JP2002025594A - Hydrogen flow control device of fuel cell - Google Patents

Hydrogen flow control device of fuel cell

Info

Publication number
JP2002025594A
JP2002025594A JP2000213073A JP2000213073A JP2002025594A JP 2002025594 A JP2002025594 A JP 2002025594A JP 2000213073 A JP2000213073 A JP 2000213073A JP 2000213073 A JP2000213073 A JP 2000213073A JP 2002025594 A JP2002025594 A JP 2002025594A
Authority
JP
Japan
Prior art keywords
current
fuel cell
hydrogen
value
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000213073A
Other languages
Japanese (ja)
Inventor
Satoshi Matsuda
聡 松田
Kuniaki Tauchi
邦明 田内
Naohiko Ishibashi
直彦 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000213073A priority Critical patent/JP2002025594A/en
Publication of JP2002025594A publication Critical patent/JP2002025594A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen flow control device of a fuel cell, which makes it possible to keep the minimum necessary hydrogen flow for fuel cell output and reduce hydrogen excessive off-gas. SOLUTION: The hydrogen flow control device of a fuel cell, consists of a charging current estimation part 15 for finding an estimated charging current by inputting the secondary cell charging amount, and based on a data table of the preset charging amount and charging current, a subtracter 16 for finding a motor current detection value subtracting the estimated charging current obtained by the part 15 from a charging current detection value detected from a current detector 14, a compensation current computing part 17 for finding hydrogen flow extra current 22 based on a motor current detection value 21 calculated by the 16, an adding part 18 for adding the 22 to a current detection value detected by the current detector, and a hydrogen flow computing part 19 which inputs the adding value 23 of the part 18 and giving a flow regulating valve 8 a hydrogen flow direction value 24 which is found by the value 23 multiplied with the value given from the hydrogen volume needed by the fuel battery cell 1 at rated output divided by fuel battery rated current value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば電気自動車
に使用される燃料電池の水素流量制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen flow control device for a fuel cell used in, for example, an electric vehicle.

【0002】[0002]

【従来の技術】図3は、従来の燃料電池式電気自動車の
電池システムの一例を示す概略構成図である。燃料電池
セル1には燃料電池陽極(燃料電池アノード極)2及び
燃料電池陰極(燃料電池カソード極)3を有しており、
陽極2に水素4を供給すると共に陰極3には酸素5を供
給することで、燃料電池セル1は発電し、この発電出力
は燃料電池出力端子6を介して電動機例えば車両用電動
機10に供給されるようになっている。
2. Description of the Related Art FIG. 3 is a schematic diagram showing an example of a battery system of a conventional fuel cell electric vehicle. The fuel cell 1 has a fuel cell anode (fuel cell anode) 2 and a fuel cell cathode (fuel cell cathode) 3.
By supplying hydrogen 4 to the anode 2 and oxygen 5 to the cathode 3, the fuel cell 1 generates electric power, and the generated output is supplied to an electric motor, for example, an electric motor 10 for a vehicle via a fuel cell output terminal 6. It has become so.

【0003】このような構成のものにおいて、陽極2に
供給される水素供給配管7には、流量調整弁8を介して
水素貯蔵容器9が接続され、流量調整弁8により水素貯
蔵容器9からの水素流量を調整できるようになってい
る。一方、燃料電池出力端子6には、二次電池11が接
続され、二次電池11は燃料電池出力と共に車両用電動
機10に電流を供給するようになっている。
In such a configuration, a hydrogen storage container 9 is connected to a hydrogen supply pipe 7 supplied to the anode 2 via a flow control valve 8, and the hydrogen storage container 9 is connected to the hydrogen storage pipe 9 by the flow control valve 8. The hydrogen flow can be adjusted. On the other hand, a secondary battery 11 is connected to the fuel cell output terminal 6, and the secondary battery 11 supplies an electric current to the vehicle motor 10 together with the output of the fuel cell.

【0004】[0004]

【発明が解決しようとする課題】通常、配電系統に接続
される燃料電池では、負荷がほぼ一定であるため電気自
動車とは異なり、水素の供給は流量調整弁8の開度を一
定にして一定流量が供給されるように制御している。
Normally, in a fuel cell connected to a power distribution system, the load of hydrogen is substantially constant, unlike an electric vehicle, so that the supply of hydrogen is made constant by keeping the opening of the flow control valve 8 constant. Control is performed so that the flow rate is supplied.

