JP4666600B2 - Water evaluation method - Google Patents

Water evaluation method Download PDF

Info

Publication number
JP4666600B2
JP4666600B2 JP2005137112A JP2005137112A JP4666600B2 JP 4666600 B2 JP4666600 B2 JP 4666600B2 JP 2005137112 A JP2005137112 A JP 2005137112A JP 2005137112 A JP2005137112 A JP 2005137112A JP 4666600 B2 JP4666600 B2 JP 4666600B2
Authority
JP
Japan
Prior art keywords
water
filtration membrane
membrane
evaluation
average value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005137112A
Other languages
Japanese (ja)
Other versions
JP2006317163A (en
Inventor
真紀夫 田村
祐也 佐藤
大二郎 小堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2005137112A priority Critical patent/JP4666600B2/en
Publication of JP2006317163A publication Critical patent/JP2006317163A/en
Application granted granted Critical
Publication of JP4666600B2 publication Critical patent/JP4666600B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、濾過膜を用いた水の評価方法に関し、とくに逆浸透膜(以下、「RO膜」と略称することもある。)等の濾過膜を用いた水処理装置への供給水や濃縮水の水質評価に用いて好適な水の評価方法に関する。 TECHNICAL FIELD The present invention relates to a method for evaluating water using a filtration membrane, and in particular, feed water and concentration to a water treatment apparatus using a filtration membrane such as a reverse osmosis membrane (hereinafter sometimes abbreviated as “RO membrane”). The present invention relates to a water evaluation method suitable for water quality evaluation .

従来より、濾過膜を用いて水質を分析・測定することは行われてきた。例えば、SDIと呼ばれる非常に低い濁度を測定する方法や、非常に高純度な純水中の微粒子を測定する方法が挙げられる。これらの手法に限らず、分析や水質測定用の膜の素材や孔径は重要な因子としてコントロールされてきた。膜素材は、その素材の持つ親水/疎水性、荷電の有無、陰陽の特性により、特定物質が吸着することが知られており、その結果測定の妨害、誤差の発生等の原因となることが指摘されている。また、膜の孔径に関しては、例えば微粒子を測定する際には測定すべき微粒子より小さな孔径の膜を選定する必要があることが知られている。   Conventionally, water quality has been analyzed and measured using a filtration membrane. For example, there is a method of measuring very low turbidity called SDI and a method of measuring fine particles in very pure water. In addition to these methods, the material and pore size of membranes for analysis and water quality measurement have been controlled as important factors. Membrane materials are known to adsorb specific substances due to the hydrophilic / hydrophobic nature of the materials, the presence or absence of charge, and the properties of the yin and yang. As a result, this may cause measurement interference and error generation. It has been pointed out. Regarding the pore size of the membrane, it is known that, for example, when measuring fine particles, it is necessary to select a membrane having a pore size smaller than the fine particles to be measured.

本発明に関連の深いSDI測定に関して説明するに、SDIとは、水中の非常に低い濁度を検出する目的で開発された方法で、特にRO膜に供給する水の濁度を測定し、RO膜に問題が起こらないだけの十分な前処理が行われていることを確認する方法である。具体的には、サンプリングした水を所定の膜に一定圧力(210kPa)で加圧通水し、初期の500mL の濾過に要した時間と、15分間濾過継続後に500mLの濾過に要した時間との、時間当たり変化率で評価し、一定以下の数値(例えばSDI=4以下)でないとRO膜の給水としては不十分であると判定する方法である。数値の定義から15分間濾過継続する場合のSDIは最大100/15=6.7となる。ただし、水質が悪くて15分間濾過継続が出来ない場合には、濾過時間を短縮して測定することもある。例えば濾過継続時間を半分の7.5分に設定した場合、SDIの最大値は100/7.5=13.3となる。測定に用いる膜としては、孔径0.45μmが規定されているが、ミリポア社製HAWPO膜 (孔径:0.45μm、材質:酢酸セルロ−ス・硝酸セルロース混合物)が標準的に採用されており、濾過の形態は濃縮水の攪拌効果が無いデッドエンド濾過方式が採用されている。   To explain the SDI measurement that is deeply related to the present invention, SDI is a method developed for the purpose of detecting very low turbidity in water. This is a method for confirming that sufficient pretreatment is performed so as not to cause a problem in the film. Specifically, the sampled water is pressurized and passed through a given membrane at a constant pressure (210 kPa), and the time required for the initial 500 mL filtration and the time required for 500 mL filtration after 15 minutes of continuous filtration. In this method, the rate of change per hour is evaluated, and if the value is not less than a certain value (for example, SDI = 4 or less), it is determined that the RO membrane water supply is insufficient. The maximum SDI is 100/15 = 6.7 when filtering is continued for 15 minutes from the numerical definition. However, if the water quality is poor and the filtration cannot be continued for 15 minutes, the filtration time may be shortened for measurement. For example, when the filtration duration is set to half of 7.5 minutes, the maximum value of SDI is 100 / 7.5 = 13.3. As the membrane used for the measurement, a pore diameter of 0.45 μm is prescribed, but a HAWPO membrane manufactured by Millipore (pore diameter: 0.45 μm, material: cellulose acetate / cellulose nitrate mixture) is adopted as standard, and is used for filtration. The form employs a dead-end filtration system that does not have the effect of stirring concentrated water.

