JP2006336084A - Sputtering film deposition method - Google Patents

Sputtering film deposition method Download PDF

Info

Publication number
JP2006336084A
JP2006336084A JP2005163853A JP2005163853A JP2006336084A JP 2006336084 A JP2006336084 A JP 2006336084A JP 2005163853 A JP2005163853 A JP 2005163853A JP 2005163853 A JP2005163853 A JP 2005163853A JP 2006336084 A JP2006336084 A JP 2006336084A
Authority
JP
Japan
Prior art keywords
thin film
film
gas
water vapor
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005163853A
Other languages
Japanese (ja)
Inventor
Tsukasa Takahashi
司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005163853A priority Critical patent/JP2006336084A/en
Publication of JP2006336084A publication Critical patent/JP2006336084A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve productivity by providing a method by which the lowering of the deposition speed of a thin film, that is caused by densifying the structure of the thin film, is suppressed to be minimum and the change with the passage of time of optical characteristics is suppressed to be minimum. <P>SOLUTION: The method has a process for depositing an oxide thin film by sticking sputtering particles of a target onto a substrate in a reduced pressure atmosphere. In the process, after depositing the thin film under such a condition that gaseous argon and gaseous oxygen are introduced into the reduced pressure atmosphere, moisture is added in addition to the gaseous argon and gaseous oxygen without stopping discharge or changing the conditions and the film deposition is continued, and thereafter the film deposition is completed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は反射防止膜、ローパスフィルタ、ダイクロイックフィルタ等、レンズやガラスなどの光学部品に形成された光学薄膜に用いられるTiO2、Nb25、Ta25、SiO2等透明誘電体薄膜の成膜方法に関するものである。 The present invention relates to a transparent dielectric thin film such as TiO 2 , Nb 2 O 5 , Ta 2 O 5 , and SiO 2 used for an optical thin film formed on an optical component such as an antireflection film, a low-pass filter, a dichroic filter, or the like. It is related with the film-forming method of.

従来、蒸着法やスパッタ法などによって作成された光学薄膜は成膜を終えて真空糟より取り出した直後から光学特性が経時変化することはある程度やむを得ないものと考えられていた。そこで一週間から一ヶ月程度の期間、大気中などの光学部品が実際に使用される環境に放置して光学特性の変動が収まってから製品に組み込む措置がとられていた。また、その特性変動量を短時間で把握するために高温・高湿の環境に放置することによって定量的な評価を行っていた。従って評価に時間と手間が必要であり、さらに放置する期間が発生することによって生産性が低下していた。光学特性が変動する要因としては、空気中の水分が薄膜の最表層から浸透し、薄膜内部に存在する空孔部分に吸着することによって引き起こされる場合が多いと考えられている。そのため、たとえばイオンビーム法やスパッタ法など、粒子が基板に被着する際の運動エネルギーが高くなるような製法によって薄膜の充填密度を高め、薄膜中の空孔部分を減少させる方法によって成膜して光学特性の変動を最小限に抑える方法が試みられていた。これらの方法によって一定の効果をあげることは可能になったものの、緻密な膜を作成するために薄膜の堆積速度を低下させる場合があった。   Conventionally, it has been considered that the optical properties of optical thin films prepared by vapor deposition or sputtering are inevitably changed to some extent immediately after film formation and immediately after removal from a vacuum bottle. Therefore, for a period of about one week to one month, measures were taken to leave the optical parts in the atmosphere or the like in an environment where they were actually used and incorporate them into the product after the change in optical characteristics had subsided. In addition, quantitative evaluation was performed by leaving it in a high-temperature and high-humidity environment in order to grasp the amount of characteristic fluctuation in a short time. Therefore, time and labor are required for the evaluation, and the productivity is lowered due to the occurrence of a period for which the evaluation is left. It is considered that the cause of the fluctuation of the optical characteristics is often caused by moisture in the air penetrating from the outermost layer of the thin film and adsorbing on the pores existing inside the thin film. For this reason, for example, the ion beam method or the sputtering method is used to increase the packing density of the thin film by a method that increases the kinetic energy when the particles are deposited on the substrate, and to form the film by a method that reduces the voids in the thin film. Attempts have been made to minimize fluctuations in optical characteristics. Although it has become possible to obtain a certain effect by these methods, there have been cases in which the deposition rate of the thin film is reduced in order to produce a dense film.

