JPH0641890U - Water purifier with permeable membrane - Google Patents
Water purifier with permeable membraneInfo
- Publication number
- JPH0641890U JPH0641890U JP4166692U JP4166692U JPH0641890U JP H0641890 U JPH0641890 U JP H0641890U JP 4166692 U JP4166692 U JP 4166692U JP 4166692 U JP4166692 U JP 4166692U JP H0641890 U JPH0641890 U JP H0641890U
- Authority
- JP
- Japan
- Prior art keywords
- water
- flow rate
- permeable membrane
- water purifier
- membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
(57)【要約】 (修正有)
【目的】 透過膜装着浄水器の膜に対する過大な高圧、
高流量負荷を回避し、不当な膜の汚濁物を阻止して経済
的効果を高める。
【構成】 被処理水中の除去すべき成分を除去し得る媒
体として少なくとも0.5μmより小さな細孔をもつ透
過膜即ち精密濾過膜、限外濾過膜、逆浸透膜より一つ以
上を選定して装着した浄水器において、その被処理水流
入側に流量調節機構を配備し、更に前記媒体への被処理
水流入側と媒体により処理された処理水流出側との差圧
を検知しうる機構を設備したもの
(57) [Summary] (Correction) [Purpose] Excessive pressure against the membrane of the water purifier with permeable membrane,
Avoid high flow load, prevent unjustified membrane fouling and enhance economic effect. [Structure] As a medium capable of removing components to be removed in the water to be treated, one or more selected from a permeable membrane having at least 0.5 μm pores, that is, a microfiltration membrane, an ultrafiltration membrane, or a reverse osmosis membrane. In the attached water purifier, a flow rate adjusting mechanism is provided on the treated water inflow side, and a mechanism capable of detecting the differential pressure between the treated water inflow side to the medium and the treated water outflow side treated by the medium is provided. Equipped
Description
【0001】[0001]
本考案は被処理水中の除去すべき成分を除去し得る媒体として、少なくとも透 過膜を備えた浄水器で、水圧の変動が起っても、定流量を維持する、いわゆる流 量調節機構付浄水器に関する。 The present invention is a water purifier equipped with at least a permeable membrane as a medium capable of removing the components to be removed from the water to be treated, with a so-called flow rate adjusting mechanism that maintains a constant flow rate even if the water pressure fluctuates. Regarding water purifier.
【0002】[0002]
近年、都市上水の水源である湖沼、河川等の汚染に伴って、浄水工程において 、多量の塩素が使用されるようなり、その結果発癌性物質であるトリハロメタン が副生し、これらを含有する浄水が家庭に配水されている。 勿諭、その含有量はEPAの基準以下ではあるが、健康上決して望ましいもので はない。また、閉鎖系水域である湖沼では有機物汚染によるジオスミン、2MI B等の異臭味による汚染がおこり、浄水工程では殆ど除去できないので、上水と して家庭に配水されているのが現状である。 In recent years, due to pollution of lakes, rivers, etc., which are the sources of city water, a large amount of chlorine is used in the water purification process, and as a result, a carcinogen, trihalomethane, is produced as a by-product. Clean water is distributed to households. Of course, its content is below the EPA standard, but it is never desirable for health. Also, in lakes and marshes, which are closed water areas, diosmin, 2MIB, and other off-flavors cause pollution due to organic matter pollution, which can hardly be removed in the water purification process.