【0005】これに対して、図3に示す電気自動車用の
燃料電池システムにあっては、加速又は減速などの運転
状態に応じて、車両用電動機10が必要とする電力は頻
繁に変化する。
On the other hand, in the fuel cell system for an electric vehicle shown in FIG. 3, the electric power required by the vehicle electric motor 10 changes frequently depending on the driving state such as acceleration or deceleration.

【0006】このため水素7を常に最大量を供給する
と、燃料電池出力の電気出力として利用されない水素が
余剰オフガスとなり、効率が低下する。
Therefore, if the maximum amount of hydrogen 7 is constantly supplied, hydrogen not used as an electric output of the fuel cell output becomes excess off-gas, and the efficiency is reduced.

【0007】一方、水素7の流量を少なくすると、急加
速など車両用電動機10が急に大きな電力を要求した場
合、燃料電池の動作点がその時の供給水素での最大出力
を越えてしまい、燃料電池が過負荷状態となり、燃料電
池セル1に損傷を与える可能性がある。
On the other hand, if the flow rate of the hydrogen 7 is reduced, the operating point of the fuel cell exceeds the maximum output of the supplied hydrogen at the time when the motor 10 for the vehicle suddenly requests a large amount of electric power such as sudden acceleration, and the fuel The battery may be overloaded and damage the fuel cell 1.

【0008】本発明は上記の課題を解決するためになさ
れたもので、燃料電池出力に必要な最小限の水素流量と
することが可能となり、余剰オフガスを少なくすること
が可能となる燃料電池の水素流量制御装置を提供するこ
とを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and it is possible to reduce the amount of hydrogen required for fuel cell output to a minimum, thereby reducing excess off-gas. An object is to provide a hydrogen flow control device.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するた
め、請求項1に対応する発明は、陽極及び陰極を有する
燃料電池セルと、前記陽極に水素を供給すると共に、前
記陰極に酸素を供給することにより前記燃料電池セルで
得られる電気出力を電動機に供給可能にしたものにおい
て、前記燃料電池セルと前記電動機の間の電流経路に流
れる電流に基づき、前記燃料電池セルに供給する水素流
量を算出し、該算出結果に基づいて前記燃料電池セルの
陽極に供給する水素流量を制御する制御手段を備えた燃
料電池の水素流量制御装置である。
According to one aspect of the present invention, there is provided a fuel cell having an anode and a cathode, wherein hydrogen is supplied to the anode and oxygen is supplied to the cathode. The electric power obtained in the fuel cell can be supplied to the electric motor by doing, based on the current flowing in the current path between the fuel cell and the electric motor, the hydrogen flow supplied to the fuel cell A hydrogen flow control device for a fuel cell, comprising: a control unit that calculates and controls a flow rate of hydrogen supplied to an anode of the fuel cell based on the calculation result.

【0010】前記目的を達成するため、請求項2に対応
する発明は、陽極及び陰極を有する燃料電池セルと、前
記陽極に水素を供給すると共に、前記陰極に酸素を供給
することにより前記燃料電池セルで得られる電気出力並
びに電動機を加速駆動させる際に使用する二次電池の電
気出力を前記電動機に供給可能にしたものにおいて、前
記燃料電池セルと前記電動機の間の電流経路に流れる電
流に基づき、前記燃料電池セルに供給する水素流量を算
出し、該算出結果に基づいて前記燃料電池セルの陽極に
供給する水素流量を制御する第1の制御手段と、前記二
次電池の充電容量に基づいた二次電池充電電流推定値
と、前記電流経路に流れる電流に基づいた値を演算して
求められる電動機電流推定値から水素流量余裕電流値を
求め、該水素流量余裕電流値を前記第1の制御手段の入
力側に供給する第2の制御手段とを備えた燃料電池の水
素流量制御装置である。
[0010] In order to achieve the above object, an invention according to claim 2 is directed to a fuel cell having an anode and a cathode, and supplying hydrogen to the anode and oxygen to the cathode by supplying hydrogen to the anode. An electric output obtained in a cell and an electric output of a secondary battery used when accelerating the electric motor can be supplied to the electric motor, based on a current flowing in a current path between the fuel cell and the electric motor. A first control means for calculating a flow rate of hydrogen supplied to the fuel cell, and controlling a flow rate of hydrogen supplied to the anode of the fuel cell based on the calculation result; and A hydrogen flow margin current value is calculated from the estimated secondary battery charging current value and a motor current estimated value obtained by calculating a value based on the current flowing through the current path, and the hydrogen flow margin current value is calculated. Hydrogen flow control device of a fuel cell and a second control means for supplying a current to the input side of said first control means.