又、従来例としては、例えば特許文献1をあげることが出来る。
特開平09−025571号公報
As a conventional example, for example, Patent Document 1 can be cited.
JP 09-025571 A

本発明では上記問題点に鑑み、薄膜を緻密な構造にせしめる事による薄膜堆積速度の低下を最小限に抑え、かつ光学特性の経時変化を最小に抑える方法を提供することによって生産性を向上させることを目的とするものである。本発明によって得られた光学薄膜は、優れた環境耐久性を有する。   In the present invention, in view of the above problems, productivity is improved by providing a method for minimizing the decrease in the deposition rate of the thin film due to the dense structure of the thin film and minimizing the change in optical characteristics over time. It is for the purpose. The optical thin film obtained by the present invention has excellent environmental durability.

上記目的を達成するため、本発明の透明誘電体薄膜の成膜方法は、減圧雰囲気中の基板にターゲットのスパッタリング粒子を被着させて酸化物薄膜を成膜する工程を有し、前記減圧雰囲気中にアルゴンガスおよび酸素ガスを導入した条件で成膜する途中もしくは成膜した後に、放電を停止あるいは条件を変更することなく、アルゴンガスと酸素ガスの他にさらに水分を添加して成膜を続行した後に完了することを特徴とする。その際、直流電圧または10〜20MHzの高周波電圧の両方あるいは少なくともどちらか一方、または直流電圧及び1〜100kHz程度の重畳高周波をターゲットに印加してスパッタリング粒子を発生させる。   In order to achieve the above object, a method for forming a transparent dielectric thin film of the present invention includes a step of depositing an oxide thin film by depositing sputtering particles of a target on a substrate in a reduced pressure atmosphere, and the reduced pressure atmosphere. During or after film formation under the condition of introducing argon gas and oxygen gas into the film, without stopping the discharge or changing the conditions, water was added in addition to argon gas and oxygen gas to form the film. It is completed after continuing. At that time, both or at least one of a DC voltage and a high frequency voltage of 10 to 20 MHz, or a DC voltage and a superimposed high frequency of about 1 to 100 kHz are applied to the target to generate sputtered particles.

上記方法によって薄膜を作成することにより、環境耐久性に優れた光学薄膜を容易に製造する手段を提供することを目的とする。本発明によって得られた光学薄膜は、優れた環境耐久性を有する。   An object of the present invention is to provide means for easily producing an optical thin film having excellent environmental durability by forming a thin film by the above method. The optical thin film obtained by the present invention has excellent environmental durability.

以下、本発明を実施例に基づき詳細に説明するが、本発明はこれら実施例になんら限定されるものではない。図1は一実施例による光学薄膜の成膜方法に用いる成膜装置を示すもので、これは図示しない真空ポンプによって排気される減圧チャンバ1と、その内部に互いに対向して配設された基板ホルダ2及びターゲット3と、ターゲット3に高周波電圧と直流電圧を印加するRF電源4および直流電源5と、減圧チャンバ1内にスパッタリングガスであるアルゴンガスと反応性ガスである酸素ガスを導入するアルゴン、酸素導入ライン6と、減圧チャンバ1内に水分である水蒸気導入ライン7を有している。RF電源4の高周波電圧はマッチングネットワーク4aを経てターゲット3に印加され、直流電源5の直流電圧はローパスフィルタ5aを経てターゲット3に印加される。次に、基板W1上に酸化物薄膜を成膜する工程を説明する。まず、基板ホルダ2上に基板W1を保持させ、減圧チャンバ1を所定の真空度に減圧したうえで、アルゴン・酸素導入ライン6からアルゴンガスと酸素ガスを導入し、ターゲット3にRF電源4の高周波電圧または直流電源5の直流電圧の少なくとも一方を印加して、いわゆるマグネトロンスパッタ放電によるプラズマ1を発生させる。ターゲット3は、正イオンによってスパッタされ、ターゲット3の表面近傍の酸化活性種によって一部酸化された状態で、基板W1に向かって放出される。このようにして基板W1に到達したスパッタリング粒子は、プラズマP1中や基板W1の表面近傍の酸化活性種によって酸化され、酸化物薄膜が基板W1の表面に成膜される。目標となる薄膜の厚さは、予め別の工程で薄膜を作成した際に単位時間あたりの堆積速度を算出しておき、この薄膜堆積速度が要求されるスペックに対して充分に安定していることを確認しておく。本検討においては0.202nm/secであった。このようにして所望の膜厚に対して95%終了した後、水蒸気導入ライン7から水蒸気を導入して残りの5%を成膜する。なお、水蒸気を導入することによって一般的には薄膜堆積速度は低下する。我々が検証した結果、水蒸気を導入しない場合に比べて薄膜堆積速度は15%低下することが判明しており、本検討においては0.173nm/secであった。このようにして所望の膜厚に対して100%の膜厚を成膜した段階で放電を終了、あるいはシャッターユニットなどによってターゲットからの粒子が基板に被着しないような手段を講ずる。このときの成膜時間と設定した薄膜堆積速度の関係を図2に示す。ここで図中の成膜時間について記す。所望の膜厚をd(nm)、水蒸気を導入しない場合の成膜レートをr(nm/sec)とすれば水蒸気を導入した場合の成膜レートは0.85r(nm/sec)と置ける。また、各々の成膜時間をt1、t2(sec)とすれば次の2式が成立する。rt1+0.85rt2=d、rt1=0.95d。この式からt1:t2=323:20となり、成膜時間を設定出来る。従って総成膜時間を1000秒に設定した場合、水蒸気を導入せずに成膜する時間は942秒に、水蒸気を導入して成膜する時間は58秒になる。このような手段で成膜を終えた後、成膜された基板を大気中に取り出すことによって成膜に関する工程が終了する。最初の、水蒸気を導入しない過程では薄膜の構造そのものには空孔が比較的数多く存在し、稠密度の低い構造を取りやすいため、そのままでは大気中に放置した際に水分等が薄膜中の空孔に固定されることによって光学特性が経時変化を起こしやすい。水蒸気を導入することなく成膜した光学薄膜の分光特性を図3に示す。グラフ中、太い実線は成膜後、真空槽から取り出した直後の反射率を、細い実線は10日後の反射率を表す。同一のサンプルにも関わらず両者の間で特性が異なっていることが分かる。一方、薄膜最表層に5%相当の層で水蒸気を導入して積層することにより、光学特性の経時変化を抑えることが可能になる。なぜなら、水蒸気を導入した層は薄膜の稠密度が高く、大気中に放置しても水分等が固定されるために必要な空孔が少なく、結果的に光学特性の経時変化を起こしにくいためである。また、薄膜の最表層にこの層が存在することにより、大気中の水分が膜構造中に入るのを防ぐ効果を持たせることが出来るため、薄膜の内部に比較的空孔の多い構造を持っていても薄膜全体としては経時変化を起こしにくい。また、水蒸気を導入すると薄膜の堆積速度が低下し、生産性の低下を招きやすいが、最表層5%にのみこの層を用いることにより、薄膜堆積速度の低下を最小限に抑えつつ、なおかつ光学特性の経時変化を最小限に抑えることが可能になる。このように最表層に水蒸気を導入した層を設けて成膜した光学薄膜の分光特性を図4に示す。図3と同様、太い実線は成膜後、真空槽から取り出した直後の反射率を、細い実線は10日後の反射率を表す。両者は極めて一致しており、光学特性の経時変化が最小限に抑えられている様子が分かる。また、成膜している放電工程を一切停止することなく、水蒸気を導入するだけで所望の効果を発揮することが可能になるために放電条件等の変更を行う必要がない。さらに水蒸気導入の有無に関わらず光学定数はほとんど変化しないため、両者を均一な特性を持つ光学薄膜として扱うことが可能となり、設計する際の負荷を増やすことがない利点を併せ持つ。 EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to these Examples at all. FIG. 1 shows a film forming apparatus used for a method of forming an optical thin film according to an embodiment, which includes a decompression chamber 1 evacuated by a vacuum pump (not shown) and substrates disposed inside thereof in opposition to each other. Holder 2 and target 3, RF power source 4 and DC power source 5 that apply high-frequency voltage and DC voltage to target 3, and argon gas that is a sputtering gas and an oxygen gas that is a reactive gas are introduced into decompression chamber 1. The oxygen introduction line 6 and the water vapor introduction line 7 which is moisture in the decompression chamber 1 are provided. The high frequency voltage of the RF power source 4 is applied to the target 3 via the matching network 4a, and the DC voltage of the DC power source 5 is applied to the target 3 via the low pass filter 5a. Next, a process for forming an oxide thin film on the substrate W 1 will be described. First, the substrate W 1 is held on the substrate holder 2, the decompression chamber 1 is depressurized to a predetermined degree of vacuum, argon gas and oxygen gas are introduced from the argon / oxygen introduction line 6, and the RF power source 4 is supplied to the target 3. Is applied to generate a plasma 1 by so-called magnetron sputtering discharge. The target 3 is sputtered by positive ions and released toward the substrate W 1 in a state where it is partially oxidized by the oxidizing active species near the surface of the target 3. The sputtered particles that have reached the substrate W 1 in this way are oxidized by the oxidizing active species in the plasma P1 or in the vicinity of the surface of the substrate W 1 , and an oxide thin film is formed on the surface of the substrate W 1 . The target thin film thickness is calculated in advance as the deposition rate per unit time when the thin film is created in a separate process, and this thin film deposition rate is sufficiently stable to the required specifications. Make sure that. In this examination, it was 0.202 nm / sec. After completing 95% of the desired film thickness in this way, water vapor is introduced from the water vapor introduction line 7 to form the remaining 5%. In general, the rate of thin film deposition is reduced by introducing water vapor. As a result of our verification, it was found that the deposition rate of the thin film was reduced by 15% compared to the case where water vapor was not introduced, and was 0.173 nm / sec in this study. In this way, when the film thickness of 100% is formed with respect to the desired film thickness, the discharge is terminated, or a measure is taken so that particles from the target are not deposited on the substrate by a shutter unit or the like. The relationship between the film formation time at this time and the set thin film deposition rate is shown in FIG. Here, the film formation time in the figure will be described. If the desired film thickness is d (nm) and the film formation rate when water vapor is not introduced is r (nm / sec), the film formation rate when water vapor is introduced can be 0.85 r (nm / sec). Further, if the respective film formation times are t1 and t2 (sec), the following two equations are established. rt1 + 0.85rt2 = d, rt1 = 0.95d. From this equation, t1: t2 = 323: 20, and the film formation time can be set. Accordingly, when the total film formation time is set to 1000 seconds, the time for film formation without introducing water vapor is 942 seconds, and the time for film formation with water vapor introduction is 58 seconds. After the film formation is completed by such means, the film formation process is completed by taking out the formed substrate into the atmosphere. In the first process where water vapor is not introduced, there are relatively many vacancies in the thin film structure itself, and it is easy to obtain a low-density structure. The optical characteristics are likely to change with time by being fixed to the holes. FIG. 3 shows the spectral characteristics of an optical thin film formed without introducing water vapor. In the graph, the thick solid line represents the reflectance immediately after being taken out of the vacuum chamber after film formation, and the thin solid line represents the reflectance after 10 days. It can be seen that the characteristics are different between the two despite the same sample. On the other hand, by introducing water vapor into the thin film outermost layer in a layer corresponding to 5% and laminating it, it is possible to suppress changes with time in optical characteristics. This is because the layer into which water vapor is introduced has a high density of thin film, and even when left in the atmosphere, moisture is fixed, so that there are few vacancies necessary, and as a result it is difficult for optical properties to change over time. is there. In addition, the presence of this layer on the outermost layer of the thin film has the effect of preventing moisture in the atmosphere from entering the film structure, so it has a structure with relatively many vacancies inside the thin film. However, the entire thin film hardly changes over time. In addition, when water vapor is introduced, the deposition rate of the thin film is reduced, and the productivity is likely to be lowered. However, by using this layer only for the outermost layer 5%, the decrease in the deposition rate of the thin film is minimized and the optical performance is reduced. It is possible to minimize changes with time of characteristics. FIG. 4 shows the spectral characteristics of the optical thin film formed by providing the outermost layer with water vapor introduced therein. As in FIG. 3, the thick solid line represents the reflectance immediately after being taken out of the vacuum chamber after film formation, and the thin solid line represents the reflectance after 10 days. Both are very consistent and it can be seen that the change in optical properties over time is minimized. In addition, it is not necessary to change discharge conditions and the like because a desired effect can be exhibited by simply introducing water vapor without stopping the discharge process in which the film is formed. Furthermore, since the optical constants hardly change regardless of the presence or absence of the introduction of water vapor, both can be handled as optical thin films having uniform characteristics, and there is an advantage that the load during designing is not increased.

一実施例による光学薄膜の製造方法に用いる成膜装置を説明する図であるIt is a figure explaining the film-forming apparatus used for the manufacturing method of the optical thin film by one Example. 一実施例による成膜時間と設定した薄膜堆積速度の関係を表すRepresents the relationship between the film formation time and the set thin film deposition rate according to one embodiment. 一実施例による、水蒸気を導入することなく成膜した光学薄膜の成膜直後と10日後の反射率を表すRepresents the reflectance immediately after and 10 days after deposition of an optical thin film deposited without introducing water vapor according to one embodiment. 一実施例による、最表層に水蒸気を導入して成膜した光学薄膜の成膜直後と10日後の反射率を表すAccording to one embodiment, the reflectance is shown immediately after and 10 days after the optical thin film formed by introducing water vapor into the outermost layer.

符号の説明Explanation of symbols

1 減圧チャンバ
2 基板ホルダ
3 ターゲット
4 RF電源
5 直流電源
6 アルゴン、酸素ライン
7 水蒸気導入ライン
DESCRIPTION OF SYMBOLS 1 Decompression chamber 2 Substrate holder 3 Target 4 RF power supply 5 DC power supply 6 Argon and oxygen line 7 Water vapor introduction line

Claims (2)

減圧雰囲気中の基板にターゲットのスパッタリング粒子を被着させて金属化合物薄膜を成膜する方法において、前記減圧雰囲気中にスパッタリングガスと反応性ガスを導入して薄膜を成膜する途中もしくは成膜後に、前記スパッタリングガスと反応性ガスの導入を維持した状態で、さらに添加ガスを導入することによって、前記薄膜と膜質が異なる薄膜層を成膜する事を特徴とするスパッタ成膜方法。   In the method of forming a metal compound thin film by depositing target sputtering particles on a substrate in a reduced pressure atmosphere, a sputtering gas and a reactive gas are introduced into the reduced pressure atmosphere during or after the formation of the thin film. A sputtering film forming method, wherein a thin film layer having a film quality different from that of the thin film is formed by introducing an additional gas while maintaining the introduction of the sputtering gas and the reactive gas. 前記スパッタリングガスとしてアルゴンを、前記反応性ガスとして酸素を、前記添加ガスとして水蒸気を用いる事を特徴とする請求項1記載のスパッタ成膜方法。   2. The sputter deposition method according to claim 1, wherein argon is used as the sputtering gas, oxygen is used as the reactive gas, and water vapor is used as the additive gas.
JP2005163853A 2005-06-03 2005-06-03 Sputtering film deposition method Withdrawn JP2006336084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005163853A JP2006336084A (en) 2005-06-03 2005-06-03 Sputtering film deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005163853A JP2006336084A (en) 2005-06-03 2005-06-03 Sputtering film deposition method

Publications (1)

Publication Number Publication Date
JP2006336084A true JP2006336084A (en) 2006-12-14

Family

ID=37556895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005163853A Withdrawn JP2006336084A (en) 2005-06-03 2005-06-03 Sputtering film deposition method

Country Status (1)

Country Link
JP (1) JP2006336084A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084605A1 (en) * 2014-11-25 2016-06-02 住友金属鉱山株式会社 Layered-body film, electrode substrate film, and method for manufacturing said films
WO2016181776A1 (en) * 2015-05-13 2016-11-17 住友金属鉱山株式会社 Reactive sputtering method and laminate film production method
US20170226624A1 (en) * 2014-10-29 2017-08-10 Sumitomo Metal Mining Co., Ltd. Laminate film and electrode substrate film, and method of manufacturing the same
JPWO2019003309A1 (en) * 2017-06-27 2019-06-27 キヤノンアネルバ株式会社 Sputtering device
KR20200018658A (en) * 2017-06-27 2020-02-19 캐논 아네르바 가부시키가이샤 Plasma processing equipment
US11600469B2 (en) 2017-06-27 2023-03-07 Canon Anelva Corporation Plasma processing apparatus
US11600466B2 (en) 2018-06-26 2023-03-07 Canon Anelva Corporation Plasma processing apparatus, plasma processing method, and memory medium
US11626270B2 (en) 2017-06-27 2023-04-11 Canon Anelva Corporation Plasma processing apparatus

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170226624A1 (en) * 2014-10-29 2017-08-10 Sumitomo Metal Mining Co., Ltd. Laminate film and electrode substrate film, and method of manufacturing the same
US10752985B2 (en) * 2014-10-29 2020-08-25 Sumitomo Metal Mining Co., Ltd. Laminate film and electrode substrate film, and method of manufacturing the same
WO2016084605A1 (en) * 2014-11-25 2016-06-02 住友金属鉱山株式会社 Layered-body film, electrode substrate film, and method for manufacturing said films
JPWO2016084605A1 (en) * 2014-11-25 2017-04-27 住友金属鉱山株式会社 LAMINATE FILM, ELECTRODE SUBSTRATE FILM, AND METHOD FOR PRODUCING THE SAME
TWI671185B (en) * 2014-11-25 2019-09-11 日商住友金屬鑛山股份有限公司 Laminate film and electrode substrate film and manufacturing method thereof
WO2016181776A1 (en) * 2015-05-13 2016-11-17 住友金属鉱山株式会社 Reactive sputtering method and laminate film production method
JP2016211064A (en) * 2015-05-13 2016-12-15 住友金属鉱山株式会社 Reactive sputtering method, and laminate film manufacturing method
CN107532288A (en) * 2015-05-13 2018-01-02 住友金属矿山株式会社 The manufacture method of reactive sputtering method and laminate film
KR20180006901A (en) * 2015-05-13 2018-01-19 스미토모 긴조쿠 고잔 가부시키가이샤 Reactive sputtering method and manufacturing method of laminated film
KR102598792B1 (en) 2015-05-13 2023-11-07 스미토모 긴조쿠 고잔 가부시키가이샤 Reactive sputtering method and method for producing laminate films
KR20200018657A (en) * 2017-06-27 2020-02-19 캐논 아네르바 가부시키가이샤 Plasma processing equipment
KR20200018658A (en) * 2017-06-27 2020-02-19 캐논 아네르바 가부시키가이샤 Plasma processing equipment
KR102257134B1 (en) 2017-06-27 2021-05-26 캐논 아네르바 가부시키가이샤 Plasma treatment device
KR102280323B1 (en) * 2017-06-27 2021-07-20 캐논 아네르바 가부시키가이샤 plasma processing unit
US11569070B2 (en) 2017-06-27 2023-01-31 Canon Anelva Corporation Plasma processing apparatus
US11600469B2 (en) 2017-06-27 2023-03-07 Canon Anelva Corporation Plasma processing apparatus
US11626270B2 (en) 2017-06-27 2023-04-11 Canon Anelva Corporation Plasma processing apparatus
US11756773B2 (en) 2017-06-27 2023-09-12 Canon Anelva Corporation Plasma processing apparatus
US11784030B2 (en) 2017-06-27 2023-10-10 Canon Anelva Corporation Plasma processing apparatus
JPWO2019003309A1 (en) * 2017-06-27 2019-06-27 キヤノンアネルバ株式会社 Sputtering device
US11961710B2 (en) 2017-06-27 2024-04-16 Canon Anelva Corporation Plasma processing apparatus
US11600466B2 (en) 2018-06-26 2023-03-07 Canon Anelva Corporation Plasma processing apparatus, plasma processing method, and memory medium

Similar Documents

Publication Publication Date Title
JP2006336084A (en) Sputtering film deposition method
US5911856A (en) Method for forming thin film
US20090246385A1 (en) Control of crystal orientation and stress in sputter deposited thin films
CN110484869B (en) Mildew-proof and damp-proof optical film and preparation method thereof
US20140017446A1 (en) Surface treatment method for metal substrate and coated article manufactured by the same
US20060023311A1 (en) Method for obtaining a thin, stabilized fluorine-doped silica layer, resulting thin layer, and use thereof in ophthalmic optics
JP2005048260A (en) Reactive sputtering method
KR20060003890A (en) Method for producing silicon oxide film and method for producing optical multilayer film
JP7418098B2 (en) Method for forming optical multilayer film and method for manufacturing optical element
Gotoh et al. Formation and control of stoichiometric hafnium nitride thin films by direct sputtering of hafnium nitride target
WO2015011855A1 (en) Method for forming oxide thin film
JP6480239B2 (en) Method of manufacturing multilayer film structure
JP2013139619A (en) Hard coating layer and method for forming the same
JP4026349B2 (en) Method for producing optical thin film
JP2009144252A (en) Reactive sputtering device and reactive sputtering method
JP2005248276A (en) Method for manufacturing optical multilayer film
JP2005298894A (en) Method for cleaning target, and physical deposition apparatus
JP5312138B2 (en) Sputtering method
JP2013140201A (en) Method of forming optical thin film with metal oxide film, and optical element
US20040099525A1 (en) Method of forming oxide thin films using negative sputter ion beam source
JPH06172989A (en) Metal oxide film forming method
JP7196372B2 (en) LAMINATED STRUCTURE AND METHOD FOR MANUFACTURING LAMINATED STRUCTURE
JP2008524442A (en) Thin-film acoustic laminated reflector and method and apparatus for manufacturing the same
JP2003253438A (en) Method for depositing oxide film
JP4945929B2 (en) Transparent conductive thin film forming method and thin film forming apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080805