JP2775890B2 - Control unit for fuel cell power generation system - Google Patents
Control unit for fuel cell power generation systemInfo
- Publication number
- JP2775890B2 JP2775890B2 JP1236400A JP23640089A JP2775890B2 JP 2775890 B2 JP2775890 B2 JP 2775890B2 JP 1236400 A JP1236400 A JP 1236400A JP 23640089 A JP23640089 A JP 23640089A JP 2775890 B2 JP2775890 B2 JP 2775890B2
- Authority
- JP
- Japan
- Prior art keywords
- storage battery
- fuel cell
- current
- amount
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電気自動車用電源などを対象とした燃料電
池発電システムの制御装置に関する。Description: TECHNICAL FIELD The present invention relates to a control device of a fuel cell power generation system for an electric vehicle power supply or the like.
低公害化を狙いとする電気自動車用電源として、最近
になり車両に搭載して用いる燃料電池発電システムの開
発が進められている。Recently, a fuel cell power generation system to be mounted on a vehicle has been developed as a power source for an electric vehicle aimed at reducing pollution.
ところで、燃料電池と燃料改質器とを組合わせた燃料
電池発電システムは一般的な特性として負荷変動に対す
る応答性が低く、このままでは電気自動車のように走
行,停止を頻繁に繰り返す用途に対して、燃料電池の出
力を急激な負荷変動に応答性よく追従させることが困難
である。そこで、電気自動車用電源として、燃料電池の
出力側にバックアップ用の蓄電池を接続し、自動車の運
行状態により走行中の重負荷運転時には燃料電池の出力
不足分を蓄電池から放電し、軽負荷,走行停止の無負荷
運転時に燃料電池出力の余剰分で蓄電池を浮動充電する
ようにしたハイブリッド方式の燃料電池発電システムの
採用が提唱されている。By the way, a fuel cell power generation system in which a fuel cell and a fuel reformer are combined has a low response to load fluctuation as a general characteristic. In addition, it is difficult to make the output of the fuel cell follow a sudden load change with good responsiveness. Therefore, a backup storage battery is connected to the output side of the fuel cell as a power source for an electric vehicle, and when the vehicle is in a heavy load operation during running, the output shortage of the fuel cell is discharged from the storage battery during heavy load operation, and the light load and running It has been proposed to adopt a hybrid fuel cell power generation system in which a storage battery is float-charged with a surplus of the fuel cell output during stop-time no-load operation.
一方、蓄電池には過充電,過放電の繰り返しにより寿
命が大幅に縮まると言った問題があり、前記ハイブリッ
ド方式の燃料電池発電システムでは、蓄電池を常に適正
な充電状態に保持して長寿命化を図りつつ、併せて負荷
へ安定した電力を供給できるようにすることが重要な課
題となる。On the other hand, the storage battery has a problem that its life is greatly shortened due to repeated overcharging and overdischarging. In the hybrid fuel cell power generation system, the storage battery is always kept in an appropriate charged state to extend the life. At the same time, it is important to make it possible to supply stable power to the load.
すなわち、鉛蓄電池を対象とした蓄電池の充電,放電
特性は第5図のごとくあり、図中A,B領域では蓄電池の
充電,放電の電池反応が可逆的に行われるのに対し、C
領域で示す過充電,過放電の状態で使用すると安定した
可逆的反応が崩れて不可逆的となり、この領域で蓄電池
の充電,放電を繰り返すと電池特性を劣化させるのみな
らず、蓄電池の寿命が大幅に縮まることが知られてい
る。また、第6図は鉛蓄電池の充電電流−電圧特性を各
放電量(%)について示したものであり、図中の境界線
Dは充電許容領域の境界を表している。すなわち各放電
量(%)ごとに表した特性線と前記境界線Dとの交点以
下の実線領域で表す時間率電流(充電電流×C)で充電
する限りは安全に回復充電できるのに対し、前記交点を
超えた破線領域で急速充電を繰り返し行うと蓄電池の性
能劣化が早期に進行する。つまり、蓄電池を回復充電す
る場合には、蓄電池の特性面からその時点での放電量,
つまり残存容量の状態によって適正な充電条件(許容充
電電圧,電流)が異なる。That is, the charging and discharging characteristics of a storage battery for a lead storage battery are as shown in FIG. 5, and in the regions A and B in FIG.
When used in the overcharged and overdischarged states shown in the area, the stable reversible reaction breaks down and becomes irreversible. Repeated charging and discharging of the storage battery in this area not only degrades the battery characteristics but also significantly increases the life of the storage battery It is known to shrink. FIG. 6 shows the charging current-voltage characteristics of the lead-acid battery for each discharge amount (%), and the boundary line D in the figure represents the boundary of the charging allowable area. That is, as long as the battery is charged with the time rate current (charging current × C) represented by the solid line area below the intersection of the characteristic line expressed for each discharge amount (%) and the boundary line D, the recovery charging can be performed safely. If the rapid charging is repeatedly performed in the broken line region beyond the intersection, the performance deterioration of the storage battery proceeds early. In other words, when the storage battery is recharged, the amount of discharge at that time,
That is, appropriate charging conditions (allowable charging voltage and current) differ depending on the state of the remaining capacity.