【0003】 このような背景から家庭では浄水器が広く利用され、とくに精密な濾過機能を 備えた透過膜装着の据置型浄水器が多く利用されるようになった。即ち、浄水場 の浄水工程の最終工程である砂濾過工程では、コロイド性物質の除去は困難で、 とくに集合住宅、オフィスビル等の受水槽、高置水槽、及び配管等のの腐食によ って生成するコロラド性金属水酸化物、微生物等の除去に際しては0.2〜0. 05μm程度の透過膜装着の浄水器が効果を発揮する。しかし、その反面その使 用方法によっては膜の汚染度を早め、その寿命を短くすることになる。これらの 浄水器は特定範囲の濾過流量に規定して使用することの重要性をPRしているも のの、実際、家庭における使用状況は浄水器の流入側にある元栓の開度を特定範 囲の流量になるように調節すると云う配慮は全くなく、適正な流量条件を越え、 給水圧にまかせて一時に多量の上水を浄水器に給水して浄水する例が多い。この ような方法で繰返し使用していると、膜の汚染を早め、急速に濾過抵抗が上昇し て、比較的早期に処理水が得られなくなり、膜モジュールの交換時期を早めるこ とになる。またこのような過酷な使用は膜の破損、場合によっては浄水器そのも のの破損をも引き起こす。From such a background, water purifiers have been widely used at home, and particularly, stationary water purifiers equipped with a permeable membrane and having a precise filtration function have come to be widely used. In other words, it is difficult to remove colloidal substances in the sand filtration process, which is the final process of the water purification process at water purification plants, especially because of the corrosion of water receiving tanks, raised water tanks, and piping of apartment houses, office buildings, etc. When removing the color-causing metal hydroxides, microorganisms, etc. produced by A water purifier equipped with a permeable membrane of about 05 μm is effective. However, on the other hand, depending on the method of use, the degree of contamination of the film is accelerated and its life is shortened. Although these water purifiers publicize the importance of specifying and using a filtration flow rate within a specific range, in actual use at home, the opening degree of the main plug on the inflow side of the water purifier falls within a specific range. There is no consideration to adjust to the flow rate of the enclosure, and there are many cases in which the flow rate is exceeded and the water supply pressure is controlled to supply a large amount of clean water to the water purifier at one time. Repeated use in this way accelerates membrane fouling, increases filtration resistance rapidly, makes it impossible to obtain treated water relatively early, and accelerates replacement of the membrane module. In addition, such severe use also causes damage to the membrane and, in some cases, the water purifier itself.
【0004】[0004]
本考案では、従来のような透過膜装着浄水器への規定値を越えた給水による膜 汚染の促進、それによる濾過流量の急激な低下、膜の通水抵抗の増大、及び膜の 破損、膜の寿命等の問題を解決することにある。 In the present invention, the conventional water purifier equipped with a permeable membrane promotes membrane contamination due to water supply exceeding the specified value, resulting in a sharp decrease in filtration flow rate, increased water resistance of the membrane, and damage to the membrane. To solve problems such as the life of
【0005】[0005]
本考案は、被処理水中の除去しようとする成分を除去し得る媒体として、少な くとも透過膜を装着した浄水器の被処理水流入側に、該被処理水の水圧変動に対 応して常に定流量に調整可能な流量調節機構を配備した透過膜装着浄水器であり 、また前記流量調節機構が動水圧の高低に伴う流量の増減による流体抵抗を受け ることにより伸縮自在な弾性体を内蔵した、或いは屈曲自在な可変オリフィスで あり、また浄水器内に内蔵する媒体の流体抵抗を検知し得る流体抵抗検知機構を 備えた定流量調節機構、配備の透過膜装着浄水器の提供である。 The present invention, as a medium capable of removing the components to be removed from the treated water, is provided at the treated water inflow side of a water purifier equipped with at least a permeable membrane in response to fluctuations in the water pressure of the treated water. A water purifier equipped with a permeable membrane that is equipped with a flow rate adjustment mechanism that can always adjust to a constant flow rate.The flow rate adjustment mechanism creates a flexible elastic body by receiving the fluid resistance due to the increase and decrease of the flow rate due to the rise and fall of the hydraulic pressure. It provides a constant flow rate adjustment mechanism with a built-in or bendable variable orifice and a fluid resistance detection mechanism that can detect the fluid resistance of the medium contained in the water purifier, and a permeable membrane mounted water purifier for deployment. .
【0006】 以下、本考案の作用、効果につき、実施例図1〜7により説明する。The operation and effect of the present invention will be described below with reference to FIGS.