前述したようにこのSDI法は水中の濁度測定を目的とした方法であるが、近年ではSDIが十分な数値を示していても、トラブルが発生することが報告されている。その原因は定かではないが、RO膜はSDI測定に利用する膜よりも遥かに微小な高分子の分子間隙を水が浸透する現象と推察されるので、孔径0.45μmという物理的な孔のある膜ではRO膜で発生する現象を十分な評価ができないこと、また、SDI測定はデッドエンド濾過であるのに対しRO膜の濾過方法は通常クロスフロー濾過であり、膜汚染のメカニズムが違うこと等が推察されている。また、RO膜モジュールに進入した微生物および微生物の代謝物がRO膜モジュールの流路閉塞の原因となっている可能性も指摘されている。この場合、入口の微生物量が少なくともモジュール内で増殖するため、入口水質を測定しても判定できない可能性が指摘されている。いずれにせよ、SDI測定は必要条件の測定であり、SDI測定結果のみでRO給水として使用可能であるかどうか判定できないと考えられるようになってきており、SDIの代替、あるいは補完として、よりRO処理に近い方法で水質指標を測定することも提案されている。しかしその場合にも、膜材質の差、ポアサイズの差等に関する検討はされているが、後述の如く本発明において着目した膜表面の構造、特に測定用の膜表面の凹凸に代表される表面構造特性をコントロールすることは未だ提案されていない。   As described above, this SDI method is a method for measuring turbidity in water, but it has recently been reported that trouble occurs even if SDI shows a sufficient value. The reason is not clear, but RO membranes have a physical pore with a pore diameter of 0.45 μm because it is assumed that water penetrates the molecular gaps of macromolecules much smaller than the membrane used for SDI measurement. The membrane cannot fully evaluate the phenomenon that occurs in the RO membrane, and the SDI measurement is dead-end filtration, whereas the RO membrane filtration method is usually cross-flow filtration, and the mechanism of membrane contamination is different. Is inferred. It has also been pointed out that the microorganisms and microorganism metabolites that have entered the RO membrane module may cause the blockage of the RO membrane module. In this case, since the amount of microorganisms at the inlet grows at least in the module, it has been pointed out that it may not be determined even if the inlet water quality is measured. In any case, SDI measurement is a measurement of the necessary conditions, and it is considered that it can not be determined whether it can be used as RO water supply only by the SDI measurement result, and it is more RO as an alternative or supplement to SDI. It has also been proposed to measure water quality indicators in a manner close to treatment. However, even in such a case, studies on the difference in film material, difference in pore size, etc. have been made. However, as will be described later, the structure of the film surface focused on in the present invention, particularly the surface structure represented by irregularities on the film surface for measurement. It has not yet been proposed to control properties.

なお、RO膜を装備した通常の水処理装置の特性としては、より長期間安定運転が可能な膜や運転手法が優れており、膜表面の構造が平滑であることが酢酸セルロース系素材やポリアミド系素材であること等の膜材質の差よりも透過水量維持に有利であるとの報告例がある(非特許文献1)。しかしながら、水質指標を測定する場合には、水質の違いを高感度で測定できること、短時間で測定可能であること等の、通常の水処理装置としてのRO装置とは違う特性が必要とされている。また、透過水量は低下しないが通水差圧が上昇して、運転継続ができなくなり、薬品洗浄等が必要になる場合も散見され、所定圧力に換算した場合の(装置は透過水量を維持するために、運転圧を上げて運転するので)透過水量の低下と同時に通水差圧の上昇を予想できることも重要である。
J. of Membrane Science, 1997, p101
The characteristics of ordinary water treatment equipment equipped with RO membranes are excellent membranes and operation methods that can be operated stably for a longer period of time, and the structure of the membrane surface is smooth. There is a report example that it is more advantageous for maintaining the amount of permeated water than the difference in membrane material such as being a system material (Non-Patent Document 1). However, when measuring a water quality index, characteristics different from the RO device as a normal water treatment device, such as being able to measure a difference in water quality with high sensitivity and being able to measure in a short time, are required. Yes. Also, although the permeate flow rate does not decrease, the water flow differential pressure rises, and it is not possible to continue operation and chemical cleaning etc. are necessary. When converted to a predetermined pressure (the device maintains the permeate flow rate) Therefore, it is important to be able to expect an increase in the water flow differential pressure at the same time as the permeate flow rate decreases (because the operation pressure is increased).
J. of Membrane Science, 1997, p101

本発明の課題は、上記のような背景技術に鑑み、従来着目されていなかった測定用濾過膜の表面構造に着目し、表面構造特性を適切にコントロールあるいは選択することにより、高感度で短時間にて対象とする項目に関して的確に測定でき、とくに、透過水量の低下や通水差圧の上昇の程度を適切に予想可能な、水の評価方法を提供することにある。 In view of the background art as described above, the object of the present invention is to focus on the surface structure of a filtration membrane for measurement that has not been focused on in the past, and by appropriately controlling or selecting the surface structure characteristics, it is possible to achieve high sensitivity and short time. It is an object of the present invention to provide a water evaluation method that can accurately measure the target items and can appropriately predict the degree of decrease in the amount of permeated water and the increase in water flow differential pressure.

上記課題を解決するために、本発明に係る水の評価方法は、濾過膜の給水および/または濃縮水を評価する方法であって、濾過膜を透過する透過水量および/または濾過膜の給水入口と濃縮水出口の差圧と濾過膜の表面構造特性としての表面凹凸の高低差の平均値との関係を予め求め、該関係から前記濾過膜を透過する透過水量および/または濾過膜の給水入口と濃縮水出口の差圧の測定に使用すべき前記表面凹凸の高低差の平均値の特定の範囲または特定の基準値を決定し、決定した特定の範囲または特定の基準値を満足する表面構造を有する濾過膜を用いて濾過膜を透過する透過水量の経時変化および/または濾過膜の給水入口と濃縮水出口の差圧の経時変化測定することを特徴とする方法からなる。 In order to solve the above-described problems, a water evaluation method according to the present invention is a method for evaluating water supply and / or concentrated water of a filtration membrane, wherein the amount of permeated water that permeates the filtration membrane and / or the water supply inlet of the filtration membrane. And the difference between the pressure difference between the outlet of the concentrated water and the average value of the height difference of the surface irregularities as the surface structure characteristics of the filtration membrane, and the amount of permeated water permeating the filtration membrane and / or the feed inlet of the filtration membrane from the relationship The surface structure which determines the specific range or specific reference value of the average value of the height difference of the surface irregularities to be used for the measurement of the differential pressure between the water outlet and the concentrated water outlet, and satisfies the determined specific range or specific reference value The method comprises measuring a time-dependent change in the amount of permeated water permeating through the filter membrane and / or a time-dependent change in the differential pressure between the feed water inlet and the concentrated water outlet of the filter membrane .