したがって先記した電気自動車用電源として使用する
ハイブッド式燃料電池発電システムの蓄電池を重負荷運
転の合間を縫って軽負荷運転期間中にできるだけ短時間
で回復充電させるには、第6図の特性図で述べた許容領
域限界ぎりぎりの充電条件で充電を行うような燃料電池
発電システムの制御が必要となる。Therefore, in order to recover and recharge the storage battery of the hybrid fuel cell power generation system used as the power source for the electric vehicle in the short period of time during the light load operation during the heavy load operation, the characteristic diagram of FIG. It is necessary to control the fuel cell power generation system such that the charging is performed under the charging conditions just below the limit of the allowable region described in.
そこで、前記のような蓄電池の充電条件を満足させる
ようにしたハイブリッド方式の燃料電池発電システムの
制御方式として、第6図に示した蓄電池の充電特性を基
準に、充電許容領域の境界線Dに沿った蓄電池の各充電
状態に対応する充電制御パターンのデータをコントロー
ラのメモリに格納しておき、一方では運転中に蓄電池の
充電,放電量をアンペア・アワー計により継続的に監視
して蓄電池の残存容量を演算により求め、かつ前記した
充電制御パターンとの対比により、蓄電池の充電電圧,
つまり燃料電池の出力電圧が蓄電池の許容充電電圧を超
えない条件で燃料電池の出力を制御して蓄電池を目標充
電量(80〜90%)まで回復させるようにした燃料電池の
出力を制御する方式が本件出願人により提案されている
(特開平1-211860号公報参照)。Therefore, as a control method of the hybrid fuel cell power generation system that satisfies the above-described storage battery charging condition, the boundary line D of the charging allowable area is set based on the storage battery charging characteristics shown in FIG. The data of the charge control pattern corresponding to each state of charge of the storage battery along the way is stored in the memory of the controller. On the other hand, the amount of charge and discharge of the storage battery is continuously monitored by the amp-hour meter during operation, and The remaining capacity is obtained by calculation, and based on the comparison with the charge control pattern described above, the charge voltage of the storage battery,
In other words, under the condition that the output voltage of the fuel cell does not exceed the allowable charging voltage of the storage battery, the output of the fuel cell is controlled to recover the storage battery to the target charge amount (80 to 90%). Has been proposed by the present applicant (see Japanese Patent Application Laid-Open No. 1-211860).
ところで前記した従来の制御方式では実用面で次記の
ような問題点が残る。すなわち、 (1)蓄電池の静的な充電特性を基準に充電制御パター
ンを設定しているために、負荷変動が比較的緩慢である
場合には支障がないが、電気自動車のように走行状況に
より負荷が大きく変動する場合には、蓄電池の放電に対
して電圧が即座に追従しないことから各時点ごとに連続
的に残存容量を正確に求めることが困難である。このた
めに自動車運行中の限られた充電時間内で蓄電池を目標
充電量まで回復充電させて常に適正な充電状態に保持さ
せることが難しい。However, the conventional control method described above has the following problems in practical aspects. (1) Since the charging control pattern is set based on the static charging characteristics of the storage battery, there is no problem when the load fluctuation is relatively slow, but depending on the driving conditions like an electric vehicle, When the load fluctuates greatly, it is difficult to accurately calculate the remaining capacity continuously at each time point because the voltage does not immediately follow the discharge of the storage battery. For this reason, it is difficult to recover and charge the storage battery to the target charge amount within a limited charge time during the operation of the vehicle, and to always keep the storage battery in an appropriate charge state.
(2)蓄電池の残存容量を連続的に監視しておく必要が
あるが、実際面ではアンペア・アワー計での計測誤差が
経時的に累積されるので、蓄電池の真の残存容量を継続
的に正しく把握することが極めて困難である。(2) It is necessary to continuously monitor the remaining capacity of the storage battery. However, in practice, since the measurement error of the amp-hour meter is accumulated over time, the true remaining capacity of the storage battery is continuously measured. It is extremely difficult to grasp correctly.
本発明は上記の点にかんがみなされたものであり、簡
易な方式で蓄電池の残存容量を的確に把握しつつ、蓄電
池を負荷変動に追随させながら常に目標充電量に近い充
電状態に安定保持して使用できるようにした、特に電気
自動車用電源として優れた効果を発揮する燃料電池発電
システムの制御装置を提供することを目的とする。The present invention has been made in view of the above points, and while accurately grasping the remaining capacity of a storage battery in a simple manner, stably maintaining a charge state close to a target charge amount at all times while making the storage battery follow a load change. It is an object of the present invention to provide a control device for a fuel cell power generation system which can be used, and particularly exhibits an excellent effect as a power source for an electric vehicle.
このような目的は、本発明によれば、燃料電池の出力
側に電流調節手段を介して蓄電池を接続して負荷への給
電を行う燃料電池発電システムの制御装置において、燃
料電池に導入される燃料ガス,反応空気を制御して燃料
電池の発電出力を調整する燃料電池の出力調整手段と、
蓄電池の電圧を検出する蓄電池電圧検出手段と、蓄電池
の電流を検出する蓄電池電流検出手段と、この蓄電池電
流検出手段の検出出力に基づいて所定周期毎にその時間
内での蓄電池の放電電気量を演算する演算手段と、その
放電電気量に基づいてこの放電電気量に見合った電気量
を次回周期の間に蓄電池へ補給するように燃料電池の発
電量を決めて燃料電池の出力調整手段へ制御指令を与え
ると共に、電流調節手段の出力電流が蓄電池の許容充電
条件を越えないように電流調節手段へ制御指令を与える
コントローラとを備えることによって達成される。According to the present invention, such a purpose is introduced to a fuel cell in a control device of a fuel cell power generation system that connects a storage battery to an output side of the fuel cell via a current adjusting unit and supplies power to a load. Fuel cell output adjusting means for controlling fuel gas and reaction air to adjust the power output of the fuel cell;
A battery voltage detecting means for detecting the voltage of the battery, a battery current detecting means for detecting the current of the battery, and an amount of discharged electricity of the battery within the time at predetermined intervals based on a detection output of the battery current detecting means. Calculating means for calculating, and based on the amount of discharged electricity, determining the amount of power generated by the fuel cell so as to supply the amount of electricity corresponding to the amount of discharged electricity to the storage battery during the next cycle and controlling the output adjusting means of the fuel cell This is achieved by providing a controller which gives a command and also gives a control command to the current adjusting means so that the output current of the current adjusting means does not exceed the allowable charging condition of the storage battery.