図1〜6は本考案において採用し得る、水圧変動に対応して常に定流量に調整 可能な流量調節機構の一実施例を示すもので、いずれも縦断正面図である。図7 は本考案の一実施例を示すもので、流量調節機構を内蔵した浄水器の作用、効果 を説明するためのものである。 1 to 6 show an embodiment of a flow rate adjusting mechanism that can be adopted in the present invention and can always adjust to a constant flow rate in response to fluctuations in water pressure, and are all vertical sectional front views. FIG. 7 shows an embodiment of the present invention, and is for explaining the action and effect of a water purifier having a flow rate adjusting mechanism incorporated therein.
【0007】 まず図1において、水圧をもった供給水は管路1を経て、流量調節機構2内に 流入する。流量調節機構2の流入口には整流板7があり、ここで適当に分散され 、更に流体は裏側を水圧によって伸縮自在となる弾性体5で支持され、且つ支点 6において開閉自在に支持されている観音開きの扉4の表側に当たる。更に流体 は2枚の観音開きの扉4の間隙から管路3へ流入し、浄水器(図示せず)に至る 。扉4の形状は角形でも半円形でもよく、前者の場合には流量調節機構2の横断 面の形状は角形、後者の場合には円形となる。First, in FIG. 1, supply water having a water pressure flows into a flow rate adjusting mechanism 2 via a pipe line 1. A flow straightening plate 7 is provided at the inlet of the flow rate adjusting mechanism 2, where it is appropriately dispersed, and the fluid is supported on the back side by an elastic body 5 which can be expanded and contracted by hydraulic pressure, and is openably and closably supported at a fulcrum 6. It hits the front side of the door 4 that opens. Further, the fluid flows into the pipe line 3 through the gap between the two double doors 4 and reaches the water purifier (not shown). The shape of the door 4 may be square or semi-circular. In the former case, the cross-sectional shape of the flow rate adjusting mechanism 2 is square, and in the latter case it is circular.
【0008】 高圧、高流量の流体が支点6で支えられている扉4に当ると、その抵抗を受け て弾性体5、例えばバネを縮めながら2枚の扉4は次第に閉鎖する方向に動き出 す。図2はその結果を示すもので、ほぼ水平となり流路が狭くなる。扉4の背後 にはストッパー9が存在し、扉が所定以上に後退するものを防止する。即ち、高 圧、高流量の流体が扉に当る程、扉4は閉じる方向に動いて、2枚の扉によって 形成される流路を狭くする結果、高圧になる程その流路を通過する流体の量は制 限され、従って管路3を経て浄水器へ送水される量は少なくなる。When a high-pressure, high-flow rate fluid hits the door 4 supported by the fulcrum 6, the elastic body 5, for example, a spring is contracted by the resistance and the two doors 4 gradually move in the closing direction. You FIG. 2 shows the result, which is almost horizontal and the channel is narrowed. There is a stopper 9 behind the door 4 to prevent the door from retracting more than a predetermined amount. That is, the higher the pressure and the flow rate of the fluid hit the door, the more the door 4 moves in the closing direction, and the narrower the flow passage formed by the two doors becomes. Is limited, and therefore the amount of water sent to the water purifier via the conduit 3 is small.
【0009】 本考案においては、扉の数、形状、段数には全く制限はなく、また、実施例に おいては弾性体5の位置が扉4の背後にあるが、扉4の表側に付け、扉4が受け る流体抵抗によって伸長するようにしてもよい。また弾性体5の種類、形状にも 何ら制限はない。In the present invention, the number, shape and number of steps of the door are not limited at all, and in the embodiment, the position of the elastic body 5 is behind the door 4, but it is attached to the front side of the door 4. The door 4 may be extended by the fluid resistance received by the door 4. Further, there is no limitation on the type and shape of the elastic body 5.