この水の評価方法においては、通水方式として、濾過膜を透過する透過水と濾過膜を透過しない濃縮水とを連続的に得るクロスフロー方式を用いることができる。 In this water evaluation method, a cross flow method that continuously obtains permeated water that permeates the filtration membrane and concentrated water that does not permeate the filtration membrane can be used as the water flow method.

また、上記表面構造特性としては、とくに、表面凹凸の高低差の平均値を用いるこの表面凹凸の高低差は、その平均値に対±50%の範囲内にあることが好ましい。ばらつきの大きすぎる濾過膜を用いたのでは、表面構造特性、とくに表面凹凸の高低差を特定の範囲や特定の値にコントロールした意味が損なわれる。 As the surface structure characteristics, an average value of the height difference of the surface irregularities is used . Height difference between the surface roughness is preferably in the range of ± 50% against the average value thereof. If a filtration membrane with too much variation is used, the meaning of controlling the surface structure characteristics, particularly the height difference of the surface irregularities, to a specific range or a specific value is lost.

本発明に係る水の評価方法では、水の評価のために使用される上記濾過膜の表面凹凸の高低差の平均値が、該水の評価の対象水を実際に水処理する装置に装備される濾過膜の表面凹凸の高低差の平均値とは異なることが好ましい。すなわち、実際に水処理する装置に装備される濾過膜には、前述の如く、長期間安定運転を可能とするため、膜表面が平滑な濾過膜が好ましいが、水の評価の場合には、短時間でかつ高感度で測定可能とするために(つまり、濾過動作〔測定装置にとっては検出動作〕を促進させるために)、表面凹凸の高低差の大きい濾過膜を用い、特定の測定項目に対し測定性能を格段に上げるようにしておくことが好ましい。 In the evaluation method of the water according to the present invention, the average value of the height difference of the surface unevenness of the filtration membrane used for evaluation of water, is equipped to a device that actually water treatment target water Evaluation of the water It is preferable that the average value of the height difference of the surface irregularities of the filtration membrane is different. That is, the filtration membrane to be mounted to a device that is actually water treatment, as described above, to allow long-term stable operation, but the film surface preferably smooth filtration membrane, in the case of evaluation of water, In order to enable measurement in a short time and with high sensitivity (that is, in order to accelerate the filtration operation [detection operation for a measuring device]), a filtration membrane with a large difference in surface irregularities is used, and a specific measurement item is selected. On the other hand, it is preferable to greatly improve the measurement performance.

とくに、水の評価のために使用される上記濾過膜の表面凹凸の高低差の平均値が、該水の評価の対象水を実際に水処理する装置に装備される濾過膜の表面凹凸の高低差の平均値に比べ、50%以上異なることが好ましい。例えば、水の評価のために使用される上記濾過膜の表面凹凸の高低差の平均値が、該水の評価の対象水を実際に水処理する装置に装備される濾過膜の表面凹凸の高低差の平均値に比べ、50%以上大きいことが好ましい。 In particular, the average value of the height difference of the surface unevenness of the filtration membrane used for evaluation of water, the height of the surface irregularities of the filtration membrane to be mounted to the device that actually water treatment target water Evaluation of the water It is preferable that the difference is 50% or more compared to the average value of the differences. For example, the average value of the height difference of the surface unevenness of the filtration membrane used for evaluation of water, the height of the surface irregularities of the filtration membrane to be mounted to the device that actually water treatment target water Evaluation of the water It is preferably 50% or more larger than the average difference.

また、上記水の評価のための測定項目としては、濾過膜を透過する透過水量の経時変化の測定を含むまたは、透過水量の測定とは別に、あるいは透過水量の測定ととともに、上記水の評価のための測定項目に、濾過膜の給水入口と濃縮水出口の差圧の測定を含む In addition, the measurement items for the evaluation of the water include measurement of the change with time of the amount of permeated water that permeates the filtration membrane . Alternatively, in addition to the measurement of the amount of permeated water or together with the measurement of the amount of permeated water, the measurement items for evaluating the water include measurement of the differential pressure between the water supply inlet and the concentrated water outlet of the filtration membrane .

このような本発明に係る水の評価方法においては、水の評価のための濾過膜に逆浸透膜を用いることができる。これにより、実際の水処理装置に逆浸透膜を用いる場合にも、それに対応した形態で、精度よく水質を測定することが可能になる。 In such a water evaluation method according to the present invention, a reverse osmosis membrane can be used as a filtration membrane for water evaluation . Thereby, even when a reverse osmosis membrane is used in an actual water treatment apparatus, it becomes possible to accurately measure the water quality in a form corresponding to the reverse osmosis membrane.

本発明に係る水の評価方法によれば、表面構造特性が特定の範囲にある測定用の濾過膜を用いることにより、さらにはその表面構造をコントロールすることにより、測定感度の向上、測定時間の短縮を達成しつつ、測定対象水の水質を的確に評価できるようになる。また、水処理装置としての通常のRO装置で発生する、透過水量の低下や通水差圧の上昇の程度を適切に予想できるようになり、実際の使用形態に則した水の評価が可能になる。 According to the method for evaluating water according to the present invention, by using a measurement filter membrane having a surface structure characteristic in a specific range, and further by controlling the surface structure, the measurement sensitivity can be improved and the measurement time can be reduced. While achieving the shortening, the water quality of the measurement target water can be accurately evaluated . In addition, it will be possible to properly predict the degree of decrease in the amount of permeated water and the increase in water flow differential pressure that occur in a normal RO device as a water treatment device, making it possible to evaluate water in accordance with the actual usage pattern. Become.