【0011】前記目的を達成するため、請求項3に対応
する発明は、陽極及び陰極を有しそれに得られる電気出
力を電動機に供給する燃料電池セルと、前記燃料電池セ
ルの陰極に酸素を供給する酸素供給系及び前記陽極に水
素を供給するものであって該水素流量を調整可能な流量
調整弁を有する水素供給系と、非加速運転時は前記燃料
電池セルで得られる電気出力により充電され、前記電動
機を加速駆動させる際に前記燃料電池セルの電気出力に
加えて電気出力を与える二次電池と、前記燃料電池セル
から前記電動機に流れる電流を検出する電流検出器と、
前記二次電池の充電量を検出する二次電池充電量検出器
と、前記二次電池充電量検出器により検出された二次電
池充電量を入力することにより、予め求められた充電量
と充電電流のデータテーブルに基づき、充電電流推定値
を求める充電電流推定部と、前記電流検出器により検出
された電流検出値から前記充電電流推定部により得られ
た充電電流推定値を減算して電動機電流検出値を求める
減算器と、前記減算器により求められた電動機電流検出
値に基づき水素流量余裕電流を求める補償電流演算部
と、前記補償電流演算部により求められた水素流量余裕
電流と前記電流検出器により検出された電流検出値を加
算する加算部と、前記加算部で加算された加算値を入力
し、この加算値に、前記燃料電池セルが定格出力時に必
要な水素量を前記燃料電池定格電流値で除算した値を乗
算して求められる水素流量指令値を前記流量調整弁に与
える水素流量演算部とを備えた燃料電池の水素流量制御
装置である。
According to a third aspect of the present invention, there is provided a fuel cell having an anode and a cathode for supplying an electric output obtained thereto to an electric motor, and supplying oxygen to the cathode of the fuel cell. And a hydrogen supply system for supplying hydrogen to the anode and having a flow rate control valve capable of adjusting the flow rate of the hydrogen, and being charged by an electric output obtained from the fuel cell during non-acceleration operation. A secondary battery that provides an electric output in addition to the electric output of the fuel cell when the motor is accelerated, and a current detector that detects a current flowing from the fuel cell to the motor.
By inputting a secondary battery charge detector for detecting the charge of the secondary battery and a secondary battery charge detected by the secondary battery charge detector, a previously determined charge and charge are obtained. A charging current estimating unit for obtaining a charging current estimation value based on a current data table; and a motor current by subtracting the charging current estimation value obtained by the charging current estimation unit from the current detection value detected by the current detector. A subtractor for detecting a detection value; a compensation current calculation unit for obtaining a hydrogen flow margin current based on the motor current detection value obtained by the subtractor; a hydrogen flow margin current obtained by the compensation current calculation unit; An addition unit for adding the current detection value detected by the heater, and the addition value added by the addition unit, and the added value represents the amount of hydrogen required by the fuel cell at the rated output to the fuel cell. Hydrogen flow control device of a fuel cell and a hydrogen flow rate calculation section that gives a hydrogen flow rate command value obtained by multiplying a value obtained by dividing the battery rated current value to the flow rate adjusting valve.

【0012】[0012]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態を説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1は、本発明に係る燃料電池の水素流量
制御装置の一実施形態を示す概略構成図である。図3の
従来例と異なる点は、二次電池制御器12と、燃料電池
制御器13と、電流検出器14を新たに追加したことで
あり、これらの機能は以下の通りであり、これ以外の点
は図3と同一であるので、同一部分には同一符号を付し
てその説明を省略する。
FIG. 1 is a schematic diagram showing one embodiment of a hydrogen flow control device for a fuel cell according to the present invention. The difference from the conventional example of FIG. 3 is that a secondary battery controller 12, a fuel cell controller 13, and a current detector 14 are newly added. These functions are as follows. Are the same as those in FIG. 3, and therefore, the same portions are denoted by the same reference characters and description thereof will be omitted.