【0010】 図3、4は他の実施例で扉4自体が屈曲自在性をもつもので、高圧、高流量の 流体を受けると、その抵抗により、屈曲して所定の流路を保持していたものが、 次第に屈曲が是正されて、図4に示す結果となり、2枚の扉4間の流路を狭める ために流量が制限され、管路3を経る流量が制限される。低圧、低流量になれば 扉4は復元して再び扉間の流路は広くなる。扉としては屈曲復元力のある平板状 の弾性体、例えば薄い鋼板、樹脂板等が利用できる。3 and 4 show another embodiment in which the door 4 itself is bendable, and when it receives a fluid of high pressure and high flow rate, it bends due to its resistance and holds a predetermined flow path. However, the bending is gradually corrected, and the result shown in FIG. 4 is obtained, so that the flow rate is restricted in order to narrow the flow path between the two doors 4, and the flow rate through the pipe line 3 is restricted. When the pressure becomes low and the flow rate becomes low, the door 4 is restored and the flow path between the doors becomes wide again. As the door, a flat plate-like elastic body having a bending restoring force, such as a thin steel plate or a resin plate, can be used.
【0011】 図5、6はゴム又は樹脂製の環を内蔵したものである。図5において、弾性環 状台座10は管形の流量調節機構2内に嵌挿され、支持台8によって子持されて いる。弾性体5は一方は支持台8によって支持され、他方は弾性環状制限孔11 を支持している。流体は流路1を経て整流板7によって弾性環状制限孔11に向 かって流れるようになる。流体は整流板7と弾性環状制限孔11とによつて形成 される流路、及び弾性環状制限孔11の中心を経て、更に弾性環状台座10の中 心を経由して、管路3へ流出するが、高圧、高流量の流体が流路1を経て流入す ると、弾性環状制限孔11の環状部が抵抗となってそれを支持する弾性体5を圧 縮し、弾性環状制限孔11は弾性環状台座10に次第に近づく。その結果、図6 に示すようになり、流路は弾性環状制限孔11の中心の孔のみとなって、流量が 低下する。なお、水圧、流量によっては、弾性環状制限孔11は弾性環状台座1 0に近接する程度になる場合もあり、その場合には、両者の間を流過する流体も あるが、その量はかなり制限され、全体として管路3へ至る流量は制限される。5 and 6 have a rubber or resin ring incorporated therein. In FIG. 5, the elastic ring-shaped pedestal 10 is fitted and inserted in the tubular flow rate adjusting mechanism 2 and is held by the support base 8. One side of the elastic body 5 is supported by the support base 8, and the other side supports the elastic annular limiting hole 11. The fluid flows through the flow path 1 toward the elastic annular restriction hole 11 by the flow straightening plate 7. The fluid flows through the flow path formed by the straightening vane 7 and the elastic annular restriction hole 11 and the center of the elastic annular restriction hole 11 and further through the center of the elastic annular pedestal 10 into the conduit 3. However, when a high-pressure, high-flow rate fluid flows in through the flow path 1, the annular portion of the elastic annular limiting hole 11 becomes a resistance to compress the elastic body 5 supporting it, and the elastic annular limiting hole 11 Gradually approaches the elastic annular pedestal 10. As a result, as shown in FIG. 6, the flow path is limited to the central hole of the elastic annular restriction hole 11, and the flow rate is reduced. Depending on the water pressure and the flow rate, the elastic annular restriction hole 11 may be close to the elastic annular pedestal 10. In that case, some fluid may flow between the two, but the amount is considerably large. The flow rate to the pipeline 3 is limited as a whole.
【0012】 図5に示す実施例において弾性環状台座10は必ずしも必要はなく、高圧、高 流量の流体によって弾性環状制限孔11がその支持体となる弾性体5の縮少によ って下流側へ押しやられ流量調節機構2と流路3との境界の流路がせまくなった 部分に内接するようにしてもよい。また弾性環状台座10、弾性環状制限孔11 は弾性体である必要はないが弾力に富む方が密着性が良いので都合がよい。In the embodiment shown in FIG. 5, the elastic annular pedestal 10 is not always necessary, and the elastic annular limiting hole 11 serves as a support for the elastic annular body 5 due to the high pressure and high flow rate of the fluid, so that the downstream side is The flow path at the boundary between the flow rate adjusting mechanism 2 and the flow path 3 may be inscribed in the narrowed portion. Further, the elastic annular pedestal 10 and the elastic annular limiting hole 11 do not have to be elastic bodies, but it is convenient that the elastic annular pedestal 10 and the elastic annular limiting hole 11 are more elastic because of better adhesion.
【0013】 図7において、活性炭充填塔12内に粒状活性炭充填層14を充填し、管路1 6をもって連通する透過膜装置17に0.1〜0.05μmの透過膜18を装着 し、その透過水を管路19から排出するように構成された浄水器を示す。先ず、 原水は弁20を開とすれば管路1を経て、活性炭充填塔12の粒状活性炭充填層 14の下方にある分散室13内に流入する。管路1と分散室13の底部開口との 間には流量調節機構2を設けてあり、分散室13内へ流入する原水の流量を、た とえ管路1内の原水水圧が2乃至7kg/cm2に変化しても、ほぼ3乃至3. 5l/min程度の範囲に制御できるようになっている。原水は粒状活性炭充填 層14内を上向流となって上昇し、その処理水は集水室15内へ集水される。こ の間、原水中の遊離塩素、異臭味成分、微量の有機成分等は分解、吸着除去され る。集水室15内の処理水は管路16を経て透過膜装置17の透過膜18の膜面 へ到達し、水圧によって膜透過がおこり、膜透過水として透過膜18の裏面側へ 流出し、管路19より系外へ排出される。この間前記処理水中の懸濁物、微生物 等は完全に除去され、清澄な浄水となる。In FIG. 7, the activated carbon packed tower 12 is filled with the granular activated carbon packed layer 14, and the permeable membrane device 17 communicating with the pipeline 16 is equipped with the permeable membrane 18 of 0.1 to 0.05 μm. 2 shows a water purifier configured to discharge permeate from line 19. First, the raw water flows into the dispersion chamber 13 below the granular activated carbon packed bed 14 of the activated carbon packed tower 12 through the pipe 1 when the valve 20 is opened. A flow rate adjusting mechanism 2 is provided between the pipe line 1 and the bottom opening of the dispersion chamber 13, so that the flow rate of the raw water flowing into the dispersion chamber 13 can be controlled so that the raw water pressure in the pipe line 1 is 2 to 7 kg. / Cm 2 , even if it changes to 3 to 3. It can be controlled within a range of about 5 l / min. The raw water rises as an upward flow in the granular activated carbon packed bed 14, and the treated water is collected in the water collection chamber 15. During this time, free chlorine, off-flavor components, and trace organic components in raw water are decomposed and adsorbed and removed. The treated water in the water collection chamber 15 reaches the membrane surface of the permeable membrane 18 of the permeable membrane device 17 through the pipe line 16 and is subjected to membrane permeation due to water pressure, and flows out to the back surface side of the permeable membrane 18 as membrane permeated water, It is discharged from the line 19 to the outside of the system. During this time, the suspension, microorganisms and the like in the treated water are completely removed, and the water becomes clear purified water.
【0014】 この浄水器の運転中に弁20を経る管路1内を流過する原水の水圧は2.0乃 至5.0kg f/cm2の範囲に変動したが、管路19より系外へ排出される 浄水の流量は2.9乃至3.4l/minの範囲に維持することができた。During operation of this water purifier, the water pressure of the raw water flowing through the pipe 1 passing through the valve 20 fluctuated within the range of 2.0 to 5.0 kg f / cm 2 , but the system from the pipe 19 The flow rate of the purified water discharged to the outside could be maintained in the range of 2.9 to 3.4 l / min.