以下に、本発明の望ましい実施の形態について、実験例を主体に、図面を参照しながら説明する。
4種の市販の逆浸透膜(膜種A〜D)について、湿潤状態における膜の表面凹凸の高低差をAFM(原子間力電子顕微鏡)で解析、測定した。測定条件は以下の通りである。
・装置:SPA-400(セイコーインスツルメンツ社〔現エスアイアイナノテクノロジー〕)
・カンチレバー:シリコン製(バネ定数:15N/m)
・走査エリア:5×5μm
・走査速度:0.25Hz
・測定環境:純水中にてサンプル膜を湿潤状態にして測定
測定結果を表1に示す。
Hereinafter, preferred embodiments of the present invention will be described mainly with reference to experimental examples with reference to the drawings.
For four types of commercially available reverse osmosis membranes (membrane types A to D), the height difference of the surface irregularities of the membrane in a wet state was analyzed and measured by an AFM (atomic force electron microscope). The measurement conditions are as follows.
・ Device: SPA-400 (Seiko Instruments Inc. [current SII Nano Technology)
・ Cantilever: Made of silicon (spring constant: 15N / m)
・ Scanning area: 5 × 5μm
・ Scanning speed: 0.25Hz
Measurement environment: Table 1 shows the measurement and measurement results when the sample film was wet in pure water.

Figure 0004666600
Figure 0004666600

表1に示した各膜を濾過膜として実験に使用した。各膜種により適正操作圧力が違うので、膜面積当たりの初期濾過速度を1m/d、クロスフロー流速を、膜装置入口で10cm/secとなる操作圧力、流量条件に設定して実験を行った。これらは一般的な実装置での運転条件である。実験には4インチスパイラルエレメントを用いたが、スパイラルエレメントの基本構成は平膜なので、水質測定装置の場合は小面積の平膜装置においても同様の結果が得られることが確認されている。   Each membrane shown in Table 1 was used as a filtration membrane in the experiment. Since the appropriate operating pressure differs depending on the type of membrane, the initial filtration rate per membrane area was set to 1 m / d, and the crossflow flow rate was set to the operating pressure and flow rate conditions at 10 cm / sec at the membrane device inlet. . These are the operating conditions of a typical actual device. Although a 4-inch spiral element was used in the experiment, since the basic structure of the spiral element is a flat membrane, it has been confirmed that the same result can be obtained even in a small-area flat membrane device in the case of a water quality measuring device.

実験における給水には、無機物等の外乱を防止する観点で(無論、これらが混入しても実用的には測定可能である)、純水、純水+工業用水、純水+生物処理水、純水+界面活性剤を用いた。なお、以下の図に示すa、b、c、dの特性は、上記濾過膜A、B、C、Dを用いた場合の特性を示している。   In the water supply in the experiment, pure water, pure water + industrial water, pure water + biologically treated water, from the viewpoint of preventing disturbance of inorganic substances etc. (Of course, even if they are mixed, it can be measured practically) Pure water + surfactant was used. In addition, the characteristics of a, b, c, and d shown in the following figures show the characteristics when the filtration membranes A, B, C, and D are used.

実験1
図1、図2に、純水を給水とした場合の、透過水量(単位圧力・単位面積換算)の経時変化(F/F0 で表示)と通水差圧(入口圧力―出口圧力)の経時変化(ΔP/ΔP0 で表示)を示した。純水では膜ファウリングが発生しないので、当然、透過水量、通水差圧は変動しなかった。
Experiment 1
Figure 1, Figure 2, in the case of pure water and water supply, aging (indicated by F / F 0) and passing jugs pressure on the permeate water (unit pressure and unit area basis) - of (inlet pressure outlet pressure) A change with time (indicated by ΔP / ΔP 0 ) was shown. Since membrane fouling does not occur in pure water, naturally, the amount of permeated water and water flow differential pressure did not change.

実験2
図3、図4に、純水+工業用水(30%)ブレンド水を給水とした場合の経時変化を示した。工業用水としては戸田市工業用水を用い、実験期間中の平均濁度は0.6程度であった。A、B膜に関しては、透過水量は徐々に減少し通水差圧は徐々に増加した。C、D膜に関しては同様の変動が見られたが変動は遥かに小さかった。
Experiment 2
FIG. 3 and FIG. 4 show changes over time when pure water + industrial water (30%) blended water is used as feed water. As industrial water, Toda City industrial water was used, and the average turbidity during the experiment was about 0.6. Regarding the A and B membranes, the amount of permeated water gradually decreased and the water flow differential pressure gradually increased. Similar variations were observed for the C and D films, but the variations were much smaller.

実験
図5、図6に、純水+生物処理水(20%)ブレンド水を給水とした場合の経時変化を示した。生物処理としては、基質としてグルコースを用いて微量塩を添加し、BOD負荷2kg/m/day、繊維状活性炭を担体とした好気性生物処理法を用い、20ミクロンの安全フィルターで全量濾過後、純水とブレンドした。A、B、C、D膜とも、透過水量低下は顕著ではないが、A、B、C膜の通水差圧の上昇は比較的顕著に発生した。
Experiment 4
FIG. 5 and FIG. 6 show the change over time when pure water + biologically treated water (20%) blend water is used as the feed water. For biological treatment, add trace amount salt using glucose as a substrate, use BOD load 2kg / m 3 / day, aerobic biological treatment method using fibrous activated carbon as carrier, and filter the whole amount with a 20 micron safety filter Blended with pure water. In the A, B, C, and D membranes, the decrease in the permeated water amount was not remarkable, but the increase in the water flow differential pressure of the A, B, and C membranes occurred relatively remarkably.

実験
図7、図8に、純水+界面活性剤(アルキルジメチルベンゼンアンモニウムクロライド:100ppm)添加水を給水した場合の経時変化を示した。A、B、C膜の透過水量低下は顕著であるが、D膜には透過水量低下が発生しなかった。いずれの膜も通水差圧上昇は発生しなかった。
Experiment 5
FIG. 7 and FIG. 8 show changes with time when pure water + surfactant (alkyldimethylbenzene ammonium chloride: 100 ppm) added water is supplied. Although the decrease in the amount of permeated water in the A, B, and C membranes was remarkable, no decrease in the amount of permeated water occurred in the D membrane. None of the membranes caused an increase in water differential pressure.

実験
図9、図10に,純水+工業用水(60%)ブレンド水を給水とした場合の経時変化を示した。工業用水としては戸田市工業用水を用い、実験期間中の平均濁度は0.5程度であった。A〜Dいずれの膜に関しも、透過水量減少、通水差圧増加が観察された。その程度は実験2よりも大きかった。
Experiment 3
FIG. 9 and FIG. 10 show changes over time when pure water + industrial water (60%) blend water is used as the feed water. As industrial water, Toda City industrial water was used, and the average turbidity during the experiment was about 0.5. A~D even relates to any of the membrane, permeate flow decreased, increased through pitcher pressure was observed. The degree was greater than in Experiment 2.

