JPH0641732A - Sputtering method - Google Patents

Sputtering method

Info

Publication number
JPH0641732A
JPH0641732A JP19707392A JP19707392A JPH0641732A JP H0641732 A JPH0641732 A JP H0641732A JP 19707392 A JP19707392 A JP 19707392A JP 19707392 A JP19707392 A JP 19707392A JP H0641732 A JPH0641732 A JP H0641732A
Authority
JP
Japan
Prior art keywords
sputtering
film thickness
tray
trays
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19707392A
Other languages
Japanese (ja)
Inventor
Hiroyuki Watanabe
裕之 渡辺
Mitsuteru Ogaki
光輝 大垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP19707392A priority Critical patent/JPH0641732A/en
Publication of JPH0641732A publication Critical patent/JPH0641732A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To uniformalize the film thicknesses by passage of trays by changing the electric power of sputtering according to the position of a support with respect to a target. CONSTITUTION:Plural sheets of substrates 3 to be formed with thin films are mounted to the plural sheets of trays 2 which are then introduced into a sputtering device 1. The film thickness distribution tends to be thicker near the ends of the trays 2 and thinner near the center and the positions of the trays 2 are therefore detected by beam sensors, etc., and a power source is so controlled as to increase the supply electric power nearer the central part of the trays 2 by computation from the moving speed of the trays 2. As a result, the film thickness distribution is surely decreased and the effective method is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、通過式スパッタリング
装置による薄膜形成を行う方法に関する。本発明は特に
高周波電源を用いたスパッタリング方法において、形成
される膜厚を均一にする方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a thin film by a passage type sputtering apparatus. The present invention particularly relates to a method of making a formed film thickness uniform in a sputtering method using a high frequency power source.

【0002】[0002]

【従来の技術】通過式スパッタリング装置は、磁気ディ
スク・光ディスクの記録層製膜等、比較的低コストでの
製膜が要求される場合に用いられることが多い。トレー
(基板の支持体)には通常複数の基板がセットされ、一
括処理される。その際、形成される膜の厚さが均一にな
るように製膜する技術が要求される。スパッタリング方
式としては直流電源(DC)を用いる場合と、高周波電
源(RF)を用いる場合とがあり、前者は放電が比較的
安定していること、後者は絶縁物でもスパッタできるこ
と等の特徴がある。
2. Description of the Related Art A passage type sputtering apparatus is often used when it is required to form a film at a relatively low cost such as a recording layer film formation of a magnetic disk / optical disk. Usually, a plurality of substrates are set on a tray (support for substrates) and are collectively processed. At that time, a technique for forming a film so that the thickness of the formed film is uniform is required. As a sputtering method, there are cases where a direct current power source (DC) is used and cases where a high frequency power source (RF) is used. The former is characterized by relatively stable discharge, and the latter is characterized by being able to sputter even an insulator. .

【0003】[0003]

【発明が解決しようとする課題】通過式スパッタリング
装置においては、トレーの通過により実質的に装置内部
構造が時間的に変化すると考えるべきである。放電が比
較的不安定な高周波電源を用いた場合、トレーの通過に
より放電状態が変化し、トレーの進行方向に膜厚分布が
生じる場合がある。この現象を防ぐためには、トレーの
通過による放電状態の変化を少なくすることが重要であ
る。そのためにトレーのすき間を覆う板の設置、あるい
はプラズマを特定の空間に閉じ込める構造等が考えられ
ている。
In the passage type sputtering apparatus, it should be considered that the internal structure of the apparatus substantially changes with time due to the passage of the tray. When a high-frequency power source whose discharge is relatively unstable is used, the discharge state may change due to passage of the tray, and a film thickness distribution may occur in the tray advancing direction. In order to prevent this phenomenon, it is important to reduce the change in the discharge state due to the passage of the tray. For that purpose, installation of a plate covering the gap of the tray, or a structure for confining plasma in a specific space have been considered.