【0015】 流量調節機構2を設けない場合には5.2乃至8.8l/minの変動があり 、粒状活性炭充填層14、及び透過膜18に多大の負荷がかかり、浄化処理効果 とくに遊離塩素の除去率が97%から90%まで低下した。また透過膜18の膜 面には急速に多くの汚染物が付着し、且つ水圧により圧密化によって膜透過水量 は時間の経過に伴う低下率が大きかった。When the flow rate adjusting mechanism 2 is not provided, there is a fluctuation of 5.2 to 8.8 l / min, a large load is applied to the granular activated carbon packed bed 14 and the permeable membrane 18, and the purification treatment effect, especially free chlorine. Removal rate decreased from 97% to 90%. Further, many contaminants rapidly adhered to the membrane surface of the permeable membrane 18, and the rate of decrease in the amount of membrane permeated water with the passage of time was large due to consolidation due to water pressure.
【0016】 また図7において、原水の分散室13から動圧を導くための細管21を、管路 19から静圧を導くための細管22を、それぞれ差圧計23に導き、流体を浄水 器へ送ったときの差圧計23の変動を見たところ、本考案によるときには、殆ど 差圧は0.45乃至0.5kg f/cm2程度であったが、本考案によらない ときには、0.8乃至2.3kg f/cm2に変化し、流量変動が大きく、浄 水器への負荷変動が大きいことを示した。Further, in FIG. 7, a thin tube 21 for guiding the dynamic pressure from the raw water dispersion chamber 13 and a thin tube 22 for guiding the static pressure from the conduit 19 are led to the differential pressure gauge 23, respectively, and the fluid is fed to the water purifier. When the fluctuation of the differential pressure gauge 23 when sent was observed, it was found that the differential pressure was about 0.45 to 0.5 kg f / cm 2 according to the present invention, but was 0.8 when not according to the present invention. It changed to 2.3 kg f / cm 2 , showing that the flow rate fluctuation was large and the load fluctuation on the water purifier was large.
【0017】 このように差圧検出システムが安定化するために、浄水器を長期間使用するこ とによる粒状活性炭充填層14の汚染、及び透過膜装着装置17の透過膜18の 膜面汚染による圧力損失の上昇も差圧計23に安定した値として表示することが でき、その値の上昇程度を知ることによって、粒状活性炭充填層14、及び透過 膜18の使用限度を察知することが可能になる。即ち、これらをカートリッジ化 しておけばその寿命がわかり新しいカートリッジとの交換頻度がわかる。As described above, in order to stabilize the differential pressure detection system, the granular activated carbon packed bed 14 is contaminated by using the water purifier for a long time, and the membrane surface of the permeable membrane 18 of the permeable membrane mounting device 17 is contaminated. The increase in pressure loss can also be displayed as a stable value on the differential pressure gauge 23, and by knowing the degree of increase in that value, it becomes possible to detect the usage limit of the granular activated carbon packed bed 14 and the permeable membrane 18. . In other words, if these are made into cartridges, their life can be known and the frequency of replacement with new cartridges can be known.
【0018】[0018]
本考案によるときには、透過膜を装着した浄水器において、供給水圧の大巾な 変動による供給水量の変動があっても、浄水器へ送給される流量は大巾な変動は なく、ほぼ一定の範囲に制御されるので、膜による透過水量もそれに相当して大 巾な変化はなく、膜に対する汚濁物質の負荷の軽減され、不当な水圧が膜面に負 荷されることも無いので、膜面に汚染物が付着していても膜面に圧密化をおこし 、水の透過抵抗を過度に高くすることもない。よつて、カートリッジとくに透過 膜の寿命を長くすることができ、即ちカートリッジの交換頻度を低く抑えること ができるので経済的効果が大きい。 According to the present invention, in a water purifier equipped with a permeable membrane, even if the amount of supplied water changes due to a large change in the supply water pressure, the flow rate sent to the water purifier does not change greatly and is almost constant. Since it is controlled within the range, the amount of permeated water through the membrane does not change substantially correspondingly, the load of pollutants on the membrane is reduced, and undue water pressure is not loaded on the membrane surface. Even if contaminants adhere to the surface, it does not consolidate the surface of the membrane and does not raise the permeation resistance of water excessively. Therefore, the life of the cartridge, especially the permeable membrane, can be extended, that is, the replacement frequency of the cartridge can be suppressed to be low, so that the economical effect is large.
