート、第3図は実施例装置における
蓄電池の充放電状態を示す電圧−電流特性線図である。 2:改質器、3:燃料電池、4:DC/DCチョッパ、
5:負荷回路、6:蓄電池、7,8,9 :補機、10:制御装
置、11,19 :電圧検出器、12:電流検出器、13:定電圧
制御装置、14:補機制御回路、15:電圧設定器、16:チ
ョッパ制御回路、17:負荷電力検出器、18:補機電力検
出器、20:演算制御部、21:充電電力演算部、22:発電
電力演算部、23:出力電流演算部、24:遅延回路、V
B:蓄電池電圧、V:蓄電池電圧検出信号、Vbs:蓄
電池電圧設定信号、K:比例係数、P:充電電力指令
信号、Pは負荷電力検出信号、P:補機電力検出信
号、P:発電電力信号、Vfc:燃料電池出力電圧検出信
号、Ifc:出力電流指令信号、IB:充放電電流、
:燃料電池の出力電流検出信号。
FIG. 1 is a system configuration diagram schematically showing an embodiment apparatus of the present invention, FIG. 2 is a time chart showing an operation when the load of the embodiment apparatus is suddenly increased, and FIG. 3 is a charging / discharging state of a storage battery in the embodiment apparatus. It is a voltage-current characteristic diagram which shows. 2: reformer, 3: fuel cell, 4: DC / DC chopper,
5: Load circuit, 6: Storage battery, 7,8,9: Auxiliary equipment, 10: Control device, 11,19: Voltage detector, 12: Current detector, 13: Constant voltage control device, 14: Auxiliary equipment control circuit , 15: voltage setting device, 16: chopper control circuit, 17: load power detector, 18: auxiliary device power detector, 20: calculation control unit, 21: charging power calculation unit, 22: generated power calculation unit, 23: Output current calculator, 24: delay circuit, V
B: battery voltage, V b: battery voltage detection signal, V bs: battery voltage setting signal, K: proportional coefficient, P b: charging power command signal, P o is the load power detection signal, P c: auxiliary power detection signal , P: generated power signal, V fc : fuel cell output voltage detection signal, I fc : output current command signal, IB: charge / discharge current,
If : output current detection signal of the fuel cell.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】燃料電池の出力側が出力電流の検出器およ
びDC/DCチョッパを介してバックアップ電源として
の蓄電池,負荷回路,および定電圧制御装置を有する補
機制御回路に接続されたハイブリッド方式の燃料電池発
電システムにおいて、前記蓄電池電圧の検出信号および
その設定値信号とを受け両信号の差に比例した蓄電池の
充電電力信号を発する充電電力演算部と、この充電電力
信号,補機電力の検出信号,および負荷電力の検出信号
を加算して前記燃料電池の発電量信号を発する発電量演
算部と、この発電量信号および燃料電池電圧の検出信号
を受けて前記DC/DCチョッパの出力電流指令値信号
を発する出力電流演算部とを含む演算制御回路を備え、
前記出力電流検出器の出力信号と出力電流指令値信号と
の差に基づいてDC/DCチョッパ出力電流、および補
機制御回路を制御するよう構成してなることを特徴とす
る燃料電池発電システム。
1. A hybrid system in which an output side of a fuel cell is connected to a storage battery as a backup power source, a load circuit, and an auxiliary machine control circuit having a constant voltage control device through an output current detector and a DC / DC chopper. In the fuel cell power generation system, a charging power calculation unit that receives the detection signal of the storage battery voltage and its set value signal and issues a charging power signal of the storage battery proportional to the difference between the two signals, and the detection of the charging power signal and auxiliary power Signal and a detection signal of load power, and outputs a power generation amount signal of the fuel cell, and an output current command of the DC / DC chopper which receives the power generation amount signal and the detection signal of the fuel cell voltage An arithmetic control circuit including an output current arithmetic unit that issues a value signal,
A fuel cell power generation system configured to control a DC / DC chopper output current and an accessory control circuit based on a difference between an output signal of the output current detector and an output current command value signal.
JP1037155A 1989-02-16 1989-02-16 Fuel cell power generation system Expired - Lifetime JPH0642181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1037155A JPH0642181B2 (en) 1989-02-16 1989-02-16 Fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1037155A JPH0642181B2 (en) 1989-02-16 1989-02-16 Fuel cell power generation system

Publications (2)

Publication Number Publication Date
JPH02214910A JPH02214910A (en) 1990-08-27
JPH0642181B2 true JPH0642181B2 (en) 1994-06-01

Family

ID=12489712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1037155A Expired - Lifetime JPH0642181B2 (en) 1989-02-16 1989-02-16 Fuel cell power generation system

Country Status (1)

Country Link
JP (1) JPH0642181B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057616A1 (en) * 2007-11-02 2009-05-07 Toyota Jidosha Kabushiki Kaisha Fuel cell system
CN111650985A (en) * 2020-06-08 2020-09-11 珠海智融科技有限公司 Power supply circuit and charging device for limiting power output

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2989353B2 (en) * 1991-11-29 1999-12-13 三洋電機株式会社 Hybrid fuel cell system
US6835481B2 (en) 2000-03-29 2004-12-28 Idatech, Llc Fuel cell system with load management
JP4697379B2 (en) * 2003-07-07 2011-06-08 ソニー株式会社 Fuel cell power generation system and fuel cell power generation apparatus
EP2037522A1 (en) * 2006-05-09 2009-03-18 Aquafairy Corporation Charger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057616A1 (en) * 2007-11-02 2009-05-07 Toyota Jidosha Kabushiki Kaisha Fuel cell system
CN111650985A (en) * 2020-06-08 2020-09-11 珠海智融科技有限公司 Power supply circuit and charging device for limiting power output
CN111650985B (en) * 2020-06-08 2021-04-06 珠海智融科技有限公司 Power supply circuit and charging device for limiting power output

Also Published As

Publication number Publication date
JPH02214910A (en) 1990-08-27

Similar Documents

Publication Publication Date Title
JPH0831328B2 (en) Fuel cell generator
JP3384059B2 (en) Fuel cell generator
JP3577781B2 (en) Output control device for fuel cell power generator
JPS63289773A (en) Fuel cell power generator
JPH01211860A (en) Control device for fuel cell power generating system
EP2454779B1 (en) Integrated fuel processor and fuel cell system control method
WO2010112997A1 (en) Fuel cell system, control method for the fuel cell system, and vehicle equipped with the fuel cell system
JP2007157733A (en) Fuel cell power source device
US10882406B2 (en) Fuel cell system
US6670063B1 (en) Fuel cell system
JP3722963B2 (en) Power converter
JPH0642181B2 (en) Fuel cell power generation system
US20190198894A1 (en) Fuel cell system and vehicle
JP2009054397A (en) Energy control system for fuel cell vehicle
JPH1150945A (en) Method for controlling power generating amount of wind power generator
JP2775890B2 (en) Control unit for fuel cell power generation system
JPH07307163A (en) Load control device of fuel cell power generating system
JP3453375B2 (en) Power generation control system
JP5901495B2 (en) Output stabilization controller for distributed power supply
JP2002025594A (en) Hydrogen flow control device of fuel cell
JPH0451466A (en) Output control device for fuel cell power generation system
JP2022139460A (en) power management device
JP2808798B2 (en) Fuel cell generator
JPS6398712A (en) Controller for power generating system of fuel cell
JPH0626131B2 (en) Load control device for fuel cell system