【0004】通過式スパッタリング装置の場合、トレー
とトレーとの間のすき間を無くすることは、構造的に困
難である。このすき間を覆う板を設置した場合でも、空
いている空間からプラズマが回りこむことがある。特
に、高周波を用いたスパッタリングの場合、プラズマは
わずかなすき間からでも回りこみやすく、放電状態の変
化が発生し、トレーの進行方向の膜厚分布の発生が避け
られなくなる。
In the case of a passing type sputtering apparatus, it is structurally difficult to eliminate the gap between the trays. Even when a plate covering this gap is installed, plasma may flow from the empty space. In particular, in the case of sputtering using high frequency, plasma easily wraps around even in a slight gap, a change in discharge state occurs, and a film thickness distribution in the tray advancing direction cannot be avoided.

【0005】[0005]

【問題を解決するための手段】本発明は以上の問題点を
解決するためになされたものであり、発生する膜厚分布
をあらかじめ予想して、それに応じて放電電力を変化さ
せるものである。本発明の要旨は、減圧槽内のターゲッ
トの前方を支持体に取り付けた基板を移動させつつスパ
ッタリングを行ない、基板表面に薄膜を堆積させる通過
式スパッタリング方法であって、支持体のターゲットに
対する位置に応じてスパッタリングの電力を変化させる
ことを特徴とするスパッタリング方法に存する。以下、
本発明につき詳細に説明する。
The present invention has been made to solve the above problems, and is to predict the film thickness distribution to occur in advance and change the discharge power accordingly. The gist of the present invention is a pass-through sputtering method in which sputtering is performed while moving a substrate attached to a support in front of the target in a decompression tank, and a thin film is deposited on the surface of the substrate, and the method is used to position the support relative to the target. According to the present invention, there is provided a sputtering method characterized in that the sputtering power is changed. Less than,
The present invention will be described in detail.

【0006】図−1は本発明の方法に用いる装置の一例
の概略説明図である。図中1は通過式スパッタリング装
置、2は基板の支持体(トレー)、3は基板、4は仕込
室、5はスパッタ室(減圧槽)、6はターゲット、7は
取り出し室、8,9,10は吸引口、11はガス供給口
をそれぞれ示す。通過式スパッタリング装置1を用いて
スパッタリングを行なうには、光ディスク用基板や半導
体用基板等の薄膜を表面に形成させるための基板3を複
数枚用意し、この基板3を支持体(トレー)2に取り付
け、仕込室4からスパッタリング装置1内に導入する。
スパッタリング装置1の仕込室4、スパッタ室(減圧
槽)5、取り出し室7は吸引口8,9,10から空気を
吸引して減圧状態とし、通常アルゴンガスを所定量ガス
供給口11から供給し、スパッタリングに適した状態と
されている。反応性スパッタリング等を行なう場合に
は、このガス供給口11から窒素や酸素等のガスを供給
する場合もある。
FIG. 1 is a schematic explanatory view of an example of an apparatus used in the method of the present invention. In the figure, 1 is a passage type sputtering device, 2 is a substrate support (tray), 3 is a substrate, 4 is a charging chamber, 5 is a sputtering chamber (decompression tank), 6 is a target, 7 is a take-out chamber, 8, 9 and Reference numeral 10 denotes a suction port, and 11 denotes a gas supply port. In order to perform sputtering using the passage type sputtering device 1, a plurality of substrates 3 for forming thin films such as optical disc substrates and semiconductor substrates on the surface are prepared, and the substrates 3 are used as a support (tray) 2. It is installed and introduced into the sputtering apparatus 1 from the charging chamber 4.
The charging chamber 4, the sputtering chamber (decompression tank) 5, and the take-out chamber 7 of the sputtering apparatus 1 are depressurized by sucking air from the suction ports 8, 9 and 10. Normally, a predetermined amount of argon gas is supplied from the gas supply port 11. It is in a state suitable for sputtering. When performing reactive sputtering or the like, a gas such as nitrogen or oxygen may be supplied from the gas supply port 11.