【0019】 更に本考案によれば、活性炭層や、膜面汚染に基づいて生ずる差圧を差圧検出 システムを装備して検出するに当っては安定して差圧を読み取ることが可能で、 その差圧上昇の程度の検出も容易になり、差圧の上昇度を把握することによって 、カートリッジの交換の目安をつけることができる等の大きな効果を有するもの である。Further, according to the present invention, the differential pressure can be stably read when the differential pressure generated by the activated carbon layer or the membrane surface is detected by the differential pressure detection system. The degree of increase in the differential pressure can be easily detected, and by grasping the degree of increase in the differential pressure, there is a great effect that it can be used as a guideline for cartridge replacement.
【図1】本考案において使用し得る流量調節機構の実施
例を示す縦断正面図である。FIG. 1 is a vertical sectional front view showing an embodiment of a flow rate adjusting mechanism that can be used in the present invention.
【図2】図1において高圧、高流量の流体が負荷された
ときの流量調節機構の作用を示す縦断正面図である。FIG. 2 is a vertical cross-sectional front view showing the operation of the flow rate adjusting mechanism when a high pressure, high flow rate fluid is loaded in FIG.
【図3】本考案において使用し得る流量調節機構の他の
実施例を示す縦断正面図である。FIG. 3 is a vertical sectional front view showing another embodiment of a flow rate adjusting mechanism that can be used in the present invention.
【図4】図3において高圧、高流量の流体が負荷された
ときの流量調節機構の作用を示す縦断正面図である。FIG. 4 is a vertical cross-sectional front view showing the action of the flow rate adjusting mechanism when a high pressure, high flow rate fluid is loaded in FIG.
【図5】本考案において使用し得る流量調節機構の他の
実施例を示す縦断正面図である。FIG. 5 is a vertical sectional front view showing another embodiment of the flow rate adjusting mechanism that can be used in the present invention.
【図6】図5において高圧、高流量の流体が負荷された
ときの流量調節機構の作用を示す縦断正面図である。FIG. 6 is a vertical cross-sectional front view showing the operation of the flow rate adjusting mechanism when a high pressure, high flow rate fluid is loaded in FIG.
【図7】本考案の効果を示す一実施例の説明図である。FIG. 7 is an explanatory diagram of an embodiment showing the effect of the present invention.
1 管路 2 流量調節機構 3 管路 4 扉 5 弾性体 6 支点 7 整流板 8 支持台 9 ストッパー 10 弾性環状台座 11 弾性環状制限孔 12 活性炭充填塔 13 分散室 14 粒状活性炭充填層 15 集水室 16 管路 17 透過膜装置 18 透過膜 19 管路 20 弁 21 細管 22 細管 23 差圧計 1 Pipeline 2 Flow Rate Control Mechanism 3 Pipeline 4 Door 5 Elastic Body 6 Support Point 7 Rectifier Plate 8 Supporting Stand 9 Stopper 10 Elastic Annular Pedestal 11 Elastic Annular Restricting Hole 12 Activated Carbon Packing Tower 13 Dispersing Chamber 14 Granular Activated Carbon Packing Layer 15 Water Collection Room 16 Pipeline 17 Permeable Membrane Device 18 Permeable Membrane 19 Pipeline 20 Valve 21 Capillary 22 Capillary 23 Differential Pressure Gauge
Claims (3)
る媒体として少なくとも0.5μmより小さい細孔をも
つ透過膜を装置した浄水器の被処理水流入側に、該被処
理水の水圧変動に対応して常に定流量に調整可能な流量
調節機構を配備した透過膜装着浄水器1. A water pressure of the treated water is provided on the treated water inflow side of a water purifier equipped with a permeable membrane having pores smaller than 0.5 μm as a medium capable of removing components to be removed from the treated water. Water purifier with permeable membrane equipped with a flow rate adjustment mechanism that can always adjust to a constant flow rate in response to fluctuations
流量の増減による流体抵抗を受けることにより伸縮自在
な弾性体を内蔵した、或いは、屈曲自在な可変オリフィ
スである実用新案登録請求の範囲請求項1記載の透過膜
装着浄水器2. The utility model registration claim in which the flow rate adjusting mechanism is a variable orifice that has a flexible elastic body built-in or a flexible orifice that is built in when the flow rate adjusting mechanism receives a fluid resistance due to an increase or decrease in flow rate depending on the level of dynamic water pressure. The permeable membrane-attached water purifier according to claim 1.