実験6
膜面積当たりの初期濾過速度を1.5m/dと1.5倍にした以外は、実験2と同様の実験を行った(測定促進実験1)。結果を図11、図12に示すが、A〜Dいずれの膜に関しても、透過水量減少、通水差圧増加は実験2よりも促進されたが、とくにA〜C膜の透過水量減少が促進された。
Experiment 6
An experiment similar to Experiment 2 was performed except that the initial filtration rate per membrane area was 1.5 m / d, which was 1.5 times (Measurement Promotion Experiment 1). The results are shown in FIG. 11 and FIG. 12. For any of the membranes A to D, the decrease in the permeated water amount and the increase in the water flow differential pressure were promoted more than in Experiment 2, but in particular, the decrease in the permeated water amount of the A to C membranes was promoted. It was done.

実験7
クロスフロー流速を膜装置入口で20cm/secと2.0倍に設定した以外は実験2と同様の実験を行った(測定促進実験2)。結果を図13、図14に示すが、A〜Dいずれの膜に関しても、透過水量減少、通水差圧増加は実験2よりも促進されたが、とくにA〜C膜の透過水量減少、およびA〜D膜の通水差圧増加が促進された。
Experiment 7
An experiment similar to Experiment 2 was carried out except that the cross flow velocity was set to 20 cm / sec, which was 2.0 times at the entrance of the membrane device (Measurement Promotion Experiment 2). The results are shown in FIG. 13 and FIG. 14. For any of the membranes A to D, the decrease in the permeate flow rate and the increase in the water flow differential pressure were promoted more than in Experiment 2, but in particular the decrease in the permeate flow rate of the A to C membranes, and The increase in the water flow differential pressure of the A to D membranes was promoted.

上記結果に関して、透過水量が初期値の80%まで低下した時間、通水差圧が初期値より20%増加した時間で整理すると表2のようになる。表2においては、F/F0=0.8やΔP/ΔP0=1.2は測定系の精度感度に依存する数値であり、例えばF/F0の変化が小さくても確実に検出できれば感度が高いと言える。しかし実際にはコントロールしきれない未知部分があり、実験では0.8を現実的な値として設定した。なお、表2における「∞」の表示は、実験期間では所定の値に達しなかった場合を示している。 Regarding the above results, Table 2 summarizes the time when the permeated water amount decreased to 80% of the initial value and the time when the water flow differential pressure increased by 20% from the initial value. In Table 2, F / F 0 = 0.8 and ΔP / ΔP 0 = 1.2 are numerical values that depend on the accuracy sensitivity of the measurement system. For example, if the change can be reliably detected even if the change in F / F 0 is small, the sensitivity is high. I can say that. However, there is an unknown part that cannot be actually controlled, and in the experiment, 0.8 was set as a realistic value. In addition, the display of “∞” in Table 2 indicates a case where the predetermined value was not reached during the experiment period.

Figure 0004666600
Figure 0004666600

実験1、2、3は濃度を変化させた実験と考えられる。原因物質が同一濃度の場合、例えば30%の場合A、B、C膜のうち凹凸の大きいA膜が早い段階で上記設定値に達しているので、検出時間が早いと言える。また、同一膜で見た場合、原因物質の濃度が高くなると、設定値に至る時間が短くなり、設定値に至る時間が原因物質の濃度と相関していると判断できる。したがって、表面凹凸の高低差を特定の範囲内にコントロールした膜を用いれば、透過水量変化や通水差圧変化が設定値に至る時間を測定することにより、原因物質の濃度測定に使えること、さらに凹凸サイズを大きい値にコントロールすることにより、検出時間の短縮、実質的な感度向上が可能であることがわかる。例えば、実装置にB膜が採用される場合、A膜に相当する、B膜よりも表面凹凸の大きい膜で測定すれば、検出時間・検出感度が向上し、トラブルをより早く予知することが可能である。   Experiments 1, 2, and 3 are considered to be experiments with varying concentrations. When the causative substance has the same concentration, for example, 30%, it can be said that the detection time is early because the A film having large irregularities among the A, B and C films reaches the set value at an early stage. Further, when viewed on the same film, when the concentration of the causative substance increases, the time to reach the set value is shortened, and it can be determined that the time to reach the set value is correlated with the concentration of the causative substance. Therefore, if you use a membrane that controls the level difference of surface irregularities within a specific range, it can be used to measure the concentration of the causative substance by measuring the time it takes for the change in permeate flow or change in water flow differential pressure to reach the set value. Further, it can be seen that the detection time can be shortened and the sensitivity can be substantially improved by controlling the uneven size to a large value. For example, when a B film is used in an actual device, if measurement is performed with a film corresponding to the A film and having surface irregularities larger than the B film, the detection time and detection sensitivity can be improved, and the trouble can be predicted more quickly. Is possible.

実験4では、SDIが4以下で、従来の基準では良好と判断される場合でも、明らかに膜汚染が発生し、表面凹凸が大きいほどその汚染程度が大きいこと、実験5では、SDIでは検出されない界面活性剤も本測定装置では検出可能であることが確認された。   In Experiment 4, even when SDI is 4 or less and it is judged that the standard is good, film contamination clearly occurs. The larger the surface roughness, the greater the degree of contamination. In Experiment 5, SDI does not detect it. It was confirmed that the surfactant can also be detected by this measuring apparatus.