【0007】仕込室4から導入された基板3が取り付け
られた支持体(トレー)2は所定速度で移動しつつター
ゲット6の前方を通過し、この際ターゲットからスパッ
タされた分子が基板3の表面に堆積し薄膜が形成され
る。スパッタリングが終われば取り出し室7から取り出
される。この薄膜形成工程において、本発明で用いる通
過式スパッタリング装置の場合には、ターゲットの前方
に支持体2の端部が位置するか、または中央部が位置す
るかで放電状態が変化する。これによって前述したよう
に膜厚に分布が生じてしまう。
The support (tray) 2 to which the substrate 3 introduced from the preparation chamber 4 is attached passes through the front of the target 6 while moving at a predetermined speed, and the molecules sputtered from the target are on the surface of the substrate 3. To form a thin film. When the sputtering is completed, it is taken out from the take-out chamber 7. In the thin film forming step, in the case of the passage type sputtering apparatus used in the present invention, the discharge state changes depending on whether the end portion or the central portion of the support 2 is located in front of the target. This causes a distribution in the film thickness as described above.

【0008】本発明においては、まず電源制御を行わな
い状態でのトレー2の進行方向の膜厚分布を測定する。
トレー2に設置された基板3の面内膜厚分布がなければ
良いのであるが、より好ましくは、分布の状態を明確に
知るため、基板3の設置されていない部分も含めてトレ
ー2内の堆積した薄膜の膜厚を一定間隔で測定する。複
数のトレー2について同様の測定を行い、分布の再現性
を確認するとともに、トレー2内の各位置について膜厚
の平均値を求めて、代表的なトレー2内膜厚分布を得
る。さらにトレー2の上下方向の平均値を求めトレー2
内の横方向(進行方向)膜厚分布d(x)を求める。
(x:トレー横方向位置)次に制御の方法であるが、放
電のパワー(電力)とスパッタ速度の関係が直線近似で
きるとすると仮定すると(△d/△p=一定)、制御式
は以下のようになる。
In the present invention, first, the film thickness distribution in the traveling direction of the tray 2 is measured without controlling the power supply.
It suffices if there is no in-plane film thickness distribution of the substrate 3 installed on the tray 2, but more preferably, in order to clearly know the distribution state, the inside of the tray 2 including the part where the substrate 3 is not installed is included. The thickness of the deposited thin film is measured at regular intervals. The same measurement is performed on a plurality of trays 2 to confirm the reproducibility of the distribution, and the average value of the film thickness is obtained at each position in the tray 2 to obtain a typical film thickness distribution inside the tray 2. Further, the average value of the tray 2 in the vertical direction is calculated and the tray 2
The film thickness distribution d (x) in the horizontal direction (traveling direction) is obtained.
(X: lateral position of tray) Next, regarding the control method, assuming that the relationship between the discharge power (electric power) and the sputter rate can be approximated linearly (Δd / Δp = constant), the control formula is as follows. become that way.

【0009】[0009]

【数2】 p(x)=po+C・(dm−d(x)) 式(1) ここでp(x)は支持体の位置xでの投入パワー、po
は非制御時のパワー、dmは非制御時の膜厚の平均値、
d(x)は非制御時の支持体の位置(x)での膜厚、C
は係数(△p/△dから求める。)である。Cの値は何
度かスパッタリングを行って最適化する必要がある。
## EQU00002 ## p (x) = po + C.multidot. (Dm-d (x)) Equation (1) where p (x) is the input power at the position x of the support, po
Is the power when not controlled, dm is the average value of the film thickness when not controlled,
d (x) is the film thickness at the position (x) of the support when not controlled, C
Is a coefficient (obtained from Δp / Δd). The value of C needs to be optimized by performing sputtering several times.