【0014】電流検出器14は、燃料電池出力端子6に
流れる電流値を検出する。二次電池充電量検出器12
は、二次電池11の充電量を検出する。燃料電池制御器
13は、電流検出器14で検出された検出値(電流値)
と、二次電池充電量検出器12で検出された検出値(充
電量)とを入力して流量調整弁8の開度指令値を算出す
る。
The current detector 14 detects the value of the current flowing to the fuel cell output terminal 6. Rechargeable battery charge detector 12
Detects the charge amount of the secondary battery 11. The fuel cell controller 13 detects a value (current value) detected by the current detector 14.
And the detection value (charge amount) detected by the secondary battery charge amount detector 12 is input to calculate the opening command value of the flow control valve 8.

【0015】図2は以上述べた実施形態における燃料電
池制御器13を説明するための概略構成図である。燃料
電池制御器13は、二次電池充電電流推定部15と、減
算部16と、補償電流演算部17と、加算部18と、水
素流量演算部19とからなり、このうち第1の制御手段
は水素流量演算部19からなり、また第2の制御手段は
水素流量演算部19を除く、二次電池充電電流推定部1
5と、減算部16と、補償電流演算部17と、加算部1
8とからなっており、これらの機能は次の通りである。
FIG. 2 is a schematic configuration diagram for explaining the fuel cell controller 13 in the embodiment described above. The fuel cell controller 13 includes a secondary battery charging current estimating unit 15, a subtracting unit 16, a compensation current calculating unit 17, an adding unit 18, and a hydrogen flow rate calculating unit 19, of which a first control unit is provided. Is composed of a hydrogen flow rate calculating section 19, and the second control means is a secondary battery charging current estimating section 1 excluding the hydrogen flow rate calculating section 19.
5, a subtractor 16, a compensation current calculator 17, and an adder 1
8 and these functions are as follows.

【0016】二次電池充電電流推定部15は、二次電池
充電量検出器12で検出された検出値から二次電池充電
電流推定値20を推定する。具体的には、二次電池11
の端子電圧を一定とすると、二次電池充電量に対する充
電電流の大きさは電池特性によって概略一意に決まる。
二次電池充電電流推定部15では、使用する二次電池1
1での充電量─充電電流の特性を予め計測等によりデー
タテーブル化しておき、該データテーブルを参照して充
電量に対する二次電池充電電流推定値20を求める。
The secondary battery charging current estimating section 15 estimates a secondary battery charging current estimation value 20 from the detection value detected by the secondary battery charging amount detector 12. Specifically, the secondary battery 11
Is constant, the magnitude of the charging current with respect to the charged amount of the secondary battery is substantially uniquely determined by the battery characteristics.
The secondary battery charging current estimating unit 15 uses the secondary battery 1
The characteristic of “charging amount─charging current at 1” is converted into a data table by measurement or the like in advance, and a secondary battery charging current estimated value 20 for the charging amount is obtained with reference to the data table.

【0017】減算部16は、電流検出器14で検出され
た検出値から二次電池充電電流推定値20を減算して車
両用電動機電流21を求める。
The subtractor 16 subtracts the secondary battery charging current estimated value 20 from the detection value detected by the current detector 14 to obtain a vehicle motor current 21.

【0018】補償電流演算部17は、車両用電動機電流
21を入力して(1)式により水素流量余裕電流値22
を求める。
The compensation current calculation unit 17 receives the vehicle motor current 21 and calculates the hydrogen flow margin current value 22 according to the equation (1).
Ask for.

【0019】 水素流量余裕電流値22=車両用電動機電流21×KCOMP (1) ここで、KCOMPは定数であり、この値を変えること
で車両用電動機電流に対する水素流量余裕電流値を調整
する。KCOMPを小さくすると余剰オフガスが少なく
なる反面、燃料電池が過負荷状態に陥る頻度が増加する
ため、使用燃料電池の過負荷耐量を考慮して決める。
Hydrogen flow margin current value 22 = Vehicle motor current 21 × KCOMP (1) Here, KCOMP is a constant, and by changing this value, the hydrogen flow margin current value with respect to the vehicle motor current is adjusted. When KCOMP is reduced, excess off-gas is reduced, but the frequency of the fuel cell falling into an overload state increases. Therefore, the KCOMP is determined in consideration of the overload capacity of the fuel cell used.