また、測定装置の運転条件を調整することにより、感度上昇、測定時間短縮も可能である。実験6では、実験2と比較して初期濾過速度を大きく設定した結果、膜表面に堆積する汚染物質の増加が早く、その結果迅速にF/F0が低下することが確認された。初期濾過速度を大きく設定する方法としては、ポンプによる昇圧の他に、測定装置に用いる膜を実装置に用いる膜と比較して同一圧力による透過水量が大きい膜を採用すれば、実装置と同等の圧力で濾過速度を大きく設定することが可能である。実験7では、クロスフロー速度を大きく設定することにより膜モジュール内に流入する汚染物質を増加させることが可能で、その結果透過水量低下、通水差圧上昇を迅速に検出できることが確認された。また、測定装置の運転条件とは別に、測定時にクロスフロー速度を大きくして測定することにより、通水差圧を感度良く測定することも可能である。 In addition, sensitivity can be increased and measurement time can be shortened by adjusting the operating conditions of the measuring device. In Experiment 6, as a result of setting the initial filtration rate higher than that in Experiment 2, it was confirmed that the amount of contaminants deposited on the film surface increased rapidly, and as a result, F / F 0 rapidly decreased. As a method of setting a large initial filtration rate, in addition to pressurization by a pump, if a membrane with a large permeated water amount at the same pressure is used as compared with a membrane used in a measuring device, a membrane used in a measuring device is equivalent to the actual device. It is possible to set the filtration rate to a large value with the pressure of. In Experiment 7, it was confirmed that it is possible to increase contaminants flowing into the membrane module by setting the cross flow speed large, and as a result, it is possible to quickly detect a decrease in permeate flow rate and an increase in water flow differential pressure. In addition to the operating conditions of the measuring device, it is also possible to measure the water flow differential pressure with high sensitivity by increasing the cross flow speed during measurement.

さらに、同一素材系の膜であっても 透過水量低下、通水差圧増加の程度には差が有り、その傾向は膜表面の凹凸の大小に依存しており、凹凸が大きければ影響も大きいこと、透過水量低下、通水差圧上昇は同時に発生する場合と個別に発生する場合があり、いずれの現象も測定できるのは、PA系膜であり、特に凹凸構造の大きい膜を用いた場合であること、その結果測定に用いる膜表面の凹凸状態を特定の範囲内にコントロールしなければ信頼性ある測定値が得られないこと、一方、脱塩性能の大小は測定結果に大きな影響を及ぼさないこと等が判明した。   Furthermore, even for membranes of the same material system, there is a difference in the degree of permeate flow reduction and increase in water flow differential pressure, and the tendency depends on the unevenness of the membrane surface. In other words, a decrease in permeated water volume and an increase in water flow differential pressure may occur at the same time or separately, and both phenomena can be measured with PA-based membranes, especially when a membrane with a large uneven structure is used. As a result, reliable measurement values cannot be obtained unless the surface roughness of the membrane used for measurement is controlled within a specific range. On the other hand, the degree of desalting performance has a large effect on the measurement results. It became clear that there was no.

図15に、ポンプ1による給水2を、クリスマスツリー状に多段にRO装置3を配列した水処理装置からなる実装置4について、給水2を測定装置No.1(5)に、中間濃縮水6を測定装置No.2(7)に、濃縮水8を測定装置No.3(9)に、それぞれ給水して測定するようにした場合の測定装置の配置例を示した。給水ではなく濃縮水を測定することで検出時間・検出感度を向上することが可能である。しかし、実装置の最終濃縮水は無機物の析出が発生しない上限値に近い濃度に設定されていることが多いので、更に本測定装置を付けると無機物の析出による透過水減少・通水差圧の上昇が発生しやすいと考えられるので、中間濃縮水を測定装置に給水することが望ましい。この場合、浸透圧等の補正は必要となるが、実装置給水と濃縮水の測定結果から、RO装置内に生息するバクテリア由来のバイオフィルム等の評価も可能である。なお、図15における符号10は透過水を示している。また、運転調整に必要な、弁、圧力計、流量計等は図示していないが、必要に応じて設置することができる。   In FIG. 15, the water supply 2 by the pump 1 is measured with the measuring device No. 2 for the actual device 4 including the water treatment device in which the RO devices 3 are arranged in multiple stages in a Christmas tree shape. 1 (5), the intermediate concentrated water 6 is added to the measuring device No. 2 (7), the concentrated water 8 is added to the measuring device No. 3 (9) shows an example of the arrangement of the measuring device in the case where water is supplied for measurement. It is possible to improve detection time and detection sensitivity by measuring concentrated water instead of water supply. However, the final concentrated water of the actual device is often set to a concentration close to the upper limit value at which inorganic precipitation does not occur. Since it is considered that the rise is likely to occur, it is desirable to supply the intermediate concentrated water to the measuring device. In this case, correction of the osmotic pressure or the like is necessary, but it is possible to evaluate a biofilm derived from bacteria living in the RO apparatus from the measurement results of the actual apparatus water supply and concentrated water. In addition, the code | symbol 10 in FIG. 15 has shown the permeated water. In addition, although valves, pressure gauges, flow meters, and the like necessary for operation adjustment are not shown, they can be installed as necessary.

測定装置は、実装置を模擬した平膜装置であれば小流量で測定可能であるが、実装置に装着する場合は流量に余裕が有ることも考えられ、市販の小型エレメント(2.5インチスパイラルエレメント、4インチスパイラルエレメント等)を用いて測定すること、一定期間で新品に交換することにより測定履歴による影響を排除することも可能である。   If the measurement device is a flat membrane device simulating an actual device, it can measure with a small flow rate. However, when mounted on the actual device, there is a possibility that the flow rate has a margin, and a commercially available small element (2.5 inch spiral element) It is also possible to eliminate the influence of the measurement history by performing measurement using a 4-inch spiral element or the like, and replacing it with a new one for a certain period.

本発明係る水の評価方法は、工業用水・市水から脱塩水を製造する逆浸透膜装置、海水から淡水を製造する海水淡水化膜装置、工業プロセスから排出された排水から水回収を行う逆浸透膜装置、下水や排水を生物処理した後に水回収を行う逆浸透膜装置等、どのような逆浸透膜装置にも適用可能である。
The water evaluation method according to the present invention includes a reverse osmosis membrane device for producing desalted water from industrial water and city water, a seawater desalination membrane device for producing fresh water from seawater, and water recovery from wastewater discharged from an industrial process. The present invention can be applied to any reverse osmosis membrane device such as a reverse osmosis membrane device and a reverse osmosis membrane device that performs water recovery after biological treatment of sewage and wastewater.