【0010】通常、膜厚分布は、トレー2の端部近くで
厚く、中央近傍で薄くなる。従って膜厚を均一にしよう
とすると、ターゲット3の前方にトレー2の端部近くが
位置する場合より、トレー2の中央部近傍が位置する場
合に供給電力を大きくするような制御を行なうこととな
る。次に上記電源制御を実現するためのハードウェアに
ついて説明する。これはあくまで一例である。
Normally, the film thickness distribution is thick near the end of the tray 2 and thin near the center. Therefore, in order to make the film thickness uniform, control is performed such that the power supply is increased when the vicinity of the central portion of the tray 2 is located rather than when the end portion of the tray 2 is located in front of the target 3. Become. Next, the hardware for realizing the above power supply control will be described. This is just an example.

【0011】まずトレー2の位置の検出であるが、通
常、通過式スパッタリング装置にはトレー2の位置検出
のためのビームセンサ等が設置されており、これを利用
する。センサがない場合は設置すれば良い。センサの投
光・遮光信号を計算機(パソコン等)に取り込み、内部
で演算処理を行う。まず実際のトレー2の位置である
が、センサ遮光(トレー先端通過)からの所定経過時間
にトレー2の移動速度を掛けることにより得られる。こ
れを式(1)に適応し、パワーp(x)を求める。この
際d(x)はあらかじめデータとして計算機内部に持た
せておく。p(x)の値は電源のコントローラに送ら
れ、電源制御が行われる。
First, regarding the detection of the position of the tray 2, a beam sensor or the like for detecting the position of the tray 2 is usually installed in the passage type sputtering apparatus, and this is utilized. If there is no sensor, install it. The light emitting / shading signals of the sensor are fetched into a computer (such as a personal computer) and internally processed. First, the actual position of the tray 2 can be obtained by multiplying the moving speed of the tray 2 by a predetermined elapsed time from the light blocking of the sensor (passage of the tip of the tray). This is applied to the equation (1) to obtain the power p (x). At this time, d (x) is previously stored as data in the computer. The value of p (x) is sent to the controller of the power source, and the power source is controlled.

【0012】[0012]

【実施例】次に本発明を実施例により具体的に説明する
が、本発明はその要旨を越えない限り、以下の実施例に
よってその範囲を制約されるものではない。
EXAMPLES Next, the present invention will be specifically described by way of examples, but the scope of the present invention is not limited by the following examples unless it exceeds the gist.

【0013】実施例1 図−1に概略を示した装置を用い、光ディスクの記録層
の成膜を行なった。スパッタリング装置は5.25イン
チの光ディスク基板を1トレーあたり8枚装着できるも
のを使用した。ターゲットには組成比Te85Se15の矩
形ターゲットを用い、装置内を減圧し、ガス供給口から
アルゴンガスを1×10-2Torrまで導入し、220
Wの電力で高周波スパッタを行った。トレー搬送速度は
330mm/minとした。
Example 1 A recording layer of an optical disk was formed by using the apparatus schematically shown in FIG. As the sputtering device, one capable of mounting eight 5.25-inch optical disk substrates per tray was used. A rectangular target having a composition ratio of Te 85 Se 15 was used as the target, the pressure inside the apparatus was reduced, and argon gas was introduced up to 1 × 10 −2 Torr from the gas supply port.
High frequency sputtering was performed with a power of W. The tray transport speed was 330 mm / min.

【0014】得られた膜の膜厚を5トレー分にわたって
蛍光X線分析装置で測定し、トレー内の横方向4箇所の
平均値を求めた。膜厚はトレー進行方向から順番に28
5Å,260Å,265Å,285Åであり、±4.6
%の膜厚分布であった。(トレーの両端で厚くなりトレ
ーの中央部で薄くなっている)。4点の平均値は274
Åとなる。
The film thickness of the obtained film was measured by a fluorescent X-ray analyzer for 5 trays, and the average value at 4 lateral positions in the tray was determined. The film thickness is 28 in order from the tray advancing direction.
5Å, 260Å, 265Å, 285Å, ± 4.6
% Film thickness distribution. (Thickened at both ends of the tray and thinner at the center of the tray). The average of 4 points is 274
It becomes Å.

【0015】この系においてスパッタ電力とスパッタ速
度はほぼ比例関係にあるので、式(1)におけるCは、
220/274=0.803となる。式(1)により制
御パワーを計算するとトレー進行方向から順番に、21
1W,231W,227W,211Wとなる。この結果
をもとに電力供給量を変化させてスパッタリングを行な
った。電力は折れ線グラフ状に変化させた。その他の条
件は制御前と全く同じである。
In this system, since the sputtering power and the sputtering speed are in a substantially proportional relationship, C in the equation (1) is
220/274 = 0.803. When the control power is calculated by the equation (1), it is 21
It becomes 1W, 231W, 227W, 211W. Based on this result, sputtering was performed while changing the power supply amount. The power was changed in the form of a line graph. Other conditions are exactly the same as before control.

【0016】得られた膜の膜厚を5トレー分にわたって
蛍光X線分析装置で測定し、トレー内の横方向4箇所の
平均値を求めた。膜厚はトレー進行方向から順番に27
5Å,270Å,275Å,265Åとなり、±1.9
%と云うほぼ均一な膜厚分布となった。
The film thickness of the obtained film was measured by a fluorescent X-ray analyzer for 5 trays, and the average value at 4 lateral positions in the tray was determined. The film thickness is 27 in order from the tray advancing direction.
5Å, 270Å, 275Å, 265Å, ± 1.9
%, The film thickness distribution was almost uniform.

【0017】[0017]

【発明の効果】本発明の方法により、膜厚分布を確実に
軽減できる。従って、光ディスク、半導体装置等の作成
に実用上大変効果的である。
According to the method of the present invention, the film thickness distribution can be surely reduced. Therefore, it is practically very effective for producing optical disks, semiconductor devices, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法に用いる装置の概略説明図FIG. 1 is a schematic explanatory view of an apparatus used in the method of the present invention.

【符号の説明】[Explanation of symbols]

1 通過式スパッタリング装置 2 基板の支持体(トレー) 3 基板 4 仕込室 5 スパッタ室(減圧槽) 6 ターゲット 7 取り出し室 1 Passing Type Sputtering Equipment 2 Substrate Support (Tray) 3 Substrate 4 Loading Room 5 Sputtering Room (Decompression Tank) 6 Target 7 Removal Room

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 減圧槽内のターゲットの前方を支持体に
取り付けた基板を移動させつつスパッタリングを行な
い、基板表面に薄膜を堆積させる通過式スパッタリング
方法であって、支持体のターゲットに対する位置に応じ
てスパッタリングの電力を変化させることを特徴とする
スパッタリング方法。
1. A pass-through sputtering method in which a substrate mounted on a support is moved in front of a target in a decompression tank while performing sputtering to deposit a thin film on the surface of the substrate according to the position of the support relative to the target. The sputtering method is characterized in that the sputtering power is changed.
【請求項2】 支持体の端部がターゲットの前方に位置
する場合より、支持体の中央部がターゲットの前方にあ
る場合に供給電力を大きくすることを特徴とする請求項
1に記載のスパッタリング方法。
2. The sputtering according to claim 1, wherein the power supply is increased when the center of the support is in front of the target, compared to when the end of the support is located in front of the target. Method.
【請求項3】 電力を変化させる指標を次式によって得
ることを特徴とする請求項1又は請求項2に記載のスパ
ッタリング方法。 【数1】p(x)=po+C・(dm−d(x)) 式中p(x)は支持体の位置(x)での投入電力 poは非制御時の投入電力 dmは非制御時の膜厚の平均値 d(x)は非制御時の支持体の位置(x)での膜厚 Cは係数(電力変化量/膜厚変化量の関係から求める係
数) を表わす。
3. The sputtering method according to claim 1, wherein the index for changing the power is obtained by the following equation. [Mathematical formula-see original document] p (x) = po + C. (Dm-d (x)) where p (x) is the applied power at the position (x) of the support, po is the applied power when the control is not performed, and dm is the uncontrolled power. The average value of the film thickness d (x) represents the film thickness C at the position (x) of the support in the non-controlled state, which is a coefficient (a coefficient obtained from the relationship between the amount of power change / the amount of film thickness change).
JP19707392A 1992-07-23 1992-07-23 Sputtering method Pending JPH0641732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19707392A JPH0641732A (en) 1992-07-23 1992-07-23 Sputtering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19707392A JPH0641732A (en) 1992-07-23 1992-07-23 Sputtering method