また、かかる目的は、本発明によれば、燃料電池の出
力側に電流調節手段を介して蓄電池を接続して負荷への
給電を行う燃料電池発電システムの制御装置において、
燃料電池に導入される燃料ガス,反応空気を制御して燃
料電池の発電出力を調整する燃料電池の出力調整手段
と、蓄電池の電流を検出する蓄電池電流検出手段と、蓄
電池の電圧を検出する蓄電池電圧検出手段と、蓄電池電
流検出手段及び蓄電池電圧検出手段の検出出力に基づい
て所定周期毎にその時間内での蓄電池の平均電流,電圧
を演算する演算手段と、その平均電流,電圧に基づいて
判定される蓄電池の充電状態から蓄電池の放電電気量を
判断してこの放電電気量に見合った電気量を次回周期の
間に蓄電池へ補給するように燃料電池の発電量を決めて
燃料電池の出力調整手段へ制御指令を与えると共に、電
流調節手段の出力電流が蓄電池の許容充電条件を越えな
いように電流調節手段へ制御指令を与えるコントローラ
とを備えることによっても達成される。Further, according to the present invention, according to the present invention, in a control device of a fuel cell power generation system for connecting a storage battery to an output side of a fuel cell via a current adjusting unit and supplying power to a load,
Fuel cell output adjusting means for controlling fuel gas and reaction air introduced into the fuel cell to adjust the power generation output of the fuel cell, storage battery current detecting means for detecting the current of the storage battery, and storage battery for detecting the voltage of the storage battery Voltage detecting means, calculating means for calculating the average current and voltage of the storage battery within a predetermined period of time based on the detection outputs of the storage battery current detecting means and the storage battery voltage detecting means, and based on the average current and voltage. The amount of discharged electricity of the storage battery is determined from the determined state of charge of the storage battery, and the amount of power generated by the fuel cell is determined so that the amount of electricity corresponding to the amount of discharged electricity is supplied to the storage battery during the next cycle. A controller for giving a control command to the adjusting means and for giving a control command to the current adjusting means so that the output current of the current adjusting means does not exceed the allowable charging condition of the storage battery. Also it is achieved.
上記構成において、蓄電池に対する許容充電条件(電
圧,電流)は蓄電池の残存容量の全範囲で指定せずに、
目標充電量(例えば80〜90%)の充電量に対してのみ設
定してコントローラのメモリに格納されている。そし
て、燃料電池発電システムの起動期間などのように蓄電
池が放電状態にある場合には、蓄電池の許容充電条件を
超えない範囲で燃料電池の発電量を高出力として蓄電池
を目標充電量に達するまで急速に充電する。そして、蓄
電池が目標充電量に達した後は、所定周期ごとにその時
間内における蓄電池の放電電気量,ないしは平均電圧,
電流を逐次計測し、これを基に次回周期では目標充電量
に対応する許容充電条件の下で前回周期での蓄電池の放
電量に見合う電気量を補充するようにコントローラが燃
料電池の発電出力を制御する。In the above configuration, the allowable charging conditions (voltage, current) for the storage battery are not specified in the entire range of the remaining capacity of the storage battery,
Only the charge amount of the target charge amount (for example, 80 to 90%) is set and stored in the memory of the controller. When the storage battery is in a discharging state, such as during a start-up period of the fuel cell power generation system, the power generation of the fuel cell is set to a high output within a range not exceeding the allowable charging condition of the storage battery until the storage battery reaches the target charge amount. Charge quickly. Then, after the storage battery reaches the target charge amount, the discharge electricity amount or the average voltage of the storage battery within that time period at predetermined intervals,
The current is measured successively, and based on this, in the next cycle, under the allowable charging condition corresponding to the target charge amount, the controller adjusts the power output of the fuel cell so as to replenish the amount of electricity corresponding to the discharge amount of the storage battery in the previous cycle. Control.
ここで、電気自動車用電源に適用した場合についての
制御方法を具体的に述べると、まず休止の状態から自動
車を運行開始するには最初に蓄電池から燃料電池の補機
に給電して燃料電池発電システムを始動する。そして燃
料電池が発電を開始すると、発電量を略100%出力まで
たかめて蓄電池が目標充電量(80〜90%)に達するまで
急速に充電する。そして、蓄電池が目標充電量まで回復
した後は、所定周期(例えば1〜数分)ごとに蓄電池の
消費電気量,ないし平均電流,平均電圧を演算手段によ
って逐次算出し、この演算結果を基にあらかじめ定めた
蓄電池の目標充電量に対応する許容充電条件を超えない
範囲で、次回周期での燃料電池の出力を増減制御して蓄
電池の回復充電を行う。なお、蓄電池が目標充電量を超
えている場合には、次の周期での燃料電池の発電量を決
定する際に、1ステップ前の周期における蓄電池の放電
電気量にある係数(1以下)を掛けて燃料電池の出力を
制御して蓄電池の充電量を調整する。Here, the control method in the case of applying the present invention to an electric vehicle power supply will be specifically described. First, in order to start operation of a vehicle from a halt state, first, power is supplied from a storage battery to auxiliary equipment of a fuel cell, and fuel cell power generation is performed. Start the system. When the fuel cell starts to generate power, the amount of power generation is increased to approximately 100% output, and the storage battery is rapidly charged until it reaches the target charge (80 to 90%). After the storage battery has recovered to the target charge amount, the amount of power consumption, or the average current and the average voltage of the storage battery are sequentially calculated by the calculation means at predetermined intervals (for example, one to several minutes), and based on the calculation result. Recovery charging of the storage battery is performed by increasing or decreasing the output of the fuel cell in the next cycle within a range that does not exceed an allowable charging condition corresponding to a predetermined target charge amount of the storage battery. When the storage battery has exceeded the target charge amount, when determining the power generation amount of the fuel cell in the next cycle, a coefficient (1 or less) of the discharge electricity amount of the storage battery in the cycle one step before is determined. By controlling the output of the fuel cell, the charge amount of the storage battery is adjusted.
このように所定周期を単位として蓄電池の充,放電状
態を監視することにより計測誤差の累積なしに蓄電池の
残存容量を的確に把握することが可能となり、かつ電気
自動車の走行状況,負荷変動に左右されることなく、常
に蓄電池を過充電,過放電に至らしめないように目標充
電量の状態に維持して負荷への安定した電力供給を行う
ことができる。In this way, by monitoring the charge / discharge state of the storage battery in units of a predetermined period, it is possible to accurately grasp the remaining capacity of the storage battery without accumulating measurement errors, and to control the running condition and load fluctuation of the electric vehicle. Without being performed, the storage battery can be constantly maintained at the target charge amount so as not to be overcharged or overdischarged, and stable power supply to the load can be performed.
第1図,第2図はそれぞれ異なる本発明実施例による
燃料電池発電システムの制御系統図である。まず、第1
図において、1はメタノールなどの改質原料を貯蔵した
原料タンク、2は改質器、3は燃料電池、4は燃料電池
の出力電流調節手段としてのDC-DCコンバータ、5は電
気自動車用駆動モータとしての負荷、6がバックアップ
用の蓄電池であり、これらでハイブリッド方式の燃料電
池発電システムを構成している。また、7は原料タンク
1より改質器2へ改質原料を送り込む原料ポンプ、8は
改質器2のバーナへ燃焼ガスを送り込む空気ブロア、9
は燃料電池3へ反応空気を導入する空気ブロア、10はこ
れら補機を統轄制御して燃料電池の出力調節を行う出力
調節手段としての補機コントローラである。なお、改質
器は燃料電池3のオフガスを燃焼して改質反応熱を得る
ようにしており、また、各種補機,並びに補機コントロ
ーラへは燃料電池3の出力側から給電するようにしてい
る。1 and 2 are control system diagrams of a fuel cell power generation system according to different embodiments of the present invention. First, the first
In the figure, 1 is a raw material tank storing a reforming raw material such as methanol, 2 is a reformer, 3 is a fuel cell, 4 is a DC-DC converter as an output current adjusting means of the fuel cell, and 5 is a drive for an electric vehicle. A load 6 as a motor is a backup storage battery, and these constitute a hybrid fuel cell power generation system. Reference numeral 7 denotes a raw material pump for feeding a reforming raw material from the raw material tank 1 to the reformer 2, 8 denotes an air blower for feeding combustion gas to a burner of the reformer 2, 9.
Reference numeral denotes an air blower for introducing reaction air to the fuel cell 3, and reference numeral 10 denotes an accessory controller as an output adjusting means for controlling these accessories and controlling the output of the fuel cell. The reformer burns off-gas of the fuel cell 3 to obtain reforming reaction heat, and supplies power to various auxiliary devices and the auxiliary device controller from the output side of the fuel cell 3. I have.
一方、上記の燃料電池発電システムに対し、蓄電池6
の電流検出器11と、電流検出値を積算する蓄電池の放電
量検出手段としてのアンベア・アワー計12と、電圧検出
器13と、タイマ14により所定周期ごとに電流検出器11の
出力を取り込んで蓄電池6の放電電気量を算出する演算
器15と、該演算器15からの信号とあらかじめメモリに格
納されている後記の許容充電電圧設定値のデータと対比
して補機コントローラ10,DC-DCコンバータ4へ向けて制
御指令I fcを出力するコントローラ16とで燃料電池発電
システムの制御系を構成している。なお、17はDC-DCコ
ンバータ4の調節器、18は燃料電池3の出力電流検出
器、19は比較器である。On the other hand, the storage battery 6
The output of the current detector 11 is taken at predetermined intervals by a current detector 11, an Amber hour meter 12 as a battery discharge amount detecting means for integrating the current detection value, a voltage detector 13, and a timer 14. An arithmetic unit 15 for calculating the amount of discharged electricity of the storage battery 6, and comparing the signal from the arithmetic unit 15 with the data of the allowable charging voltage set value described later stored in the memory in advance, the auxiliary controller 10, DC-DC The controller 16 that outputs the control command Ifc to the converter 4 constitutes a control system of the fuel cell power generation system. In addition, 17 is a controller of the DC-DC converter 4, 18 is an output current detector of the fuel cell 3, and 19 is a comparator.
かかる構成で、燃料電池発電システムから負荷に給電
している運転状態では、コントローラ16に対し、蓄電池
6の端子電圧が電圧検出器13を介して入力され、電流検
出器11で検出された蓄電池の放電電流はアンペア・アワ
ー計12,放電電気量演算器15を介して所定周期ごとにそ
の時間内での放電電気量に変換して入力される。In such a configuration, in an operation state in which the load is supplied from the fuel cell power generation system, the terminal voltage of the storage battery 6 is input to the controller 16 via the voltage detector 13 and the current of the storage battery detected by the current detector 11 is detected. The discharge current is converted into a discharge electric quantity within the time at predetermined intervals and inputted through an ampere hour meter 12 and a discharge electric quantity calculator 15.
一方、コントローラ16では、蓄電池6の目標充電量を
80〜90%として、この目標充電量に対応する許容充電電
圧(第6図におけるa〜b点に対応する)が設定値とし
てメモリに格納されており、この許容充電電圧を基準と
して次のような制御を行う。まず、燃料電池発電システ
ムの起動時のように補機への給電に伴い蓄電池6の端子
電圧が許容充電電圧以下に低下している放電状態では、
燃料電池3の発電量が略100%出力となるように補機コ
ントローラ10,DC-DCコンバータ4に制御指令I fcを与
え、蓄電池6を目標充電量に回復するまで急速に充電す
る。On the other hand, the controller 16 sets the target charge amount of the storage battery 6 to
Assuming that the allowable charging voltage is 80 to 90%, the allowable charging voltage (corresponding to points a and b in FIG. 6) corresponding to the target charging amount is stored in the memory as a set value. Control. First, in a discharge state in which the terminal voltage of the storage battery 6 has dropped to or below the allowable charging voltage due to power supply to the auxiliary equipment, such as when starting up the fuel cell power generation system,
The control command Ifc is given to the auxiliary controller 10 and the DC-DC converter 4 so that the power generation amount of the fuel cell 3 becomes substantially 100% output, and the storage battery 6 is rapidly charged until it recovers to the target charge amount.
そして、蓄電池6が目標充電量に対応する電圧まで回
復した後は、所定周期(例えば1〜3分)ごとに放電電
気量演算器15から取り込んだ蓄電池6の放電電気量を基
に、この放電電気量に見合った電気量を次回周期の間に
蓄電池6へ補給するように燃料電池3の発電量を決めて
制御指令I fcを出力する。これにより補機コントローラ
10では制御指令I fcに応じて原料ポンプ7,空気ブロア8,
9を制御し、燃料電池3の発電出力を調整する。また、
同時に制御指令I fcは比較器19において燃料電池の出力
電流検出値と比較され、調節器17によりDC-DCコンバー
タ4を制御してその出力電流が蓄電池の許容充電電流を
超えないように調整する。なお、前記のように所定周期
ごとに燃料電池の発電量を見直して制御する過程で、蓄
電池6の電圧が目標充電量(80〜90%)に対応した電圧
の範囲を超えている場合には、コントローラ16は1ステ
ップ前の周期で蓄電池が消費した放電電気量に“1"より
も小さい係数を掛けて補正した値を制御指令I fcとして
出力するようにする。After the storage battery 6 recovers to a voltage corresponding to the target charge amount, the discharge is performed based on the discharge electricity amount of the storage battery 6 taken from the discharge electricity amount calculator 15 at predetermined intervals (for example, 1 to 3 minutes). The power generation amount of the fuel cell 3 is determined and the control command Ifc is output so that the electric amount corresponding to the electric amount is supplied to the storage battery 6 in the next cycle. This makes the accessory controller
In 10, the raw material pump 7, air blower 8,
9 to control the power output of the fuel cell 3. Also,
At the same time, the control command Ifc is compared with the detected value of the output current of the fuel cell in the comparator 19, and the controller 17 controls the DC-DC converter 4 so that the output current does not exceed the allowable charging current of the storage battery. . In the process of reviewing and controlling the power generation amount of the fuel cell every predetermined cycle as described above, if the voltage of the storage battery 6 exceeds the voltage range corresponding to the target charge amount (80 to 90%), The controller 16 outputs a value corrected by multiplying the amount of discharged electricity consumed by the storage battery in the cycle one step before by a coefficient smaller than “1” as the control command Ifc.
次に、電気自動車用電源に適用した場合についての制
御動作例を第3図のタイムチャートに示す。なお、図中
でTは蓄電池の放電電気量の計測周期、tは制御指令か
ら発電出力が変化するまでの燃料電池発電システムの応
答遅れを示している。この図から明らかなように、各周
期Tごとに計測された蓄電池の放電電気量の情報を基
に、次回周期では前回周期での蓄電池の放電電気量に見
合う電気量を充電補給するように燃料電池の発電量を増
減制御している。また、第4図は第3図の制御に対応し
た蓄電池電圧の経時的な推移を示したものであり、燃料
電池発電システムの起動確立からの充電で蓄電池の電圧
が目標充電離農に対応した電圧まで回復した後は、蓄電
池の電圧が図中のa,b点(充電率80〜90%に対応する)
の範囲内に収まるように負荷変動に追随して充,放電を
繰り返す。これにより蓄電池は過充電,過放電の状態に
移行することなく、目標充電量の状態を維持して負荷に
安定した給電を行うことができる。Next, an example of a control operation when applied to a power supply for an electric vehicle is shown in a time chart of FIG. In the drawing, T represents a measurement cycle of the amount of discharged electricity of the storage battery, and t represents a response delay of the fuel cell power generation system from the control command to a change in the power generation output. As is apparent from this figure, based on the information on the amount of discharged electricity of the storage battery measured in each cycle T, in the next cycle, the fuel is supplied so as to recharge the amount of electricity corresponding to the amount of discharged electricity of the storage battery in the previous cycle. The power generation of the battery is controlled to increase or decrease. FIG. 4 shows the change over time of the storage battery voltage corresponding to the control shown in FIG. 3, and the voltage of the storage battery is changed from the voltage corresponding to the target charge farming by charging after the start-up of the fuel cell power generation system. After the battery recovers to the point where the voltage of the storage battery is a and b in the figure (corresponding to a charge rate of 80 to 90%)
The charge and discharge are repeated according to the load fluctuation so as to fall within the range. This allows the storage battery to maintain a state of the target charge amount and to perform stable power supply to the load without shifting to an overcharged or overdischarged state.