実験1における透過水量低下の経時変化特性図である。It is a time-dependent change characteristic view of the permeated water amount fall in Experiment 1. 実験1における通水差圧上昇の経時変化特性図である。It is a time-dependent change characteristic view of the water flow differential pressure rise in Experiment 1. 実験2における透過水量低下の経時変化特性図である。It is a time-dependent change characteristic view of the permeated water amount fall in Experiment 2. 実験2における通水差圧上昇の経時変化特性図である。It is a time-dependent change characteristic view of the water flow differential pressure rise in Experiment 2. 実験3における透過水量低下の経時変化特性図である。It is a time-dependent change characteristic view of the permeated water amount fall in Experiment 3. 実験3における通水差圧上昇の経時変化特性図である。It is a time-dependent change characteristic view of the water flow differential pressure rise in Experiment 3. 実験4における透過水量低下の経時変化特性図である。It is a time-dependent change characteristic view of the permeated water amount fall in Experiment 4. 実験4における通水差圧上昇の経時変化特性図である。It is a time-dependent change characteristic view of the water flow differential pressure rise in the experiment 4. 実験5における透過水量低下の経時変化特性図である。It is a time-dependent change characteristic view of the permeated water amount fall in Experiment 5. 実験5における通水差圧上昇の経時変化特性図である。It is a time-dependent change characteristic view of the water flow differential pressure rise in Experiment 5. 実験6における透過水量低下の経時変化特性図である。It is a time-dependent change characteristic view of the permeated water amount fall in Experiment 6. 実験6における通水差圧上昇の経時変化特性図である。It is a time-dependent change characteristic view of the water flow differential pressure rise in Experiment 6. 実験7における透過水量低下の経時変化特性図である。It is a time-dependent change characteristic view of permeated water amount fall in Experiment 7. 実験7における通水差圧上昇の経時変化特性図である。It is a time-dependent change characteristic view of the water flow differential pressure rise in Experiment 7. 実装置に対する水質測定装置の配置例を示す概略機器系統図である。It is a schematic equipment block diagram which shows the example of arrangement | positioning of the water quality measuring apparatus with respect to an actual apparatus.

符号の説明Explanation of symbols

1 ポンプ
2 給水
3 RO装置
4 水処理装置からなる実装置
5 測定装置No.1
6 中間濃縮水
7 測定装置No.2
8 濃縮水
9 測定装置No.3
10 透過水
DESCRIPTION OF SYMBOLS 1 Pump 2 Water supply 3 RO apparatus 4 Actual apparatus which consists of a water treatment apparatus 5 Measuring apparatus No. 1
6 Intermediate concentrated water 7 Measuring device No. 6 2
8 Concentrated water 9 Measuring device no. 3
10 Permeated water

Claims (7)

濾過膜の給水および/または濃縮水を評価する方法であって、濾過膜を透過する透過水量および/または濾過膜の給水入口と濃縮水出口の差圧と濾過膜の表面構造特性としての表面凹凸の高低差の平均値との関係を予め求め、該関係から前記濾過膜を透過する透過水量および/または濾過膜の給水入口と濃縮水出口の差圧の測定に使用すべき前記表面凹凸の高低差の平均値の特定の範囲または特定の基準値を決定し、決定した特定の範囲または特定の基準値を満足する表面構造を有する濾過膜を用いて濾過膜を透過する透過水量の経時変化および/または濾過膜の給水入口と濃縮水出口の差圧の経時変化測定することを特徴とする水の評価方法。 A method for evaluating the feed water and / or concentrated water of a filtration membrane, wherein the amount of permeated water permeating through the filtration membrane and / or the differential pressure between the feed water inlet and the concentrated water outlet of the filtration membrane and the surface irregularities as surface structure characteristics of the filtration membrane The relationship between the height difference of the surface and the average value of the surface unevenness is determined in advance, and from this relationship, the amount of permeated water permeating the filtration membrane and / or the height of the surface irregularities to be used for measuring the differential pressure between the water supply inlet and the concentrated water outlet of the filtration membrane Determining a specific range or a specific reference value of an average value of the difference, a change over time of the amount of permeated water permeating through the filtration membrane using a filtration membrane having a surface structure that satisfies the determined specific range or the specific reference value, and A method for evaluating water , comprising measuring a time-dependent change in differential pressure between a feed water inlet and a concentrated water outlet of a filtration membrane . 通水方式として、濾過膜を透過する透過水と濾過膜を透過しない濃縮水とを連続的に得るクロスフロー方式を用いる、請求項1に記載の水の評価方法。 The water evaluation method according to claim 1, wherein a cross-flow method is used as the water flow method, which continuously obtains permeated water that permeates the filtration membrane and concentrated water that does not permeate the filtration membrane. 表面凹凸の高低差が、その平均値に対し±50%の範囲内にある、請求項1または2に記載の水の評価方法。 The water evaluation method according to claim 1 or 2, wherein the difference in height of the surface irregularities is within a range of ± 50% of the average value. の評価のために使用される前記濾過膜の表面凹凸の高低差の平均値が、該水の評価の対象水を実際に水処理する装置に装備される濾過膜の表面凹凸の高低差の平均値とは異なる、請求項1〜3のいずれかに記載の水の評価方法。 The average value of the height difference of the surface unevenness of the filtration membrane used for water evaluation is the height difference of the surface unevenness of the filtration membrane installed in the apparatus for actually treating the target water for the water evaluation . The water evaluation method according to claim 1, which is different from the average value. の評価のために使用される前記濾過膜の表面凹凸の高低差の平均値が、該水の評価の対象水を実際に水処理する装置に装備される濾過膜の表面凹凸の高低差の平均値に比べ、50%以上異なる、請求項4に記載の水の評価方法。 The average value of the height difference of the surface unevenness of the filtration membrane used for water evaluation is the height difference of the surface unevenness of the filtration membrane installed in the apparatus for actually treating the target water for the water evaluation . The water evaluation method according to claim 4, wherein the water evaluation value differs by 50% or more compared to the average value. の評価のために使用される前記濾過膜の表面凹凸の高低差の平均値が、該水の評価の対象水を実際に水処理する装置に装備される濾過膜の表面凹凸の高低差の平均値に比べ、50%以上大きい、請求項5に記載の水の評価方法。 The average value of the height difference of the surface unevenness of the filtration membrane used for water evaluation is the height difference of the surface unevenness of the filtration membrane installed in the apparatus for actually treating the target water for the water evaluation . The water evaluation method according to claim 5, wherein the water evaluation method is at least 50% larger than the average value. の評価のための濾過膜に逆浸透膜を用いる、請求項1〜のいずれかに記載の水の評価方法。 The filtration membrane for the evaluation of water using a reverse osmosis membrane, the evaluation method of water according to any one of claims 1-6.
JP2005137112A 2005-05-10 2005-05-10 Water evaluation method Expired - Fee Related JP4666600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005137112A JP4666600B2 (en) 2005-05-10 2005-05-10 Water evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005137112A JP4666600B2 (en) 2005-05-10 2005-05-10 Water evaluation method

