JPH064131B2 - Method for producing carbon monoxide adsorbent - Google Patents

Method for producing carbon monoxide adsorbent

Info

Publication number
JPH064131B2
JPH064131B2 JP61081896A JP8189686A JPH064131B2 JP H064131 B2 JPH064131 B2 JP H064131B2 JP 61081896 A JP61081896 A JP 61081896A JP 8189686 A JP8189686 A JP 8189686A JP H064131 B2 JPH064131 B2 JP H064131B2
Authority
JP
Japan
Prior art keywords
carbon monoxide
copper
halide
adsorbent
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61081896A
Other languages
Japanese (ja)
Other versions
JPS62237942A (en
Inventor
英史 平井
明 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Refractories Co Ltd
Original Assignee
Kyushu Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Refractories Co Ltd filed Critical Kyushu Refractories Co Ltd
Priority to JP61081896A priority Critical patent/JPH064131B2/en
Publication of JPS62237942A publication Critical patent/JPS62237942A/en
Publication of JPH064131B2 publication Critical patent/JPH064131B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

本発明は窒素、メタン、二酸化炭素あるいは水素などと
共に一酸化炭素を含有する混合ガスから一酸化炭素を吸
着する際に使用する固体吸着剤の製造方法に関するもの
である。
The present invention relates to a method for producing a solid adsorbent used when adsorbing carbon monoxide from a mixed gas containing carbon monoxide together with nitrogen, methane, carbon dioxide, hydrogen and the like.

【従来の技術】[Prior art]

一酸化炭素は合成化学の基礎原料であり、コークスおよ
び石炭より発生炉、水性ガス炉、ウインクラー炉、ルル
ギ炉あるいはコッパース炉などで製造されるか、天然ガ
スおよび石油系炭化水素から水蒸気改質法や部分酸化法
により製造される。これらの方法では、生成物は一酸化
炭素と水素、二酸化炭素、メタンあるは窒素などとの混
合ガスとして得られる。さらに一酸化炭素は製鉄所、製
油所あるいは石油化学工場で副生する混合ガスとして得
られる。 これらの一酸化炭素を合成化学原料として用いるために
は、混合ガスより一酸化炭素を分離することが必要であ
る。 従来の一酸化炭素の分離方法としては、銅アルミニウム
四塩化物[Cu(AlCl44]のトルエン溶液を用い
る液体吸収法が工業化されている方法である。この方法
は混合ガス中に含まれる水素、二酸化炭素、メタン、窒
素あるいは酸素の影響を受けない、吸収圧が低いなどの
長所を有している。
Carbon monoxide is a basic raw material for synthetic chemistry, and is produced from coke and coal in a production furnace, water gas furnace, winker furnace, Lourgi furnace or Coppers furnace, or steam reforming from natural gas and petroleum hydrocarbons. It is manufactured by the method and partial oxidation method. In these methods, the product is obtained as a mixed gas of carbon monoxide and hydrogen, carbon dioxide, methane, nitrogen or the like. Further, carbon monoxide is obtained as a mixed gas produced as a by-product at a steel mill, an oil refinery or a petrochemical plant. In order to use these carbon monoxides as a synthetic chemical raw material, it is necessary to separate carbon monoxide from the mixed gas. As a conventional method for separating carbon monoxide, a liquid absorption method using a toluene solution of copper aluminum tetrachloride [Cu (AlCl 4 ) 4 ] is an industrialized method. This method has the advantages that it is not affected by hydrogen, carbon dioxide, methane, nitrogen or oxygen contained in the mixed gas, and that the absorption pressure is low.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