第2図は第1図と異なる実施例を示すものであり、第
1図におけるアンペア・アワー計12,放電電気量演算器1
5の代わりに、蓄電池6の電流検出器11,電圧検出器13の
出力を取り込んで所定周期ごとに平均電流,平均電圧を
算出する演算器20を採用したものであり、その他の構成
は第1図と同様である。FIG. 2 shows an embodiment different from FIG. 1, in which the amp-hour meter 12 and the electric discharge calculator 1 shown in FIG.
Instead of 5, an arithmetic unit 20 that takes in the outputs of the current detector 11 and the voltage detector 13 of the storage battery 6 and calculates an average current and an average voltage at predetermined intervals is adopted. It is the same as the figure.
かかる構成で、燃料電池発電システムから負荷に給電
している運転状態では、蓄電池6の電流,電圧が電流検
出器11および電圧検出器13より演算器15へ入力され、所
定周期(例えば1〜3分)ごとにその平均電流,平均電
圧を算出してコントローラ10に与える。一方、コントロ
ーラ10には第6図に示した蓄電池の充電特性を基準とし
た許容充電電圧,電流に関する諸データがメモリに格納
されており、各周期ごとに演算器20から入力された平均
電流,平均電圧と照合して蓄電池の充電状態を判定す
る。In such a configuration, in an operation state in which the load is supplied from the fuel cell power generation system, the current and voltage of the storage battery 6 are input to the arithmetic unit 15 from the current detector 11 and the voltage detector 13 and are output for a predetermined period (eg, 1 to 3). Each minute), the average current and average voltage are calculated and given to the controller 10. On the other hand, the controller 10 stores in a memory various data relating to the allowable charging voltage and current based on the charging characteristics of the storage battery shown in FIG. 6, and stores the average current, The state of charge of the storage battery is determined by collating with the average voltage.
そして、ある所定周期で演算器20より得た蓄電池6の
平均電流,平均電圧が例えば第6図におけるc点にある
場合には、この所定周期における蓄電池の放電量は約25
%であると判断し、許容充電条件となる境界線Dと放電
量25%に対応する放電特性線の交点dの充電電流を超え
ない条件で、次回周期の間に蓄電池6を目標充電量(80
〜90%)にまで回復するように燃料電池3の適正な発電
量を決めてコントローラ16より制御指令I fcを出力す
る。When the average current and average voltage of the storage battery 6 obtained from the computing unit 20 at a certain predetermined period are, for example, at point c in FIG. 6, the discharge amount of the storage battery at this predetermined period is about 25%.
%, And under the condition that the charging current does not exceed the charging current at the intersection d between the boundary line D, which is the allowable charging condition, and the discharge characteristic line corresponding to the discharging amount of 25%, the target charging amount ( 80
An appropriate power generation amount of the fuel cell 3 is determined so as to recover to 90%), and the controller 16 outputs a control command Ifc.
本発明による燃料電池発電システムの制御装置は以上
説明したように構成されているので、次記の効果を奏す
る。Since the control device of the fuel cell power generation system according to the present invention is configured as described above, it has the following effects.
(1)ハイブリッド方式の燃料電池発電システムに組み
込んだ蓄電池に対し、目標充電量に対応した許容充電条
件を基準に所定周期ごとに蓄電池の放電電気量に見合っ
た電気量を次回の周期で充電補給するように燃料電池の
出力を制御することで、発電システムの運転中に蓄電池
を常に目標充電量に対応する残存容量に保持して負荷へ
の安定した給電が行える。(1) The rechargeable battery incorporated in the hybrid fuel cell power generation system is recharged at the next cycle with an amount of electricity corresponding to the amount of discharged electricity of the storage battery at predetermined intervals based on the allowable charging conditions corresponding to the target amount of charge. By controlling the output of the fuel cell in such a manner, the storage battery is always maintained at the remaining capacity corresponding to the target charge amount during the operation of the power generation system, and stable power supply to the load can be performed.
(2)また、制御に当たっては、蓄電池の目標充電量に
対応した許容充電条件の設定、および所定周期ごとに蓄
電池の放電電気量、ないしは蓄電池の平均電圧,平均電
流の監視を行えばよく、簡単な制御系で対応できる。し
かも、従来の制御方式のように蓄電池の真の残存容量を
継続的に計測する必要がないので、計測誤差の累積なし
に蓄電池の充電状態を的確に把握できる。(2) In the control, it is only necessary to set allowable charging conditions corresponding to the target amount of charge of the storage battery and monitor the amount of discharged electricity of the storage battery or the average voltage and average current of the storage battery at predetermined intervals. Can be handled by a simple control system. Moreover, unlike the conventional control method, it is not necessary to continuously measure the true remaining capacity of the storage battery, so that the state of charge of the storage battery can be accurately grasped without accumulating measurement errors.
(3)したがって、電気自動車のように走行状況により
負荷が大きく変動するような用途に用いるハイブリッド
方式の燃料電池発電システムの制御装置としてそれぞれ
優れた効果を発揮できる。(3) Therefore, excellent effects can be respectively exhibited as control devices of a hybrid fuel cell power generation system used in an application such as an electric vehicle in which the load greatly fluctuates depending on driving conditions.
第1図,第2図はそれぞれ異なる本発明実施例の制御装
置の系統図、第3図は本発明による制御動作のタイムチ
ャートを表す図、第4図は第3図の制御に伴う蓄電池電
圧の経時的な推移を表した図、第5図は蓄電池の充,放
電特性図、第6図は鉛蓄電池の充電電流−電圧特性図で
ある。図において、 3:燃料電池、4:DC-DCコンバータ(電流調節手段)、5:
負荷、6:蓄電池、10:補機コントローラ(出力調節手
段)、11:電流検出器、12:アンベア・アワー計、13:電
圧検出器、15:放電電気量演算器、16:コントローラ、2
0:平均電圧,平均電流演算器、I fc:制御指令。1 and 2 are system diagrams of a control device according to an embodiment of the present invention, respectively, FIG. 3 is a diagram showing a time chart of a control operation according to the present invention, and FIG. 4 is a storage battery voltage accompanying the control of FIG. FIG. 5 is a charge / discharge characteristic diagram of the storage battery, and FIG. 6 is a charge current-voltage characteristic diagram of the lead storage battery. In the figure, 3: fuel cell, 4: DC-DC converter (current control means), 5:
Load, 6: storage battery, 10: auxiliary controller (output adjustment means), 11: current detector, 12: Amber hour meter, 13: voltage detector, 15: electric discharge calculator, 16: controller, 2
0: Average voltage and average current calculator, I fc: Control command.
Claims (2)
蓄電池を接続して負荷への給電を行う燃料電池発電シス
テムの制御装置において、燃料電池に導入される燃料ガ
ス,反応空気を制御して燃料電池の発電出力を調整する
燃料電池の出力調整手段と、蓄電池の電圧を検出する蓄
電池電圧検出手段と、蓄電池の電流を検出する蓄電池電
流検出手段と、この蓄電池電流検出手段の検出出力に基
づいて所定周期毎にその時間内での蓄電池の放電電気量
を演算する演算手段と、その放電電気量に基づいてこの
放電電気量に見合った電気量を次回周期の間に蓄電池へ
補給するように燃料電池の発電量を決めて燃料電池の出
力調整手段へ制御指令を与えると共に、電流調節手段の
出力電流が蓄電池の許容充電条件を越えないように電流
調節手段へ制御指令を与えるコントローラとを備えるこ
とを特徴とする燃料電池発電システムの制御装置。1. A control device for a fuel cell power generation system for connecting a storage battery to an output side of a fuel cell via a current adjusting means to supply power to a load, wherein the control device controls fuel gas and reaction air introduced into the fuel cell. Fuel cell output adjusting means for adjusting the power output of the fuel cell, storage battery voltage detecting means for detecting the voltage of the storage battery, storage battery current detecting means for detecting the current of the storage battery, and detection output of the storage battery current detecting means. Calculating means for calculating the amount of discharged electricity of the storage battery within a predetermined period of time based on the calculated amount of electricity, and supplying an amount of electricity corresponding to the amount of discharged electricity to the storage battery during the next cycle based on the amount of discharged electricity. The power generation amount of the fuel cell is determined as described above and a control command is given to the output adjustment means of the fuel cell, and the control instruction is given to the current adjustment means so that the output current of the current adjustment means does not exceed the allowable charging condition of the storage battery. Control apparatus for a fuel cell power generation system characterized by a controller that gives.