Publications (1)

Publication Number Publication Date
JPH0641732A true JPH0641732A (en) 1994-02-15

Family

ID=16368271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19707392A Pending JPH0641732A (en) 1992-07-23 1992-07-23 Sputtering method

Country Status (1)

Country Link
JP (1) JPH0641732A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000071774A1 (en) * 1999-05-25 2000-11-30 Unaxis Balzers Aktiengesellschaft Vacuum treatment installation and method for producing workpieces
JP2014031558A (en) * 2012-08-06 2014-02-20 Ulvac Japan Ltd Substrate processing device, device and method for forming solid electrolyte membrane

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000071774A1 (en) * 1999-05-25 2000-11-30 Unaxis Balzers Aktiengesellschaft Vacuum treatment installation and method for producing workpieces
US6572738B1 (en) 1999-05-25 2003-06-03 Unaxis Balzers Aktiengesellschaft Vacuum treatment system and process for manufacturing workpieces
US6783641B2 (en) 1999-05-25 2004-08-31 Unaxis Balzers Aktinegesellschaft Vacuum treatment system and process for manufacturing workpieces
US7179352B2 (en) 1999-05-25 2007-02-20 Oc Oerlikon Balzers Ag Vacuum treatment system and process for manufacturing workpieces
JP2014031558A (en) * 2012-08-06 2014-02-20 Ulvac Japan Ltd Substrate processing device, device and method for forming solid electrolyte membrane

Similar Documents

Publication Publication Date Title
US5338422A (en) Device and method for depositing metal oxide films
EP0440377B1 (en) Collimated deposition apparatus and method
US5478455A (en) Method for controlling a collimated sputtering source
KR100281340B1 (en) Apparatus and Method for Sputtering Carbon
US5911856A (en) Method for forming thin film
EP0739001B1 (en) Deposition of insulating thin film by plurality of ion beams
US8518220B2 (en) Method for predicting and compensating erosion in a magnetron sputtering target
JP3868020B2 (en) Long distance sputtering apparatus and long distance sputtering method
JPH0521347A (en) Sputtering device
US9562283B2 (en) Coating of optical substrates using closed field system
JP2006336084A (en) Sputtering film deposition method
JPH0641732A (en) Sputtering method
JP2601358B2 (en) Sputtering method
JPH1053868A (en) Thin film forming device
JPH05132771A (en) Sputtering apparatus and its method
JPH09202968A (en) Sputtering device and formation of deposited film
JPH04173974A (en) Reactive continuous sputtering method, production of magnetic disk and tray for transporting substrate
JPS6043482A (en) Sputtering device
JPH07252655A (en) Thin film forming device
JPH0559985B2 (en)
JPS61119673A (en) Continuous type apparatus for producing thin metallic film
JPH0826453B2 (en) Sputtering equipment
JP3528930B2 (en) Method for manufacturing transparent conductive film
JP2000144417A (en) High frequency sputtering device
JPH05222529A (en) Apparatus for coating wafer in cathodic sputtering apparatus