上記の液体吸収法においては、吸収液が水と接触すると
不可逆的に反応して吸収能力が低下すると同時に沈澱物
を生じ、さらに塩酸を発生する。このため混合ガス中の
水分は1ppm以下まであらかじめ除去しておかなければ
ならない。従って、吸収工程の前に混合ガスの協力な脱
水処理工程が必要となり、厳重な管理が不可欠である。 また、この方法では回収した一酸化炭素中にトルエン蒸
気が混入することが不可避であり、このトルエンを除去
する装置がさらに必要であることと、液体吸収剤を用い
るため、プロセス上の制約を受けるなどの短所を有す
る。
In the above-mentioned liquid absorption method, when the absorbing liquid comes into contact with water, it irreversibly reacts with each other to lower the absorption capacity and, at the same time, generate a precipitate and further generate hydrochloric acid. Therefore, the water content in the mixed gas must be removed in advance to 1 ppm or less. Therefore, it is necessary to perform a dehydration treatment step of the mixed gas before the absorption step, and strict control is essential. Further, in this method, it is unavoidable that toluene vapor is mixed in the recovered carbon monoxide, and a device for removing this toluene is further required, and since a liquid absorbent is used, there are process restrictions. It has disadvantages such as

【課題を解決するための手段】[Means for Solving the Problems]

本発明者の一人は、耐水性に優れた固体吸着剤の研究を
重ねた結果、ハロゲン化銅(I)、ハロゲン化アルミニ
ウムおよび活性炭からなり、トルエンなどの有機溶媒を
用いて調製した固体吸着剤を完成した(例えば特開昭58
-124516号公報)。 本発明はこの固体吸着剤の調製法を改良することによ
り、吸着剤の特性を大幅に向上させたものである。 即ち、本発明の特徴は、ハロゲン化銅(I)またはハロ
ゲン化銅(II)から選ばれた銅のハロゲン化物とハロゲ
ン化アルミニウムを水、塩酸、硝酸、ギ酸、酢酸、アン
モニア水から選ばれる1種以上の溶媒に溶解する第1工
程、 この溶液を活性炭またはグラファイトに含浸し、しかる
後に溶媒を留去する第2工程、 この活性炭またはグラファイトを80゜C以上の温度、不活
性ガスまたは還元性ガス流通下で処理する第3工程から
なる一酸化炭素吸着剤の製造方法である。 本発明の固体吸着剤に吸着させる溶液を調製する第1工
程は、ハロゲン化銅(I)またはハロゲン化銅(II)か
ら選ばれた銅のハロゲン化物とハロゲン化アルミニウム
を20〜80゜Cの溶媒中へ溶解させることからなる。 次いで第2工程では、この溶液中に活性炭またはグラフ
ァイトを投入混合し、常圧下または好ましくは100torr
以下の減圧下において活性炭またはグラファイト中に溶
液を含浸せしめる。含浸後減圧、加熱などの方法によっ
て溶媒を留去させる。 以上の処理を施した活性炭またはグラファイトを第3工
程として、He、Ar、N2、H2、COなどの不活性ガ
スまたは還元性ガスの雰囲気下において、80゜C以上、好
ましくは150〜300゜Cの温度で加熱処理して賦活を行う。 本発明に用いられるハロゲン化銅(I)、ハロゲン化銅
(II)としては、銅(I)、銅(II)の塩化物、フッ化
物、臭化物あるいはヨウ化物があるが、そのうちでも塩
化銅(I)、塩化銅(II)が高性能を与える点で好まし
い。ハロゲン化銅(I)とハロゲン化銅(II)の混合物
であってもよい。 また、ハロゲン化アルミニウムとしては、例えば塩化ア
ルミニウム、フッ化アルミニウム、臭化アルミニウムお
よびヨウ化アルミニウムがあるが、特に、塩化アルミニ
ウムの使用が特性上優れている。溶媒に塩酸を使用する
場合は、塩化アルミニウムの代わりに塩酸と反応して塩
化アルミニウムを生成するような物質、例えば、酸化ア
ルミニウムや水酸化アルミニウムなども使用することが
できる。 本発明の一酸化炭素固体吸着剤の製造に用いられる溶媒
としては、水、塩酸、硝酸、ギ酸、酢酸アンモニア水な
どのうちの1種または2種以上であり、これらの溶媒を
用いることにより、有機溶媒を使用した場合に比較し
て、ハロゲン化アルミニウムの固体内での分散性が改良
され、それによって一酸化炭素の選択吸着性および脱着
性が向上する。中でも溶媒として塩酸を用いた場合、特
にこの効果が著しい。 吸着媒体としては活性炭またはグラファイトを使用する
が、活性炭としてはピッチ炭、粘結炭、ヤシガラ炭のい
ずれもが使用可能である。また、形状的には破砕炭、成
形炭(ペレット、ハニカムなど)、繊維炭など、さら
に、構造的には通常のもの以外に、例えば分子篩用活性
炭などが用いられる。グラファイトとしては、天然グラ
ファイトや人造グラファイトなどが使用できる。 本発明の方法で製造された固体吸着剤は化学プラントな
どにおいて、賦活された状態で吸着塔内に充填し、原料
ガスを流通させることによって一酸化炭素を効率よく吸
着することができる。この吸着工程は塔を常圧で運転し
た場合にも十分な効果が得られるが、加圧状態で運転す
ると吸着量が増加し、高温ガスでも処理できる利点があ
る。吸着操作時の推奨温度は常圧の場合で-40〜90゜C、
好ましくは0〜60゜Cであり、加圧下では-10〜120゜C、好
ましくは20〜90゜Cである。 吸着剤に吸着された一酸化炭素は吸着塔内を減圧にする
か、または加熱することによって脱着される。減圧によ
って脱着を行う場合、真空ポンプにより塔内を100torr
以下に減圧して運転するのが好ましい。また、加熱によ
る場合は40〜250゜C、好ましくは60〜180゜Cに加熱して運
転するのが望ましい。
One of the inventors has conducted extensive research on solid adsorbents having excellent water resistance. As a result, solid adsorbents composed of copper (I) halide, aluminum halide and activated carbon, prepared using an organic solvent such as toluene. Was completed (for example, JP-A-58
-124516 publication). The present invention significantly improves the properties of the adsorbent by improving the method for preparing this solid adsorbent. That is, a feature of the present invention is that a copper halide selected from copper (I) halide or copper (II) halide and aluminum halide are selected from water, hydrochloric acid, nitric acid, formic acid, acetic acid and aqueous ammonia. The first step of dissolving in a solvent of one or more kinds, the second step of impregnating this solution into activated carbon or graphite, and then distilling off the solvent, the activated carbon or graphite at a temperature of 80 ° C or higher, an inert gas or reducing It is a method for producing a carbon monoxide adsorbent, which comprises a third step of processing under gas flow. The first step of preparing a solution to be adsorbed on the solid adsorbent of the present invention is to add a copper halide selected from copper (I) halide or copper (II) halide and aluminum halide at 20-80 ° C. Dissolving in a solvent. Next, in the second step, activated carbon or graphite is added and mixed in this solution, and the mixture is mixed under normal pressure or preferably 100 torr.
The solution is impregnated into activated carbon or graphite under the following reduced pressure. After impregnation, the solvent is distilled off by a method such as decompression or heating. The activated carbon or graphite that has been subjected to the above treatment is used as the third step in an atmosphere of an inert gas or a reducing gas such as He, Ar, N 2 , H 2 or CO, at 80 ° C. or higher, preferably 150 to 300. Activate by heating at a temperature of ° C. Examples of copper (I) halide and copper (II) halide used in the present invention include chlorides, fluorides, bromides or iodides of copper (I) and copper (II). I) and copper (II) chloride are preferred because they provide high performance. It may be a mixture of copper (I) halide and copper (II) halide. Examples of aluminum halides include aluminum chloride, aluminum fluoride, aluminum bromide and aluminum iodide, and the use of aluminum chloride is particularly excellent in characteristics. When hydrochloric acid is used as the solvent, a substance that reacts with hydrochloric acid to produce aluminum chloride, such as aluminum oxide or aluminum hydroxide, can be used instead of aluminum chloride. The solvent used for producing the carbon monoxide solid adsorbent of the present invention is one or more of water, hydrochloric acid, nitric acid, formic acid, aqueous ammonia acetate, etc., and by using these solvents, The dispersibility of aluminum halide in a solid is improved as compared with the case where an organic solvent is used, thereby improving the selective adsorption and desorption of carbon monoxide. Especially, when hydrochloric acid is used as a solvent, this effect is particularly remarkable. Activated carbon or graphite is used as the adsorption medium, and as the activated carbon, any of pitch charcoal, caking charcoal and coconut husk charcoal can be used. In addition, crushed coal, shaped coal (pellets, honeycombs, etc.), fibrous carbon, etc. in terms of shape, and in addition to ordinary ones in terms of structure, for example, activated carbon for molecular sieves, etc. are used. As graphite, natural graphite or artificial graphite can be used. The solid adsorbent produced by the method of the present invention can be efficiently adsorbed carbon monoxide in a chemical plant or the like by being charged into an adsorption tower in an activated state and circulating a raw material gas. This adsorption step has a sufficient effect even when the column is operated at normal pressure, but when it is operated in a pressurized state, the adsorption amount is increased and there is an advantage that even high temperature gas can be treated. Recommended temperature for adsorption operation is -40 to 90 ° C under normal pressure,
It is preferably 0 to 60 ° C, and under pressure is -10 to 120 ° C, preferably 20 to 90 ° C. The carbon monoxide adsorbed on the adsorbent is desorbed by reducing the pressure in the adsorption tower or heating it. When desorbing by depressurization, the inside of the tower is 100 torr with a vacuum pump.
It is preferable to operate under reduced pressure. In the case of heating, it is desirable to operate at 40 to 250 ° C, preferably 60 to 180 ° C.

【実施例】【Example】

以下実施例によって本発明をより詳細に説明する。 実施例1 乾燥窒素下で100ml二口ナスフラスコ中に5.0g(50mmo
l)の塩化銅(I)、6.7g(50mmol)の塩化アルミニウム
および50mlの3規定塩酸を加え、20゜Cで1時間攪拌し溶
解した。次いで、市販の活性炭10gを加え、さらに1時
間攪拌した後、真空ポンプを用いて2torrで3時間減圧
にした。その後、ナスフラスコ内を80゜Cに加熱して塩酸
を十分除去して、塩化銅-塩化アルミニウム-活性炭系固
体吸着剤を調製した。 こうして調製した固体吸着剤5gを30ml容量のガラス製試
料ビンに入れ、定圧式吸着量測定装置にセットして、こ
れにより一酸化炭素および二酸化炭素の吸脱着能を測定
した。 まず、試料びんを恒温槽に入れ、乾燥窒素を通じながら
(20ml/min)、180゜C、1時間加熱して吸着剤を賦活し
た。続いて、一酸化炭素ガス(純度>99.99%)を試料び
んに送り込み、20〜180゜Cの各温度での飽和吸着量を測
定した。次に、試料びん内を20〜180゜Cの各試験温度に
保ちつつ50torrで20分間減圧脱着した後、再び一酸化炭
素ガスを試料びんに送り、各飽和吸着量を測定した。 その後、試料びん内に乾燥窒素を通じながら、180゜C、
1時間で吸着剤を賦活した後、二酸化炭素ガス(純度>9
9.9%)を試料ビンに送り込み、20〜180゜Cの各温度での
飽和吸着量、および各試験温度で50torr、20分間脱着後
の二酸化炭素飽和吸着量を測定した。 実験結果を第1表および第1図に示す。 実施例2 溶媒に3規定塩酸の代わりに28%アンモニア水を使用し
た以外は実施例1と同様にして吸着剤の調製および賦活
を行った。 実施例1と同じ定圧式吸着量測定装置を用いて調製した
吸着剤に対する一酸化炭素および二酸化炭素各飽和吸着
量、並びに50torr、20分間脱着後の吸着量を測定した。
その結果は実施例1とほぼ同様であった。 実施例3 塩化銅(I)の代わりに6.7g(50mmol)の塩化銅(II)
を使用した以外は実施例1と同様の手法により吸着剤の
調製および賦活を行ない、一酸化炭素および二酸化炭素
の吸着能を求めた結果を第2図に示す。 比較例1 乾燥窒素下で100ml二口ナスフラスコ中に5.0g(50mmo
l)の塩化銅(I)、6.7g(50mmol)の塩化アルミニウ
ムおよび50mlのトルエンを加え、20゜Cで1時間攪拌し、
塩化銅-塩化アルミニウムのトルエン溶液を調製した。
これに市販の活性炭10gを加え、さらに12時間トルエン
を還流しつつ攪拌後、80゜C、10torrで3時間減圧してト
ルエンを十分除去して吸着剤を調製した。 調製した吸着剤に対して、実施例1と同様の操作で一酸
化炭素および二酸化炭素の吸着能を測定した。結果を第
3図に示す。 比較例2 乾燥窒素下で5.0g(50mmol)の塩化銅(I)を50mlの3
規定塩酸に溶解した以外は実施例1と同様の操作により
吸着剤を調製し、一酸化炭素および二酸化炭素の吸着能
を測定した。結果を第4図に示す。 実施例4 実施例3の3規定塩酸の代わりに純水を用いた以外は実
施例3と同様に吸着剤を調製して、前記定圧式吸着量測
定装置を用いて一酸化炭素および二酸化炭素の吸着能を
求めた。その結果を第5図に示す。
Hereinafter, the present invention will be described in more detail with reference to examples. Example 1 5.0 g (50 mmo in a 100 ml two-necked eggplant flask under dry nitrogen.
Copper chloride (I) (1), 6.7 g (50 mmol) of aluminum chloride and 50 ml of 3N hydrochloric acid were added, and the mixture was stirred at 20 ° C for 1 hour to dissolve. Then, 10 g of commercially available activated carbon was added, and the mixture was further stirred for 1 hour, and then depressurized with a vacuum pump at 2 torr for 3 hours. Then, the inside of the eggplant flask was heated to 80 ° C. to sufficiently remove hydrochloric acid to prepare a copper chloride-aluminum chloride-activated carbon solid adsorbent. 5 g of the solid adsorbent thus prepared was placed in a glass sample bottle having a capacity of 30 ml and set in a constant pressure type adsorption amount measuring device, whereby the adsorption and desorption ability of carbon monoxide and carbon dioxide was measured. First, the sample bottle was placed in a constant temperature bath and heated at 180 ° C for 1 hour while passing dry nitrogen (20 ml / min) to activate the adsorbent. Subsequently, carbon monoxide gas (purity> 99.99%) was fed into the sample bottle, and the saturated adsorption amount at each temperature of 20 to 180 ° C was measured. Next, after desorbing under reduced pressure at 50 torr for 20 minutes while maintaining the inside of the sample bottle at each test temperature of 20 to 180 ° C., carbon monoxide gas was sent again to the sample bottle and each saturated adsorption amount was measured. Then, while passing dry nitrogen into the sample bottle,
After activating the adsorbent for 1 hour, carbon dioxide gas (purity> 9
9.9%) was sent to the sample bottle, and the saturated adsorption amount at each temperature of 20 to 180 ° C and the saturated adsorption amount of carbon dioxide after desorption for 20 minutes at 50 torr at each test temperature were measured. The experimental results are shown in Table 1 and FIG. Example 2 An adsorbent was prepared and activated in the same manner as in Example 1 except that 28% aqueous ammonia was used as the solvent instead of 3N hydrochloric acid. The saturated adsorption amount of each of carbon monoxide and carbon dioxide and the adsorption amount after desorption for 20 minutes at 50 torr were measured for the adsorbent prepared by using the same constant pressure type adsorption amount measuring apparatus as in Example 1.
The results were almost the same as in Example 1. Example 3 6.7 g (50 mmol) of copper (II) chloride instead of copper (I) chloride
The adsorbent was prepared and activated in the same manner as in Example 1 except that was used, and the results of determining the adsorption capacities of carbon monoxide and carbon dioxide are shown in FIG. Comparative Example 1 5.0 g (50 mmo in a 100 ml two-necked eggplant flask under dry nitrogen.
l) copper (I) chloride, 6.7 g (50 mmol) of aluminum chloride and 50 ml of toluene were added, and the mixture was stirred at 20 ° C for 1 hour,
A toluene solution of copper chloride-aluminum chloride was prepared.
Commercially available activated carbon (10 g) was added thereto, and the mixture was further stirred for 12 hours while refluxing toluene, and then depressurized at 80 ° C. and 10 torr for 3 hours to sufficiently remove toluene to prepare an adsorbent. With respect to the prepared adsorbent, the adsorption ability of carbon monoxide and carbon dioxide was measured by the same operation as in Example 1. Results are shown in FIG. Comparative Example 2 Under dry nitrogen 5.0 g (50 mmol) of copper (I) chloride was added to 50 ml of 3
An adsorbent was prepared in the same manner as in Example 1 except that the adsorbent was dissolved in normal hydrochloric acid, and the adsorption ability of carbon monoxide and carbon dioxide was measured. Results are shown in FIG. Example 4 An adsorbent was prepared in the same manner as in Example 3 except that pure water was used instead of the 3N hydrochloric acid of Example 3, and carbon monoxide and carbon dioxide were measured using the constant pressure adsorption amount measuring device. The adsorption capacity was determined. The result is shown in FIG.

【発明の効果】【The invention's effect】

実施例1および2の結果をみると、本発明の吸着剤を用
いる方法では、二酸化炭素に比べ一酸化炭素の吸着量が
大きく、かつ温度依存性が高いことが明かである。ま
た、減圧脱着後の一酸化炭素の吸着量についても同様に
温度依存性が高いことが判明した。さらに、溶媒として
純水を用いた実施例4の方法も比較的優れた性能を示
し、吸着剤を安価に製造する上で有利な方法であること
を示している。 実施例1と比較例1の塩化銅(I)-塩化アルミニウム
の溶媒の差による吸脱着能を比較すると、一酸化炭素の
飽和吸着量は全範囲でほぼ同じ性能を示すが、脱着能お
よび二酸化炭素吸着能に大きな差が生じていることがわ
かる。即ち、有機溶媒を用いた場合には、低温域におい
て脱着能が著しく低下し、また吸着選択性の面でも本発
明に比べて劣っている。 このことは本吸着剤を用いて一酸化炭素を含む混合ガス
から一酸化炭素を分離、精製、回収する上で、溶媒とし
て無機溶媒を使用する本発明の方法が明らかに有利であ
ることを示している。 従って、塩化銅-塩化アルミニウム-活性炭固体吸着剤で
は、塩酸などの無機溶媒を用いて調製することが、吸着
選択性、吸着量などの面でより大きな効果が期待でき
る。 また、比較例2に記載した塩化アルミニウムを含まない
塩化銅-活性炭固体吸着剤では、一酸化炭素の吸着量は
増大するが、脱着性が悪く、二酸化炭素の物理吸着も強
いことから、本発明に比べて明らかに劣っている。
From the results of Examples 1 and 2, it is clear that the method using the adsorbent of the present invention has a larger adsorption amount of carbon monoxide than carbon dioxide and a high temperature dependence. It was also found that the amount of adsorbed carbon monoxide after desorption under reduced pressure was also highly temperature-dependent. Furthermore, the method of Example 4 using pure water as the solvent also shows relatively excellent performance, which is an advantageous method for manufacturing the adsorbent at a low cost. Comparing the adsorption / desorption abilities of the copper (I) chloride-aluminum chloride of Example 1 and Comparative Example 1 due to the difference in the solvent, the saturated adsorption amount of carbon monoxide shows almost the same performance in the entire range, but the desorption ability and the dioxide It can be seen that there is a large difference in carbon adsorption capacity. That is, when an organic solvent is used, the desorption ability is significantly reduced in the low temperature range, and the adsorption selectivity is also inferior to that of the present invention. This shows that the method of the present invention using an inorganic solvent as a solvent is clearly advantageous in separating, purifying and recovering carbon monoxide from a mixed gas containing carbon monoxide using the present adsorbent. ing. Therefore, the copper chloride-aluminum chloride-activated carbon solid adsorbent can be expected to have a greater effect in terms of adsorption selectivity, adsorption amount, etc. when prepared using an inorganic solvent such as hydrochloric acid. Further, in the copper chloride-activated carbon solid adsorbent containing no aluminum chloride described in Comparative Example 2, although the adsorption amount of carbon monoxide increases, the desorption property is poor and the physical adsorption of carbon dioxide is strong. Is clearly inferior to.