Publications (2)

Publication Number Publication Date
JP2006317163A JP2006317163A (en) 2006-11-24
JP4666600B2 true JP4666600B2 (en) 2011-04-06

Family

ID=37537987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005137112A Expired - Fee Related JP4666600B2 (en) 2005-05-10 2005-05-10 Water evaluation method

Country Status (1)

Country Link
JP (1) JP4666600B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6387502B1 (en) * 2017-12-28 2018-09-12 株式会社片山化学工業研究所 Evaluation method for obstacles in industrial water systems

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4556150B2 (en) * 2007-10-25 2010-10-06 東洋紡績株式会社 Polymer porous membrane
JP5092735B2 (en) * 2007-12-26 2012-12-05 栗田工業株式会社 Method and apparatus for continuous monitoring of sample water
JP5093192B2 (en) 2009-06-22 2012-12-05 株式会社日立製作所 Evaluation method of water quality
JP2014211327A (en) * 2013-04-17 2014-11-13 栗田工業株式会社 Monitoring method and monitoring device of slime adhesion state in water system
JP6180905B2 (en) * 2013-12-03 2017-08-16 株式会社ディスコ Water quality inspection device
JP5888365B2 (en) * 2014-05-19 2016-03-22 栗田工業株式会社 Concentration adjustment method for cooling water treatment chemical in circulating cooling water system, cooling drain water recovery method and water treatment equipment
JP6372945B2 (en) * 2017-10-25 2018-08-15 国立研究開発法人産業技術総合研究所 Measurement sample preparation apparatus and measurement sample preparation method using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186225A (en) * 1992-12-17 1994-07-08 Japan Organo Co Ltd Water monitoring device
JP2004108864A (en) * 2002-09-17 2004-04-08 Nitto Denko Corp Sdi measuring method and its device and fresh water generating method using reverse osmosis membrane
JP2005106516A (en) * 2003-09-29 2005-04-21 Kurita Water Ind Ltd Method for evaluating supply water to reverse osmosis membrane and method of managing operation of water treatment apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06186225A (en) * 1992-12-17 1994-07-08 Japan Organo Co Ltd Water monitoring device
JP2004108864A (en) * 2002-09-17 2004-04-08 Nitto Denko Corp Sdi measuring method and its device and fresh water generating method using reverse osmosis membrane
JP2005106516A (en) * 2003-09-29 2005-04-21 Kurita Water Ind Ltd Method for evaluating supply water to reverse osmosis membrane and method of managing operation of water treatment apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6387502B1 (en) * 2017-12-28 2018-09-12 株式会社片山化学工業研究所 Evaluation method for obstacles in industrial water systems
JP2019120528A (en) * 2017-12-28 2019-07-22 株式会社片山化学工業研究所 Method for evaluating failures generated in industrial water system

Also Published As

Publication number Publication date
JP2006317163A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
JP4666600B2 (en) Water evaluation method
Koo et al. Review of the effect of selected physicochemical factors on membrane fouling propensity based on fouling indices
Yiantsios et al. Colloidal fouling of RO membranes: an overview of key issues and efforts to develop improved prediction techniques
Drews et al. Does fouling in MBRs depend on SMP?
Gijsbertsen-Abrahamse et al. Removal of cyanotoxins by ultrafiltration and nanofiltration
Evenblij et al. Filtration characterisation for assessing MBR performance: three cases compared
JP4867413B2 (en) Evaluation method and apparatus for reverse osmosis membrane feed water and operation management method for water treatment apparatus
Alhadidi et al. Using SDI, SDI+ and MFI to evaluate fouling in a UF/RO desalination pilot plant
Alhadidi et al. Effect of testing conditions and filtration mechanisms on SDI
Drioli et al. Membrane based desalination: an integrated approach
Bottino et al. Critical flux in submerged membrane bioreactors for municipal wastewater treatment
Farquharson et al. Relationships of activated sludge characteristics to fouling rate and critical flux in membrane bioreactors for wastewater treatment
Jeong et al. Characteristics of bio-fouling in a submerged MBR
Mousa Investigation of UF membranes fouling by humic acid
Chellam et al. Existence of critical recovery and impacts of operational mode on potable water microfiltration
Schäfer et al. Fouling in nanofiltration
JP2018008192A (en) Foulant quantification method
JP6441712B2 (en) Method for evaluating membrane clogging of treated water
Habib et al. Predicting colloidal fouling of tap water by silt density index (SDI): Pore blocking in a membrane process
De la Torre et al. Filtration charaterization methods in MBR systems: a practical comparison
Adham et al. Crossflow Sampler Fouling Index
JP6530996B2 (en) Method of evaluating membrane blockage of treated water and method of operating membrane processing apparatus
Xu et al. Exploring the pressure change of reverse osmosis filtration: Time-course pressure curves and a novel model for mechanism study and NEWater application
EP3056259A1 (en) Device for measuring membrane fouling index
Nuengjamnong et al. Influence of extracellular polymeric substances on membrane fouling and cleaning in a submerged membrane bioreactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees