JPH0641638A - Production of martensitic stainless steel seamless pipe excellent in toughness and stress corrosion cracking resistance - Google Patents

Production of martensitic stainless steel seamless pipe excellent in toughness and stress corrosion cracking resistance

Info

Publication number
JPH0641638A
JPH0641638A JP19731192A JP19731192A JPH0641638A JP H0641638 A JPH0641638 A JP H0641638A JP 19731192 A JP19731192 A JP 19731192A JP 19731192 A JP19731192 A JP 19731192A JP H0641638 A JPH0641638 A JP H0641638A
Authority
JP
Japan
Prior art keywords
temperature
cooling
toughness
stainless steel
cracking resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19731192A
Other languages
Japanese (ja)
Other versions
JP3250263B2 (en
Inventor
Satoru Kawakami
哲 川上
Hitoshi Asahi
均 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19731192A priority Critical patent/JP3250263B2/en
Publication of JPH0641638A publication Critical patent/JPH0641638A/en
Application granted granted Critical
Publication of JP3250263B2 publication Critical patent/JP3250263B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide the method for manufacturing a martensitic stainless steel seamless pipe excellent in toughness and stress corrosion cracking resistance. CONSTITUTION:Steel contg. components satisfying 0.02 to 0.05% C, 0.50% or lower Si, <= 0.03% or lower P, 0.01% or lower S, 11 to 17% Cr, 1.5 to 5.0% Ni, 0.5 to 2.0% Mo, 0.05% or lower Al and 0.02 to 0.1% N or, furthermore, 0.5 to 2.0% Cu as well as C+0.8N>0.06, and the balance substantial Fe with inevitable impurities is subjected to hot working and is naturally air-cooled to a room temp. Next, it is heated to the Ac3 point +10 deg.C or above to the Ac3 point + 200 deg.C or below and is cooled from this heating temp.-800 deg.C to 600-350 deg.C at 2 deg.C/s or a higher rate. Successively, the steel is cooled to a room temp. at a rate of air cooling or above and is thereafter tempered at the Ac1 point or below. By this control of the cooling at the time of the normalizing, the precipitation of intergranular carbides is controlled to improve its toughness and stress corrosion cracking resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は靭性に優れ耐硫化物応力
割れ性を有するマルテンサイト系ステンレス鋼継目無鋼
管の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a seamless martensitic stainless steel pipe having excellent toughness and sulfide stress cracking resistance.

【0002】[0002]

【従来の技術】近年、CO2 を多量に含むガスを生産す
るガス井の開発や、2次回収のためのCO2 インジェク
ションが広く行われるようになっている。このような環
境では鋼管の腐食が激しいため耐CO2 腐食特性に優れ
たマルテンサイト系ステンレス鋼管が多く使用されてい
る。特に、耐食性および熱間加工性に優れたマルテンサ
イト系ステンレス鋼として、特公昭59−15977号
公報などが挙げられる。しかしながら、このマルテンサ
イト系ステンレス鋼は耐食性を向上させるためにCなら
びにNの添加量を著しく低下させており、鋼塊加熱時に
オーステナイト基地に熱間加工性を悪化させるδフェラ
イト相が形成される欠点がある。したがって、シームレ
ス圧延のように苛酷な加工条件下では割れや疵を発生
し、歩留低下によるコストアップが避けられず、このよ
うな成分系で高耐食性を有する継目無鋼管の製造はこれ
まで非常に困難であった。
2. Description of the Related Art In recent years, development of gas wells for producing gas containing a large amount of CO 2 and CO 2 injection for secondary recovery have been widely performed. In such an environment, since the steel pipe is severely corroded, a martensitic stainless steel pipe excellent in CO 2 corrosion resistance is often used. Particularly, as a martensitic stainless steel excellent in corrosion resistance and hot workability, JP-B-59-15977 and the like can be mentioned. However, in this martensitic stainless steel, the amounts of C and N added are remarkably reduced in order to improve the corrosion resistance, and a δ ferrite phase that deteriorates the hot workability is formed in the austenite matrix during heating of the ingot. There is. Therefore, under severe processing conditions such as seamless rolling, cracks and flaws occur, cost increase due to yield reduction is inevitable, and the production of seamless steel pipes with high corrosion resistance with such a composition system has been extremely difficult until now. It was very difficult.

【0003】また、このようなマルテンサイト系ステン
レス鋼の製造においては、特公昭63−60808号公
報では「低Cマルテンサイト系ステンレス鋼を900〜
1000℃の温度域に加熱保持した後徐冷するあるいは
さらに350℃以下の温度域に加熱保持して徐冷する熱
処理方法」、また特公平1−25810号公報第6欄に
「一般に採用される熱処理は通常の焼準・焼き戻し処理
であり、溶製した鋼種を鍛錬、圧延後950℃以上で焼
準し、続いて700℃以上Ac1 以下の温度で焼き戻
す」と記載されているように、圧延後加熱温度からの冷
却を水冷のような急速冷却すると割れが発生しやすいた
め、空冷のごとき徐冷を施して製造されている。しかし
ながら、このような方法で熱処理を行ったマルテンサイ
ト系ステンレス鋼は残留応力や割れのない耐食性の優れ
た製品として得られるが、一方、靭性と耐応力腐食割れ
性は十分でないという問題があった。
Further, in the production of such a martensitic stainless steel, Japanese Patent Publication No. 63-60808 discloses "a low C martensitic stainless steel having 900-
Heat treatment method of heating and holding in a temperature range of 1000 ° C. and then gradually cooling, or further heating and holding in a temperature range of 350 ° C. or lower and gradually cooling ”, and Japanese Patent Publication No. 1-258810, column 6,“ Generally adopted. The heat treatment is a normal normalization / tempering process. Forged and rolled molten steel is standardized at 950 ° C or higher and then tempered at 700 ° C or higher and Ac 1 or lower ”. In addition, cracking is likely to occur when cooling from the heating temperature after rolling is rapidly cooled, such as water cooling, so that it is manufactured by performing slow cooling such as air cooling. However, although the martensitic stainless steel heat-treated by such a method can be obtained as a product having excellent corrosion resistance without residual stress or cracks, on the other hand, there is a problem that the toughness and the stress corrosion cracking resistance are not sufficient. .

【0004】[0004]

【発明が解決しようとする課題】本発明は、このような
現状にかんがみ、靭性および耐応力腐食割れ性に優れた
マルテンサイト系ステンレス鋼継目無鋼管の製造法を提
供することを目的とする。
SUMMARY OF THE INVENTION In view of the above situation, an object of the present invention is to provide a method for producing a martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance.

【0005】[0005]

【課題を解決するための手段】本発明者らは多くの実験
結果から耐CO2 腐食性はCを低減化し必要量のCrお
よびMoを添加しておけば維持されること、耐硫化物応
力割れ性は割れ抵抗性を示す組織制御を行うことで向上
することを知見した。
The present inventors have found from a number of experimental results that CO 2 corrosion resistance can be maintained by reducing C and adding necessary amounts of Cr and Mo. It was found that the cracking property is improved by controlling the structure showing the cracking resistance.

【0006】また、熱間加工性は、P,Sなどを低減化
して介在物の形成を抑えることと、C,Nの添加量を制
御してさらにNiを添加することにより、変形抵抗の異
なる異相の相分率および形状を制御するような冶金的操
作を行うことで維持されることを知見した。特に、本発
明者らはCならびにNの効果に着目し次のような知見を
得た。図1に、ベース成分を1.5%Ni−12.5%
Cr鋼としてCおよびN含有量を変えた場合の耐CO2
腐食特性ならびに熱間加工時の絞り値を示す。図1にお
いて、C.R.は40atm のCO2 と平衡した150℃
の人工海水中における年間の腐食速度であり、C.R.
<0.1mm/yであれば十分な耐食性を有すると評価でき
る。また、R.Aは、1250℃に加熱した試料を90
0℃で歪速度3 sec-1の条件にて単軸引張変形したとき
の絞り率であり、70%以上となれば熱間変形能は良好
であると言える。なお、CO2 腐食試験には熱間加工
後、焼入れ・焼き戻し処理を行い、降伏強度が650MP
a 程度を示すものを用いた。図1より、耐CO2 腐食特
性を満足するためにはC<0.05%にする必要があ
り、また、十分な熱間加工性を有するためには、C+
0.8N>0.06にする必要があるということが読み
取れる(各元素記号の含有量の単位は wt.%)。また、
焼準時に徐冷もしくは空冷すると旧オーステナイト粒界
に沿って粗大で板状の薄いCr系炭化物が析出し、その
周囲にCr欠乏層を形成してその部分のCr含有量が実
質的に低下し選択的に腐食されるため鋼の耐応力腐食割
れ性が低下する。さらにこの粗大な板状の薄い炭化物が
割れの起点となるため鋼の靭性が劣化する。この粗大な
炭化物が析出する温度を調査したところ800〜600
℃であることが判明した。したがって、上記のマルテン
サイト系ステンレス鋼の靭性と応力腐食割れ性を改善す
るためには、このような粗大なCr系炭化物の生成を抑
制する方法として急速冷却を採用する必要がある。
Further, the hot workability is different in the deformation resistance by reducing the contents of P and S to suppress the formation of inclusions, and by controlling the addition amount of C and N and further adding Ni. It has been found that it is maintained by performing metallurgical operations such as controlling the phase fraction and shape of different phases. In particular, the present inventors have paid attention to the effects of C and N and obtained the following findings. In Fig. 1, the base component is 1.5% Ni-12.5%
Resistance to CO 2 when changing C and N contents as Cr steel
The corrosion characteristics and the reduction value during hot working are shown. In FIG. 1, C.I. R. Is 150 ° C equilibrated with 40 atm CO 2.
The annual corrosion rate in artificial seawater of C.I. R.
If it is <0.1 mm / y, it can be evaluated as having sufficient corrosion resistance. In addition, R. A is a sample heated to 1250 ° C.
It is a reduction ratio when uniaxially tensile deformed at 0 ° C. and a strain rate of 3 sec −1. If it is 70% or more, it can be said that the hot deformability is good. In addition, in the CO 2 corrosion test, after hot working, quenching and tempering are performed, and the yield strength is 650MP.
The one showing the degree a was used. From FIG. 1, it is necessary to set C <0.05% in order to satisfy the CO 2 corrosion resistance characteristic, and in order to have sufficient hot workability, C +
It can be seen that it is necessary to make 0.8N> 0.06 (the unit of the content of each element symbol is wt.%). Also,
When gradually cooled or air-cooled during normalization, coarse and plate-like thin Cr-based carbides are precipitated along the former austenite grain boundaries, and a Cr-deficient layer is formed around them to substantially reduce the Cr content. Since it is selectively corroded, the resistance to stress corrosion cracking of steel decreases. Further, since the coarse plate-shaped thin carbide serves as a starting point of cracking, the toughness of steel deteriorates. When the temperature at which this coarse carbide precipitates was investigated, it was 800 to 600.
It was found to be ° C. Therefore, in order to improve the toughness and stress corrosion cracking resistance of the above martensitic stainless steel, it is necessary to employ rapid cooling as a method for suppressing the formation of such coarse Cr-based carbides.

【0007】本発明は以上に述べた知見を組み合わせて
構成したもので、重量%として、その要旨は、C ≦
0.05%、 Si≦0.50%、Mn≦1.0
%、 P ≦0.03%、S ≦0.01%、
Cr:11〜17%、Ni:1.5〜5%、 M
o:0.5〜2%、Al≦0.05%、 N :
0.02〜0.1%で、あるいはさらに、Cu:0.5
〜2%を含み、かつC+0.8N>0.06 を満足する成分(重量%)を含み、残部が実質的にFe
および不可避的不純物からなる鋼を熱間加工し室温まで
自然放冷した後、Ac3 変態点+10℃以上Ac3 変態
点+200℃以下の温度に加熱し、この加熱温度〜80
0℃の冷却開始温度から温度600℃〜350℃の冷却
停止温度までを2℃/sec以上の速度にて冷却し、続いて
室温までを空冷以上の速度にて冷却した後、Ac1 変態
点以下の温度にて焼き戻し処理する靭性および耐応力腐
食割れ性に優れたマルテンサイト系ステンレス鋼継目無
鋼管の製造法である。
The present invention is constructed by combining the above-mentioned findings, and the gist thereof is C ≤
0.05%, Si ≦ 0.50%, Mn ≦ 1.0
%, P ≦ 0.03%, S ≦ 0.01%,
Cr: 11 to 17%, Ni: 1.5 to 5%, M
o: 0.5 to 2%, Al ≦ 0.05%, N:
0.02-0.1%, or even Cu: 0.5
.About.2% and a component (% by weight) satisfying C + 0.8N> 0.06, with the balance being substantially Fe.
And, the steel consisting of unavoidable impurities is hot-worked and naturally cooled to room temperature, and then heated to a temperature of Ac 3 transformation point + 10 ° C. or higher and Ac 3 transformation point + 200 ° C. or lower.
After cooling from 0 ° C. cooling start temperature to 600 ° C. to 350 ° C. cooling stop temperature at a rate of 2 ° C./sec or more, and then cooling to room temperature at an air cooling rate or more, the Ac 1 transformation point This is a method for producing a martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance which is tempered at the following temperature.

【0008】以下に本発明について詳細に説明する。ま
ず、鋼成分の限定理由について述べる。CはCr炭化物
などを形成し耐食性を劣化させる元素であるが、典型的
なオーステナイト形成元素であり、熱間加工温度域の9
00〜1250℃でδフェライト相の発生を抑制する効
果がある。ただし、0.05%を超える量を添加すると
Cr炭化物などの炭化物が多量に析出してCr欠乏層を
形成するために耐CO2腐食特性が低下し、また、粒界
に炭化物が析出しやすくなるために耐硫化物応力割れ性
が著しく低下する。したがって、C含有量は(0.02
%以上)0.05%以下とした。
The present invention will be described in detail below. First, the reasons for limiting the steel components will be described. C is an element that forms Cr carbide and deteriorates the corrosion resistance, but is a typical austenite forming element, and is 9 in the hot working temperature range.
It has an effect of suppressing the generation of the δ ferrite phase at 00 to 1250 ° C. However, when an amount exceeding 0.05% is added, a large amount of carbides such as Cr carbides precipitate to form a Cr-deficient layer, which lowers the CO 2 corrosion resistance and also causes carbides to easily precipitate at grain boundaries. Therefore, the sulfide stress cracking resistance is significantly reduced. Therefore, the C content is (0.02
% Or more) 0.05% or less.

【0009】Siは製鋼上脱酸剤として添加され含有さ
れたもので、鋼の中に0.50%を超えて含有されると
靭性および耐硫化物応力割れ性を低下するために、0.
50%以下とした。
Si is added as a deoxidizing agent in steelmaking, and if it is contained in the steel in an amount of more than 0.50%, the toughness and the resistance to sulfide stress cracking are deteriorated.
It was set to 50% or less.

【0010】Mnは介在物を形成し腐食環境下で割れ抵
抗性を損なう元素であるが、オーステナイト単相化する
ために有用な成分であるために添加する。ただし、1.
0%を超えて添加すると多量の介在物を形成するため
に、腐食環境下での割れ抵抗性と靭性が低下する。した
がって、Mnの含有量は1.0%以下とした。
Mn is an element that forms inclusions and impairs crack resistance in a corrosive environment, but is added because it is a useful component for forming an austenite single phase. However, 1.
If added in excess of 0%, a large amount of inclusions are formed, so that the crack resistance and toughness in a corrosive environment deteriorate. Therefore, the Mn content is set to 1.0% or less.

【0011】Pは粒界に偏析して粒界強度を弱め、熱間
加工性および耐硫化物応力割れ性を低下させるので0.
03%以下とした。Sは硫化物として介在物を形成し熱
間加工性を低下させるため、その上限を0.01%とし
た。
P segregates at the grain boundaries, weakens the grain boundary strength, and reduces hot workability and sulfide stress cracking resistance.
It was set to 03% or less. Since S forms inclusions as sulfides and deteriorates hot workability, the upper limit was made 0.01%.

【0012】Crは本発明の目的とする耐CO2 腐食性
を付与し、ステンレス鋼としての腐食性を有するために
は、11%以上の含有が必要である。しかし、17%を
超えて添加するとフェライト相が生成しやすくなるため
に、その限定範囲を11〜17%とした。
In order to impart the CO 2 corrosion resistance, which is the object of the present invention, and the corrosion resistance as stainless steel, Cr must be contained in an amount of 11% or more. However, if it is added in excess of 17%, a ferrite phase is likely to be formed, so the limited range is set to 11 to 17%.

【0013】NiはCr含有鋼においては耐食性を向上
させる効果がある。しかも、強力なオーステナイト形成
元素であり、高温加熱時にδフェライト相の形成を抑制
するうえ、その形状を細く短くし熱間加工時にδフェラ
イト相内部に形成されるクラックの成長を抑える効果が
あることから、熱間加工性を向上させる効果も有する。
ただし、N:0.02%の場合にNi:1.5%以下の
添加ではそれらの効果を示さず、また、5%を超えて添
加するとAc1 点が非常に低くなり調質が困難になるこ
とと、残留オーステナイト相が形成されて強度・靭性を
損なうために、その限定範囲を1.5〜5%とした。
Ni has the effect of improving the corrosion resistance in Cr-containing steel. Moreover, it is a strong austenite forming element, and it has the effect of suppressing the formation of the δ ferrite phase during high temperature heating, and also of suppressing the growth of cracks formed inside the δ ferrite phase during hot working by making the shape thin and short. Therefore, it also has an effect of improving hot workability.
However, when N: 0.02%, addition of Ni: 1.5% or less does not show these effects, and when it exceeds 5%, the Ac 1 point becomes extremely low and tempering becomes difficult. In addition, since the retained austenite phase is formed and the strength and toughness are impaired, the limiting range is set to 1.5 to 5%.

【0014】Moは耐孔食性を高める効果があり、耐応
力腐食割れ特性を向上させることから添加するが、強力
なフェライト形成元素であり、2%を超えて添加すると
δ相の発生をもたらすことから、その上限を2%とし
た。
Mo is added because it has the effect of enhancing pitting corrosion resistance and improves stress corrosion cracking resistance, but it is a strong ferrite-forming element, and if added in excess of 2%, it causes the formation of δ phase. Therefore, the upper limit was set to 2%.

【0015】AlはSiと同様に脱酸剤として添加され
含有されたもので、0.05%を超えて添加するとAl
Nが多数形成されて著しく靭性が低下する。したがっ
て、添加量の上限を0.05%とした。
Similar to Si, Al is added as a deoxidizer, and if added in excess of 0.05%, Al
A large amount of N is formed and the toughness is significantly reduced. Therefore, the upper limit of the amount added is set to 0.05%.

【0016】Nは耐食性に対し無害であるうえに、Cと
同様に典型的なオーステナイト形成元素であり、熱間加
工温度域である900〜1250℃でフェライト相の形
成を抑える効果がある。その効果は、前述のように1.
5%Ni−12.5%Cr鋼をベース成分とする場合に
は、C+0.8N<0.06(C,Nは wt.%)を満た
す添加量の範囲において有効である。したがって、C<
0.05%の場合に熱間加工温度域にてフェライト相を
発生させず、良好な熱間加工性を得るためにはNを0.
02%以上添加する必要がある。また、通常の溶製工程
においては0.1%以上の添加は困難であるためにその
添加量の範囲を0.02〜0.1%とした。
N is harmless to the corrosion resistance and is a typical austenite forming element like C, and has the effect of suppressing the formation of the ferrite phase in the hot working temperature range of 900 to 1250 ° C. The effect is 1.
When 5% Ni-12.5% Cr steel is used as a base component, it is effective in the range of the additive amount satisfying C + 0.8N <0.06 (C and N are wt.%). Therefore, C <
In the case of 0.05%, in order to obtain a good hot workability without generating a ferrite phase in the hot working temperature range, N is set to 0.
It is necessary to add 02% or more. In addition, since it is difficult to add 0.1% or more in the usual melting process, the range of the addition amount is set to 0.02 to 0.1%.

【0017】CuはNiと同様に強力なオーステナイト
形成元素であり、Ac1 変態点を低下させないという利
点も有する。しかし、単独で2.0%を超えて添加する
と熱間脆性が生じることとNiに比べて耐食性・相の安
定性をもたらす効果が少ないために単独での添加は効果
を示さない。したがって、Cuを添加する場合にはその
添加量は2.0%以下とし、必ずNiと同時に添加する
こととした。
Cu, like Ni, is a strong austenite forming element and has an advantage that it does not lower the Ac 1 transformation point. However, when added alone in excess of 2.0%, hot brittleness occurs and the effect of providing corrosion resistance and phase stability is less than that of Ni, so addition alone does not show an effect. Therefore, when Cu is added, the addition amount is set to 2.0% or less, and it is always added at the same time as Ni.

【0018】次に熱処理条件の限定理由について述べ
る。加熱温度は、Cr含有ステンレス鋼のγループ内に
おいて、炭化物が完全に固溶せず結晶粒の粗大化が生じ
ない温度を上限とし、また、オーステナイト相が安定と
なる最低の温度を下限とした。すなわち、Ac3 変態点
+200℃以上の温度に加熱すると炭化物が完全に固溶
するために、冷却時にCr炭化物などが粒界に多量に析
出し耐食性が著しく低下し、さらに結晶粒の粗大化が生
じるために靭性が低下する。また、Ac3 変態点+10
℃以下の低い温度に加熱した場合には、オーステナイト
相が安定化せず、安定した強度を得ることが困難であ
る。したがって、加熱処理温度はAc3 変態点+10℃
〜Ac3 変態点+200℃とした。
Next, the reasons for limiting the heat treatment conditions will be described. The upper limit of the heating temperature is the temperature at which the carbide is not completely dissolved in the γ loop of the Cr-containing stainless steel and coarsening of the crystal grains does not occur, and the lower limit is the lowest temperature at which the austenite phase is stable. . That is, when heated to a temperature of Ac 3 transformation point + 200 ° C. or more, the carbide completely dissolves in solid solution, so that a large amount of Cr carbide and the like precipitates on the grain boundaries during cooling, the corrosion resistance is significantly reduced, and the crystal grain becomes coarser. As a result, the toughness decreases. Also, Ac 3 transformation point +10
When heated to a low temperature of ℃ or less, the austenite phase is not stabilized and it is difficult to obtain stable strength. Therefore, the heat treatment temperature is Ac 3 transformation point + 10 ° C.
˜Ac 3 transformation point + 200 ° C.

【0019】このようにして加熱したマルテンサイト系
ステンレス鋼を、その加熱温度〜800℃の冷却開始温
度から600〜350℃の冷却停止温度までを2℃/sec
以上の速度で冷却する。この制御冷却条件の設定理由
は、板状のCr系炭化物が析出する800〜600℃の
温度域を短時間で通過させ炭化物の析出を抑制するため
である。ただし、350℃以下まで急冷すると割れが生
じ易いので、急冷は350℃以上で停止しなければなら
ない。一方、600〜800℃では炭化物の核形成・成
長が早く、2℃/secより遅い冷却速度では板状の炭化物
が結晶粒界に析出する。
The martensitic stainless steel thus heated is heated at a temperature of from 800 ° C. to a cooling start temperature of 600 to 350 ° C. to a cooling stop temperature of 2 ° C./sec.
Cool at the above speed. The reason for setting the controlled cooling conditions is to pass the temperature range of 800 to 600 ° C. where the plate-shaped Cr-based carbide precipitates in a short time to suppress the precipitation of carbides. However, rapid cooling down to 350 ° C. or lower is likely to cause cracking, so the rapid cooling must be stopped at 350 ° C. or higher. On the other hand, at 600 to 800 ° C., nucleation / growth of carbides is fast, and at a cooling rate slower than 2 ° C./sec, plate-like carbides are precipitated at grain boundaries.

【0020】前記600〜350℃の温度まで冷却され
た鋼は、さらに室温まで空冷以上の速度で冷却すること
によりマルテンサイト変態が生じて、マルテンサイト単
相組織となる。このマルテンサイト組織中の残留応力を
回復により消滅させ、過飽和炭素原子を炭化物として析
出させることによって、靭性・延性を高め、所望の強度
を得るために焼き戻し処理を施す。このとき、Ac1
態点以上の温度に加熱すると逆変態が生じて靭性が著し
く低下するために、焼き戻し処理はAc1 変態点以下の
温度にて行う。以上のような本発明法により製造された
鋼管は、靭性および耐応力腐食割れ性に優れている。
When the steel cooled to the temperature of 600 to 350 ° C. is further cooled to room temperature at a rate higher than the air cooling rate, martensite transformation occurs and becomes a martensite single phase structure. The residual stress in this martensite structure is eliminated by recovery, and supersaturated carbon atoms are precipitated as carbides to enhance toughness and ductility, and a tempering treatment is performed to obtain desired strength. At this time, if the material is heated to a temperature above the Ac 1 transformation point, reverse transformation occurs and the toughness is significantly reduced, so the tempering treatment is performed at a temperature below the Ac 1 transformation point. The steel pipe manufactured by the method of the present invention as described above is excellent in toughness and stress corrosion cracking resistance.

【0021】[0021]

【実施例】表1に示される化学成分の鋼を通常の溶製工
程にて鋳造した後、熱間圧延により鋼管を製造し、加熱
処理と焼き戻し処理を施したものを用いて、強度、靭
性、耐CO2 腐食性、耐硫化物応力割れ性を調査した。
そのときの熱処理温度・800〜600℃間の冷却速度
と強度などの材質については表2に示す。耐CO2 腐食
性は40気圧のCO2 と平衡した150℃の人工海水中
での腐食速度で評価した。腐食速度が0.1mm/年以下
であれば耐食性を有すると見なせる。耐硫化物応力割れ
性は丸棒引張試験片を25℃の5%NaCl溶液中に1
気圧の99%CO2 +1%H2 Sガスを飽和した腐食環
境中で単軸引張応力を加え、720時間で破壊が生じな
い最大初期応力と降伏応力の比(Rs値)を求めた。R
s≧0.8であれば優れた特性であるといえる。
EXAMPLES Steels having the chemical composition shown in Table 1 were cast in a usual melting process, and then a steel pipe was manufactured by hot rolling, which was subjected to heat treatment and tempering treatment. The toughness, CO 2 corrosion resistance, and sulfide stress cracking resistance were investigated.
The heat treatment temperature at that time, the cooling rate between 800 and 600 ° C., and materials such as strength are shown in Table 2. The CO 2 corrosion resistance was evaluated by the corrosion rate in artificial seawater at 150 ° C. equilibrated with 40 atm of CO 2 . If the corrosion rate is 0.1 mm / year or less, it can be considered to have corrosion resistance. Resistance to sulfide stress cracking was measured by applying a round bar tensile test piece to 1% in a 5% NaCl solution at 25 ° C.
A uniaxial tensile stress was applied in a corrosive environment saturated with 99% CO 2 + 1% H 2 S gas at atmospheric pressure, and the ratio (Rs value) of the maximum initial stress and the yield stress at which breakage did not occur at 720 hours was determined. R
If s ≧ 0.8, it can be said that the characteristics are excellent.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】表2の結果より、本発明法により製造され
た鋼管は良好な耐CO2 腐食性、耐硫化物応力割れ性な
らびに高靭性を示すのに対し、本発明の範囲から外れた
比較法ではいずれかの特性が劣っていることが明らかで
ある。熱間加工で割れた鋼管については割れのない部分
より試験片を切出した。
From the results shown in Table 2, the steel pipe produced by the method of the present invention exhibits good CO 2 corrosion resistance, sulfide stress cracking resistance and high toughness, while the comparative method out of the range of the present invention. It is clear that one of the characteristics is inferior. For steel pipes cracked by hot working, test pieces were cut out from the part without cracks.

【0025】[0025]

【発明の効果】以上のように本発明は鋼成分および加工
熱処理条件を特定することによって、熱間加工性が良好
であり、かつ靭性および耐応力腐食割れ性に優れたマル
テンサイト系ステンレス鋼継目無鋼管を製造できる。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, the martensitic stainless steel seam having good hot workability and excellent toughness and stress corrosion cracking resistance is specified by specifying the steel composition and thermo-mechanical treatment conditions. Can manufacture steelless pipes.

【図面の簡単な説明】[Brief description of drawings]

【図1】ベース成分を1.5%Ni−12.5%Cr鋼
としてCおよびN含有量を変えた場合の耐CO2 腐食特
性ならびに熱間加工時の絞り値を示す。
FIG. 1 shows the CO 2 corrosion resistance characteristics and the reduction value during hot working when the C and N contents were changed with 1.5% Ni-12.5% Cr steel as the base component.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量で C ≦0.05%、 Si≦0.50%、 Mn≦1.0%、 P ≦0.03%、 S ≦0.01%、 Cr:11〜17%、 Ni:1.5〜5%、 Mo:0.5〜2%、 Al≦0.05%、 N :0.02〜0.1%で、かつC+0.8N>0.
06 を満足する成分を含み、残部が実質的にFeおよび不可
避的不純物からなる鋼を熱間加工し、室温まで自然放冷
した後、Ac3 変態点+10℃以上Ac3 変態点+20
0℃以下の温度に加熱し、この加熱温度〜800℃の冷
却開始温度から温度600℃〜350℃の冷却停止温度
までを2℃/sec以上の速度にて冷却し、続いて室温まで
を空冷以上の速度にて冷却した後、Ac1 変態点以下の
温度にて焼き戻し処理することを特徴とする靭性および
耐応力腐食割れ性に優れたマルテンサイト系ステンレス
鋼継目無鋼管の製造法。
1. C by weight <0.05%, Si <0.50%, Mn <1.0%, P <0.03%, S <0.01%, Cr: 11-17%, Ni : 1.5 to 5%, Mo: 0.5 to 2%, Al ≦ 0.05%, N: 0.02 to 0.1%, and C + 0.8N> 0.
Steel containing a component satisfying 06 and the balance substantially consisting of Fe and unavoidable impurities is hot-worked and allowed to cool naturally to room temperature, and then Ac 3 transformation point + 10 ° C or more Ac 3 transformation point +20
It is heated to a temperature of 0 ° C or lower, and is cooled at a rate of 2 ° C / sec or higher from the heating start temperature of 800 ° C to the cooling stop temperature of 600 ° C to 350 ° C, and then to the room temperature by air cooling. A method for producing a seamless martensitic stainless steel pipe excellent in toughness and stress corrosion cracking resistance, characterized by performing tempering at a temperature not higher than an Ac 1 transformation point after cooling at the above rate.
【請求項2】 重量で C ≦0.05%、 Si≦0.50%、 Mn≦1.0%、 P ≦0.03%、 S ≦0.01%、 Cr:11〜17%、 Ni:1.5〜5%、 Mo:0.5〜2%、 Al≦0.05%、 N :0.02〜0.1%で、かつC+0.8N>0.
06を満足し、 さらに Cu:0.5〜2% を含み、残部が実質的にFeおよび不可避的不純物から
なる鋼を熱間加工し、室温まで自然放冷した後、Ac3
変態点+10℃以上Ac3 変態点+200℃以下の温度
に加熱し、この加熱温度〜800℃の冷却開始温度から
温度600℃〜350℃の冷却停止温度までを2℃/sec
以上の速度にて冷却し、続いて室温までを空冷以上の速
度にて冷却した後、Ac1 変態点以下の温度にて焼き戻
し処理することを特徴とする靭性および耐応力腐食割れ
性に優れたマルテンサイト系ステンレス鋼継目無鋼管の
製造法。
2. By weight, C ≦ 0.05%, Si ≦ 0.50%, Mn ≦ 1.0%, P ≦ 0.03%, S ≦ 0.01%, Cr: 11 to 17%, Ni : 1.5 to 5%, Mo: 0.5 to 2%, Al ≦ 0.05%, N: 0.02 to 0.1%, and C + 0.8N> 0.
Steel satisfying No. 06 and containing Cu: 0.5 to 2% and the balance substantially consisting of Fe and unavoidable impurities is hot-worked and naturally cooled to room temperature, and then Ac 3
2 ° C / sec from the heating start temperature to 800 ° C to the cooling start temperature to the cooling stop temperature of 600 ° C to 350 ° C by heating to a temperature of not less than the transformation point + 10 ° C and not more than Ac 3 transformation point + 200 ° C.
Excellent toughness and stress corrosion cracking resistance, characterized by cooling at the above rate, then cooling to room temperature at the rate of air cooling or more, and then tempering at a temperature below the Ac 1 transformation point. Martensitic stainless steel seamless steel pipe manufacturing method.
JP19731192A 1992-07-23 1992-07-23 Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance Expired - Lifetime JP3250263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19731192A JP3250263B2 (en) 1992-07-23 1992-07-23 Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19731192A JP3250263B2 (en) 1992-07-23 1992-07-23 Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance

Publications (2)

Publication Number Publication Date
JPH0641638A true JPH0641638A (en) 1994-02-15
JP3250263B2 JP3250263B2 (en) 2002-01-28

Family

ID=16372350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19731192A Expired - Lifetime JP3250263B2 (en) 1992-07-23 1992-07-23 Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JP3250263B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100613082B1 (en) * 2004-12-01 2006-08-16 두산중공업 주식회사 Manufacturing method for products desired erosion resistance using 17-Cr stainless steel
EP1876253A1 (en) * 2005-04-28 2008-01-09 JFE Steel Corporation Stainless steel pipe for oil well excellent in enlarging characteristics
WO2009004741A1 (en) * 2007-06-29 2009-01-08 Jfe Steel Corporation Martensitic stainless-steel seamless pipe for oil well pipe and process for producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100613082B1 (en) * 2004-12-01 2006-08-16 두산중공업 주식회사 Manufacturing method for products desired erosion resistance using 17-Cr stainless steel
EP1876253A1 (en) * 2005-04-28 2008-01-09 JFE Steel Corporation Stainless steel pipe for oil well excellent in enlarging characteristics
EP1876253A4 (en) * 2005-04-28 2010-07-28 Jfe Steel Corp Stainless steel pipe for oil well excellent in enlarging characteristics
US8980167B2 (en) 2005-04-28 2015-03-17 Jfe Steel Corporation Stainless steel pipe having excellent expandability for oil country tubular goods
WO2009004741A1 (en) * 2007-06-29 2009-01-08 Jfe Steel Corporation Martensitic stainless-steel seamless pipe for oil well pipe and process for producing the same
EP2172573A1 (en) * 2007-06-29 2010-04-07 JFE Steel Corporation Martensitic stainless-steel seamless pipe for oil well pipe and process for producing the same
EP2172573A4 (en) * 2007-06-29 2011-05-18 Jfe Steel Corp Martensitic stainless-steel seamless pipe for oil well pipe and process for producing the same

Also Published As

Publication number Publication date
JP3250263B2 (en) 2002-01-28

Similar Documents

Publication Publication Date Title
JP6369662B1 (en) Duplex stainless steel and manufacturing method thereof
KR101539520B1 (en) Duplex stainless steel sheet
CA3019483A1 (en) High-strength steel material and production method therefor
JPH10503809A (en) Martensitic stainless steel with sulfide stress cracking resistance with excellent hot workability
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JPH09249940A (en) High strength steel excellent insulfide stress cracking resistance and its production
JP2016138320A (en) NiCrMo STEEL AND MANUFACTURING METHOD OF NiCrMo STEEL
JP2672437B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP2000160300A (en) 655 Nmm-2 CLASS LOW-C HIGH-Cr ALLOY OIL WELL PIPE WITH HIGH CORROSION RESISTANCE, AND ITS MANUFACTURE
JP3814836B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JPH07179943A (en) Production of high toughness martensitic strainless steel pipe excellent in corrosion resistance
JP3250263B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JP2672429B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP3417016B2 (en) Manufacturing method of high toughness martensitic stainless steel seamless steel pipe with excellent hot workability and corrosion resistance
JP2672430B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP3201081B2 (en) Stainless steel for oil well and production method thereof
JP2580407B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JPH0860238A (en) Production of martensitic stainless steel excellent in hot workability and sulfide stress cracking resistance
JP3446394B2 (en) Precipitation hardening stainless steel
JPH07110970B2 (en) Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking
JPH05214499A (en) Production of high ni alloy-clad steel plate excellent in sour resistance and toughness at low temperature
JP6519025B2 (en) Low alloy high strength seamless steel pipe for oil well
JPH09263831A (en) Production of extra thick high strength bent pipe excellent in toughness at low temperature
JP3099155B2 (en) High strength martensitic stainless steel with excellent weldability and its manufacturing method
JPH0776722A (en) Production of martensitic stainless steel excellent in sulfide cracking resistance

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20071116

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081116

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091116

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20091116

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20101116

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 11