【0020】加算部18は、電流検出器14で検出され
た検出値と余裕電流値22を入力して両者を加算して加
算値23を出力する。水素流量演算部19は、加算部1
8の出力である加算値23を入力して(2)式により水
素流量指令値24を算出する。
The adder 18 inputs the detection value detected by the current detector 14 and the marginal current value 22, adds the two, and outputs an addition value 23. The hydrogen flow rate calculation unit 19 includes the addition unit 1
The hydrogen flow command value 24 is calculated according to the equation (2) by inputting the added value 23 which is the output of 8.

【0021】 水素流量指令値24=加算値23×H÷I (2) この場合、Hは燃料電池が定格出力時に必要な水素量で
あり、Iは燃料電池定格電流値であり、これらの値は使
用する燃料電池に決まる。
Hydrogen flow rate command value 24 = added value 23 × H ÷ I (2) In this case, H is the amount of hydrogen required by the fuel cell at the rated output, and I is the fuel cell rated current value. Depends on the fuel cell used.

【0022】以上述べた実施形態によれば、燃料電池セ
ル1へ供給する水素ガスの流量を、燃料電池出力端子6
の電流検出値から算出して制御することで、燃料電池出
力に必要な最小限の水素流量とすることが可能となり、
余剰オフガスを少なくすることが可能である。
According to the above-described embodiment, the flow rate of hydrogen gas supplied to the fuel cell 1 is controlled by the fuel cell output terminal 6.
By calculating and controlling from the current detection value of, it becomes possible to make the minimum hydrogen flow necessary for the fuel cell output,
It is possible to reduce surplus off-gas.

【0023】また、車両用電動機電流21に基づいて水
素流量余裕電流値22を計算することで、変動のほとん
どない二次電池充電電流の電流余裕演算値に対する影響
をなくし、余裕電流値を最小限にして余裕水素オフガス
を最小限に抑えることが可能となる。
The calculation of the hydrogen flow margin current value 22 based on the vehicle motor current 21 eliminates the influence of the secondary battery charging current, which has little fluctuation, on the current margin calculation value, and minimizes the margin current value. It is possible to minimize the amount of hydrogen off-gas.

【0024】本発明は、以上述べた実施形態に限定され
ず、例えば以下のように実施してもよい。図2におい
て、第1の制御手段(水素流量演算部19)と、第2の
制御手段(二次電池充電電流推定部15と、減算部16
と、補償電流演算部17と、加算部18)を両方備えた
ものについて例示したが、第1の制御手段だけのもので
あってもよい。
The present invention is not limited to the embodiment described above, and may be implemented, for example, as follows. In FIG. 2, first control means (hydrogen flow rate calculation unit 19), second control means (secondary battery charging current estimation unit 15, and subtraction unit 16)
And a compensating current calculating unit 17 and an adding unit 18), but may include only the first control unit.

【0025】[0025]

【発明の効果】本発明によれば、燃料電池セルへ供給す
る水素の流量を、燃料電池セルの出力電流から算出して
制御することで、燃料電池セルの出力に必要な最小限の
水素流量とすることが可能となり、余剰オフガスを少な
くすることが可能であり、また電動機電流推定値に基づ
いて水素流量余裕電流値を計算することで、変動のほと
んどない、二次電池充電電流の電流余裕演算値に対する
影響をなくし、余裕電流値を最小限にして余裕水素オフ
ガスを最小限に抑えることが可能となる燃料電池の水素
流量制御装置を提供できる。
According to the present invention, by controlling the flow rate of hydrogen supplied to the fuel cell by calculating from the output current of the fuel cell, the minimum flow rate of hydrogen required for the output of the fuel cell is obtained. It is possible to reduce the excess off-gas, and by calculating the hydrogen flow margin current value based on the motor current estimation value, it is possible to obtain the current margin of the secondary battery charging current with little variation. It is possible to provide a hydrogen flow control device for a fuel cell, which can eliminate the influence on the calculated value and minimize the marginal current value to minimize the marginal hydrogen off-gas.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る燃料電池の水素流量制御装置の一
実施形態を示す概略構成図。
FIG. 1 is a schematic configuration diagram showing one embodiment of a hydrogen flow control device for a fuel cell according to the present invention.

【図2】同実施形態における要部を説明するための概略
構成図。
FIG. 2 is a schematic configuration diagram for explaining a main part in the embodiment.

【図3】従来の燃料電池式電気自動車の電池システムの
一例を示す概略構成図。
FIG. 3 is a schematic configuration diagram showing an example of a battery system of a conventional fuel cell electric vehicle.

【符号の説明】[Explanation of symbols]

1…燃料電池セル、2…燃料電池陽極(燃料電池アノー
ド極)、3…燃料電池陰極(燃料電池カソード極)、4
…水素、5…酸素、6…燃料電池出力端子、7…水素供
給配管、8…流量調整弁、9…水素貯蔵容器、10…車
両用電動機、11…二次電池、12…二次電池充電量検
出器、13…燃料電池制御器、14…電流検出器、15
…二次電池充電電流推定部、16…減算部、17…補償
電流演算部、18…加算部、19…水素流量演算部、2
0…二次電池充電電流推定値、21…車両用電動機電
流、22…水素流量余裕電流値、23…加算値、24…
水素流量指令値。
DESCRIPTION OF SYMBOLS 1 ... fuel cell, 2 ... fuel cell anode (fuel cell anode), 3 ... fuel cell cathode (fuel cell cathode), 4
... Hydrogen, 5 ... Oxygen, 6 ... Fuel cell output terminal, 7 ... Hydrogen supply pipe, 8 ... Flow control valve, 9 ... Hydrogen storage container, 10 ... Vehicle motor, 11 ... Secondary battery, 12 ... Secondary battery charging Amount detector, 13 ... fuel cell controller, 14 ... current detector, 15
... Rechargeable battery charging current estimator, 16 ... Subtractor, 17 ... Compensation current calculator, 18 ... Adder, 19 ... Hydrogen flow calculator, 2
0: estimated secondary battery charging current, 21: motor current for vehicle, 22: hydrogen flow margin current value, 23: added value, 24:
Hydrogen flow command value.

フロントページの続き (72)発明者 石橋 直彦 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 Fターム(参考) 5H027 DD03 KK51 KK56 MM09 5H115 PG04 PI16 PI18 PI29 PU01 QE08 SE06 TI01 TI06 TO12Continuation of the front page (72) Inventor Naohiko Ishibashi 4-6-22 Kannonshinmachi, Nishi-ku, Hiroshima-shi, Hiroshima Mitsubishi Heavy Industries, Ltd. Hiroshima Laboratory F-term (reference) 5H027 DD03 KK51 KK56 MM09 5H115 PG04 PI16 PI18 PI29 PU01 QE08 SE06 TI01 TI06 TO12

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 陽極及び陰極を有する燃料電池セルと、
前記陽極に水素を供給すると共に、前記陰極に酸素を供
給することにより前記燃料電池セルで得られる電気出力
を電動機に供給可能にしたものにおいて、 前記燃料電池セルと前記電動機の間の電流経路に流れる
電流に基づき、前記燃料電池セルに供給する水素流量を
算出し、該算出結果に基づいて前記燃料電池セルの陽極
に供給する水素流量を制御する制御手段を備えた燃料電
池の水素流量制御装置。
1. A fuel cell having an anode and a cathode,
While supplying hydrogen to the anode and supplying oxygen to the cathode, it is possible to supply an electric output obtained by the fuel cell to an electric motor, wherein a current path between the fuel cell and the electric motor is A hydrogen flow control device for a fuel cell, comprising: a control unit configured to calculate a flow rate of hydrogen supplied to the fuel cell based on a flowing current, and to control a flow rate of hydrogen supplied to an anode of the fuel cell based on the calculation result. .
【請求項2】 陽極及び陰極を有する燃料電池セルと、
前記陽極に水素を供給すると共に、前記陰極に酸素を供
給することにより前記燃料電池セルで得られる電気出力
並びに電動機を加速駆動させる際に使用する二次電池の
電気出力を前記電動機に供給可能にしたものにおいて、 前記燃料電池セルと前記電動機の間の電流経路に流れる
電流に基づき、前記燃料電池セルに供給する水素流量を
算出し、該算出結果に基づいて前記燃料電池セルの陽極
に供給する水素流量を制御する第1の制御手段と、 前記二次電池の充電容量に基づいた二次電池充電電流推
定値と、前記電流経路に流れる電流に基づいた値を演算
して求められる電動機電流推定値から水素流量余裕電流
値を求め、該水素流量余裕電流値を前記第1の制御手段
の入力側に供給する第2の制御手段と、 を備えた燃料電池の水素流量制御装置。
2. A fuel cell having an anode and a cathode,
By supplying hydrogen to the anode and supplying oxygen to the cathode, it is possible to supply the electric motor with an electric output obtained by the fuel cell and an electric output of a secondary battery used when accelerating the electric motor. In the above, a flow rate of hydrogen supplied to the fuel cell is calculated based on a current flowing in a current path between the fuel cell and the electric motor, and the flow rate of hydrogen supplied to the anode of the fuel cell is calculated based on the calculation result. First control means for controlling a flow rate of hydrogen, a motor current estimation obtained by calculating a secondary battery charging current estimated value based on a charging capacity of the secondary battery and a value based on a current flowing through the current path. A second control means for obtaining a hydrogen flow margin current value from the value, and supplying the hydrogen flow margin current value to an input side of the first control means. .
【請求項3】 陽極及び陰極を有しそれに得られる電気
出力を電動機に供給する燃料電池セルと、 前記燃料電池セルの陰極に酸素を供給する酸素供給系及
び前記陽極に水素を供給するものであって該水素流量を
調整可能な流量調整弁を有する水素供給系と、 非加速運転時は前記燃料電池セルで得られる電気出力に
より充電され、前記電動機を加速駆動させる際に前記燃
料電池セルの電気出力に加えて電気出力を与える二次電
池と、 前記燃料電池セルから前記電動機に流れる電流を検出す
る電流検出器と、 前記二次電池の充電量を検出する二次電池充電量検出器
と、 前記二次電池充電量検出器により検出された二次電池充
電量を入力することにより、予め求められた充電量と充
電電流のデータテーブルに基づき、充電電流推定値を求
める充電電流推定部と、 前記電流検出器により検出された電流検出値から前記充
電電流推定部により得られた充電電流推定値を減算して
電動機電流検出値を求める減算器と、 前記減算器により求められた電動機電流検出値に基づき
水素流量余裕電流を求める補償電流演算部と、 前記補償電流演算部により求められた水素流量余裕電流
と前記電流検出器により検出された電流検出値を加算す
る加算部と、 前記加算部で加算された加算値を入力し、この加算値
に、前記燃料電池セルが定格出力時に必要な水素量を前
記燃料電池定格電流値で除算した値を乗算して求められ
る水素流量指令値を前記流量調整弁に与える水素流量演
算部と、 を備えた燃料電池の水素流量制御装置。
3. A fuel cell having an anode and a cathode and supplying an obtained electric output to an electric motor, an oxygen supply system for supplying oxygen to a cathode of the fuel cell, and supplying hydrogen to the anode. A hydrogen supply system having a flow rate control valve capable of adjusting the flow rate of hydrogen, and a non-acceleration operation, which is charged by an electric output obtained from the fuel cell, and which is used to accelerate the electric motor when the fuel cell is accelerated. A secondary battery that provides an electrical output in addition to an electrical output; a current detector that detects a current flowing from the fuel cell to the electric motor; and a secondary battery charge detector that detects a charge of the secondary battery. By inputting the secondary battery charge detected by the secondary battery charge detector, a charge for obtaining a charge current estimation value based on a data table of the charge current and the charge current obtained in advance. A current estimating unit; a subtractor for subtracting the charging current estimation value obtained by the charging current estimating unit from the current detection value detected by the current detector to obtain a motor current detection value; A compensating current calculation unit for obtaining a hydrogen flow margin current based on the detected motor current value, and an addition unit for adding the hydrogen flow margin current obtained by the compensation current calculation unit and the current detection value detected by the current detector. , The addition value obtained by the addition unit is input, and the hydrogen flow rate obtained by multiplying the addition value by a value obtained by dividing the amount of hydrogen required by the fuel cell at rated output by the fuel cell rated current value. A hydrogen flow rate control device for a fuel cell, comprising: a hydrogen flow rate calculation unit that gives a command value to the flow rate control valve.
JP2000213073A 2000-07-13 2000-07-13 Hydrogen flow control device of fuel cell Pending JP2002025594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000213073A JP2002025594A (en) 2000-07-13 2000-07-13 Hydrogen flow control device of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000213073A JP2002025594A (en) 2000-07-13 2000-07-13 Hydrogen flow control device of fuel cell

Publications (1)

Publication Number Publication Date
JP2002025594A true JP2002025594A (en) 2002-01-25

Family

ID=18708889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000213073A Pending JP2002025594A (en) 2000-07-13 2000-07-13 Hydrogen flow control device of fuel cell

Country Status (1)