蓄電池を接続して負荷への給電を行う燃料電池発電シス
テムの制御装置において、燃料電池に導入される燃料ガ
ス,反応空気を制御して燃料電池の発電出力を調整する
燃料電池の出力調整手段と、蓄電池の電流を検出する蓄
電池電流検出手段と、蓄電池の電圧を検出する蓄電池電
圧検出手段と、蓄電池電流検出手段及び蓄電池電圧検出
手段の検出出力に基づいて所定周期毎にその時間内での
蓄電池の平均電流,電圧を演算する演算手段と、その平
均電流,電圧に基づいて判定される蓄電池の充電状態か
ら蓄電池の放電電気量を判断してこの放電電気量に見合
った電気量を次回周期の間に蓄電池へ補給するように燃
料電池の発電量を決めて燃料電池の出力調整手段へ制御
指令を与えると共に、電流調節手段の出力電流が蓄電池
の許容充電条件を越えないように電流調節手段へ制御指
令を与えるコントローラとを備えることを特徴とする燃
料電池発電システムの制御装置。2. A control device for a fuel cell power generation system for supplying power to a load by connecting a storage battery to an output side of a fuel cell via a current adjusting means, wherein a fuel gas and a reaction air introduced into the fuel cell are controlled. Means for adjusting the power output of the fuel cell, battery current detecting means for detecting the current of the battery, battery voltage detecting means for detecting the voltage of the battery, battery current detecting means and battery voltage detecting Calculating means for calculating the average current and voltage of the storage battery within a predetermined period based on the detection output of the means, and the amount of discharged electricity of the storage battery based on the state of charge of the storage battery determined based on the average current and voltage And determine the amount of power generation of the fuel cell so that the amount of electricity corresponding to this amount of discharged electricity is supplied to the storage battery during the next cycle, and give a control command to the output adjustment means of the fuel cell. The control device of a fuel cell power generation system characterized by the output current of the current regulating means and a controller for providing a control command to the current control means so as not to exceed the permissible charging condition of the battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1236400A JP2775890B2 (en) | 1989-01-09 | 1989-09-12 | Control unit for fuel cell power generation system |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1-2217 | 1989-01-09 | ||
JP221789 | 1989-01-09 | ||
JP1236400A JP2775890B2 (en) | 1989-01-09 | 1989-09-12 | Control unit for fuel cell power generation system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02291668A JPH02291668A (en) | 1990-12-03 |
JP2775890B2 true JP2775890B2 (en) | 1998-07-16 |
Family
ID=26335559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1236400A Expired - Lifetime JP2775890B2 (en) | 1989-01-09 | 1989-09-12 | Control unit for fuel cell power generation system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2775890B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005166582A (en) * | 2003-12-05 | 2005-06-23 | Toyota Motor Corp | Hybrid fuel cell system |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE59703150D1 (en) * | 1997-11-20 | 2001-04-19 | Siemens Ag | Method and device for monitoring a selected group of fuel cells of a high-temperature fuel cell stack |
KR100511355B1 (en) * | 2000-10-03 | 2005-08-31 | 마츠시타 덴끼 산교 가부시키가이샤 | System and method for power generation control, computer program product, and medium |
US6534950B2 (en) * | 2001-05-25 | 2003-03-18 | Cellex Power Products, Inc. | Hybrid power supply control system and method |
US6555989B1 (en) | 2001-11-27 | 2003-04-29 | Ballard Power Systems Inc. | Efficient load-following power generating system |
US7687167B2 (en) | 2003-07-18 | 2010-03-30 | Panasonic Corporation | Power supply unit |
JP4979885B2 (en) * | 2004-11-02 | 2012-07-18 | パナソニック株式会社 | Power supply |
JP5313062B2 (en) * | 2009-06-30 | 2013-10-09 | 日立コンピュータ機器株式会社 | Power system |
JP5972526B2 (en) * | 2010-08-04 | 2016-08-17 | 学校法人幾徳学園 | Fuel cell power generation control device, fuel cell power generation system, fuel cell power generation control method, and program |
CN112751063B (en) * | 2019-10-31 | 2022-07-22 | 长城汽车股份有限公司 | Control method and device of fuel cell, battery management system and vehicle |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6195776A (en) * | 1984-10-18 | 1986-05-14 | Mitsubishi Heavy Ind Ltd | Wire extension control device in consumable electrode welding |
JPS61114759A (en) * | 1984-11-09 | 1986-06-02 | Mitsubishi Heavy Ind Ltd | Method for detecting spark discharge of electric precipitator |
JPH0831328B2 (en) * | 1987-05-08 | 1996-03-27 | 富士電機株式会社 | Fuel cell generator |
-
1989
- 1989-09-12 JP JP1236400A patent/JP2775890B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005166582A (en) * | 2003-12-05 | 2005-06-23 | Toyota Motor Corp | Hybrid fuel cell system |
JP4529429B2 (en) * | 2003-12-05 | 2010-08-25 | トヨタ自動車株式会社 | Hybrid fuel cell system |
Also Published As
Publication number | Publication date |
---|---|
JPH02291668A (en) | 1990-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6608482B2 (en) | Battery control method for hybrid vehicle | |
JP3685105B2 (en) | Apparatus and method for calculating output deterioration of secondary battery | |
EP2033003B1 (en) | Determination of battery predictive power limits | |
US8655524B2 (en) | Power supply system, vehicle provided with the same and control method of power supply system | |
US8085051B2 (en) | Abnormality detecting device for storage element, abnormality detecting method for storage element, abnormality detecting program for storage element, and computer-readable recording medium storing abnormality detecting program | |
JP4157317B2 (en) | Status detection device and various devices using the same | |
JP4806558B2 (en) | Secondary battery control device and secondary battery deterioration judgment method | |
EP0334474A2 (en) | Control apparatus for a fuel cell generating system | |
US20060113959A1 (en) | Rechargeable battery life judging method | |
CA2157642C (en) | Power conversion equipment monitor/controller method and apparatus | |
JP2009514504A (en) | Method and apparatus for controlling operating point of battery | |
KR100341754B1 (en) | Controlling method for battery charge of electric vehicle | |
JP2010098866A (en) | Imbalance determination circuit, imbalance reduction circuit, battery power supply, and imbalance evaluation method | |
US5646507A (en) | Battery charger system | |
US11316342B2 (en) | Direct current power supplying system | |
JP2775890B2 (en) | Control unit for fuel cell power generation system | |
JP2005269752A (en) | Power supply device of hybrid car | |
US5233284A (en) | System and method for rapid charging of a battery | |
JP3611905B2 (en) | Charge control method for battery pack | |
JPH0935757A (en) | Incomings and outgoings judgment control system of standalone solar power generating system and battery life judging method for standalone solar power generating system | |
JP3409458B2 (en) | Battery pack charging device | |
WO2019163008A1 (en) | Dc feeding system | |
JPH0451466A (en) | Output control device for fuel cell power generation system | |
JP2017060313A (en) | Vehicle electric power system | |
JPH11313445A (en) | Charging of lead-acid battery and apparatus thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090501 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090501 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100501 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100501 Year of fee payment: 12 |