を検知し得る流体抵抗検知機構を備えた実用新案登録請
求の範囲請求項1、または請求項2に記載の透過膜装着
浄水器3. The permeable membrane-attached water purifier according to claim 1, wherein the utility model registration is provided with a fluid resistance detection mechanism capable of detecting the fluid resistance of a medium contained in the water purifier.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4166692U JPH0641890U (en) | 1992-05-07 | 1992-05-07 | Water purifier with permeable membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4166692U JPH0641890U (en) | 1992-05-07 | 1992-05-07 | Water purifier with permeable membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0641890U true JPH0641890U (en) | 1994-06-03 |
Family
ID=12614716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4166692U Pending JPH0641890U (en) | 1992-05-07 | 1992-05-07 | Water purifier with permeable membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0641890U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017515670A (en) * | 2014-05-14 | 2017-06-15 | ダウ グローバル テクノロジーズ エルエルシー | Spiral winding module with integrated permeate flow controller |
CN111663614A (en) * | 2019-03-08 | 2020-09-15 | 佛山市顺德区美的饮水机制造有限公司 | Bubbler and micro-bubble water machine |
-
1992
- 1992-05-07 JP JP4166692U patent/JPH0641890U/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017515670A (en) * | 2014-05-14 | 2017-06-15 | ダウ グローバル テクノロジーズ エルエルシー | Spiral winding module with integrated permeate flow controller |
CN111663614A (en) * | 2019-03-08 | 2020-09-15 | 佛山市顺德区美的饮水机制造有限公司 | Bubbler and micro-bubble water machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yigit et al. | Membrane fouling in a pilot-scale submerged membrane bioreactor operated under various conditions | |
US5914041A (en) | Channel based reverse osmosis | |
Adin et al. | Particle filtration for wastewater irrigation | |
EP2711343B1 (en) | Biological two-stage contaminated water treatment system | |
CA2642396A1 (en) | Sewage treatment plant comprising suspended shaped bodies | |
CN111410269A (en) | Ultra-filtration system for deep treatment of coal mine water | |
JP4666600B2 (en) | Water evaluation method | |
US7344644B2 (en) | Method and system for purifying water | |
GB2606484A (en) | An apparatus for producing potable water | |
US3387630A (en) | Adjustable pressure reducing device | |
JPH0641890U (en) | Water purifier with permeable membrane | |
Chellam et al. | Existence of critical recovery and impacts of operational mode on potable water microfiltration | |
CN205796972U (en) | The Effective Anti of a kind of improvement pollutes the ultra-filtration membrane device of height absorption | |
KR102144059B1 (en) | Submerged water treatment and water reservoir system for adjusting siphon driving water level | |
US6221245B1 (en) | Non-chemical scale prevention and chlorine removal water filter | |
KR101833213B1 (en) | Low Energy Type Filtration Apparatus and Operation Method Thereof | |
KR20090025019A (en) | Reducing valve for water purifier | |
NL1018325C2 (en) | Pressure release floatation device. | |
Bourgeous et al. | Performance Evaluation of a Cloth‐Media Disk Filter for Wastewater Reclamation | |
US624777A (en) | Supply-regulator for water-filters | |
CN215609696U (en) | Submerged gravity flow filter | |
CN207877423U (en) | Mineral water multi-stage, efficient adsorption filtration system | |
US20150191383A1 (en) | Submerged filtration system and wastewater treatment method | |
England et al. | Continuous‐backwash upflow filtration for primary effluent | |
CN207748943U (en) | A kind of two-stage precision filter suitable for sea water desalination |