Country Link
JP (1) JP2002025594A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635373B2 (en) * 2000-01-03 2003-10-21 Nissan Motor Co., Ltd. Fuel cell system and method
KR100787681B1 (en) 2006-10-17 2007-12-21 현대자동차주식회사 Emission control method of recirculation exhaust gas using the load fluctuation of hydrogen blower in a fuel cell system
KR101136012B1 (en) 2009-10-15 2012-04-18 (주)퓨얼셀 파워 Energy supply system
JP2013187108A (en) * 2012-03-09 2013-09-19 Aisin Seiki Co Ltd Fuel cell system and fuel cell system control device
KR101550615B1 (en) 2013-12-31 2015-09-18 현대자동차 주식회사 Purge Apparatus And Purge Apparatus Control Method
JP2018152285A (en) * 2017-03-14 2018-09-27 株式会社東芝 Storage battery pack
CN114497653A (en) * 2022-04-02 2022-05-13 山东国创燃料电池技术创新中心有限公司 Fuel cell hydrogen supply control method and device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63289773A (en) * 1987-05-20 1988-11-28 Fuji Electric Co Ltd Fuel cell power generator
JPH10326625A (en) * 1997-05-23 1998-12-08 Toyota Motor Corp Method and device for operating fuel cell and gas supplying device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63289773A (en) * 1987-05-20 1988-11-28 Fuji Electric Co Ltd Fuel cell power generator
JPH10326625A (en) * 1997-05-23 1998-12-08 Toyota Motor Corp Method and device for operating fuel cell and gas supplying device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635373B2 (en) * 2000-01-03 2003-10-21 Nissan Motor Co., Ltd. Fuel cell system and method
KR100787681B1 (en) 2006-10-17 2007-12-21 현대자동차주식회사 Emission control method of recirculation exhaust gas using the load fluctuation of hydrogen blower in a fuel cell system
KR101136012B1 (en) 2009-10-15 2012-04-18 (주)퓨얼셀 파워 Energy supply system
JP2013187108A (en) * 2012-03-09 2013-09-19 Aisin Seiki Co Ltd Fuel cell system and fuel cell system control device
KR101550615B1 (en) 2013-12-31 2015-09-18 현대자동차 주식회사 Purge Apparatus And Purge Apparatus Control Method
JP2018152285A (en) * 2017-03-14 2018-09-27 株式会社東芝 Storage battery pack
US10673255B2 (en) 2017-03-14 2020-06-02 Kabushiki Kaisha Toshiba Battery pack and computer-implement battery pack control method
CN114497653A (en) * 2022-04-02 2022-05-13 山东国创燃料电池技术创新中心有限公司 Fuel cell hydrogen supply control method and device
CN114497653B (en) * 2022-04-02 2022-07-19 山东国创燃料电池技术创新中心有限公司 Fuel cell hydrogen supply control method and device

Similar Documents

Publication Publication Date Title
JP3384059B2 (en) Fuel cell generator
US7485383B2 (en) Fuel cell power supply
JP5812522B2 (en) Fuel cell system
EP2765638B1 (en) Control device for fuel cell system
US7829229B1 (en) Power control for hybrid fuel cell systems
US20100316926A1 (en) Fuel cell system
CA2587541C (en) Output limiting device for fuel cell
US7847513B2 (en) System for controlling the power output of a fuel cell stack and battery
US20190275912A1 (en) Fuel cell system, vehicle including fuel cell system, and control method of fuel cell system
JP2006310217A (en) Fuel cell system
KR20200020513A (en) External power supply system and supply method of fuel cell vehicle
JP4314165B2 (en) Hybrid fuel cell system
JP2005253270A (en) Control device for fuel cell vehicle
JP5412719B2 (en) Vehicle control device with fuel cell
JP4308479B2 (en) Fuel cell power supply
JPWO2013065132A1 (en) Fuel cell output control device
JP2002025594A (en) Hydrogen flow control device of fuel cell
JP2001346332A (en) Power fluctuation compensating system
JP2019125461A (en) Fuel cell system
US20080176111A1 (en) Fuel Cell Power Request Control Strategy
JP4180998B2 (en) Fuel cell power generation system
JP6926547B2 (en) Electric vehicle power supply
JPH07307163A (en) Load control device of fuel cell power generating system
JP2000348748A (en) Power generation control method of fuel cell
JPH0642181B2 (en) Fuel cell power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070629

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070702

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100831