【図面の簡単な説明】[Brief description of drawings]

各図は各温度における実施例および比較例の一酸化炭素
および二酸化炭素の賦活後の飽和吸着量と減圧脱着後の
飽和吸着量を示す図であり、第1図は実施例1、第2図
は実施例3、第3図は比較例1、第4図は比較例2、第
5図は実施例4の結果をそれぞれ示す図である。 1A:賦活後のCO吸着量 1B:減圧脱着後のCO吸着量 2A:賦活後のCO2吸着量 2B:減圧脱着後のCO2吸着量
Each figure is a diagram showing the saturated adsorption amount after activation of carbon monoxide and carbon dioxide and the saturated adsorption amount after desorption under reduced pressure at each temperature, and FIG. 1 shows Example 1 and FIG. Shows Example 3; FIG. 3 shows Comparative Example 1; FIG. 4 shows Comparative Example 2; and FIG. 5 shows the results of Example 4. 1A: CO adsorption amount after activation 1B: CO adsorption amount after desorption under reduced pressure 2A: CO 2 adsorption amount after activation 2B: CO 2 adsorption amount after desorption under reduced pressure

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ハロゲン化銅(I)またはハロゲン化銅
(II)から選ばれる銅のハロゲン化物とハロゲン化アル
ミニウムを水、塩酸、硝酸、ギ酸、酢酸、アンモニア水
から選ばれる1種以上の溶媒に溶解する第1工程、 この溶液を活性炭またはグラファイトに含浸し、しかる
後に溶媒を留去する第2工程、 この活性炭またはグラファイトを80゜C以上の温度、不活
性ガスまたは還元性ガス流通下で処理する第3工程、 からなることを特徴とする一酸化炭素吸着剤の製造方
法。
1. A copper halide selected from copper (I) halide or copper (II) halide and aluminum halide are one or more solvents selected from water, hydrochloric acid, nitric acid, formic acid, acetic acid and aqueous ammonia. In the first step, the second step of impregnating this solution into activated carbon or graphite, and then distilling off the solvent, the activated carbon or graphite at a temperature of 80 ° C or higher under an inert gas or reducing gas flow. A third step of treating, a method for producing a carbon monoxide adsorbent, comprising:
JP61081896A 1986-04-08 1986-04-08 Method for producing carbon monoxide adsorbent Expired - Fee Related JPH064131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61081896A JPH064131B2 (en) 1986-04-08 1986-04-08 Method for producing carbon monoxide adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61081896A JPH064131B2 (en) 1986-04-08 1986-04-08 Method for producing carbon monoxide adsorbent

Publications (2)

Publication Number Publication Date
JPS62237942A JPS62237942A (en) 1987-10-17
JPH064131B2 true JPH064131B2 (en) 1994-01-19

Family

ID=13759203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61081896A Expired - Fee Related JPH064131B2 (en) 1986-04-08 1986-04-08 Method for producing carbon monoxide adsorbent

Country Status (1)

Country Link
JP (1) JPH064131B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5134473B2 (en) * 2008-09-04 2013-01-30 住友精化株式会社 Production method of adsorbent
JP5256120B2 (en) * 2009-05-22 2013-08-07 関西熱化学株式会社 Method for producing CO adsorption / desorption agent

Also Published As

Publication number Publication date
JPS62237942A (en) 1987-10-17

Similar Documents

Publication Publication Date Title
US4917711A (en) Adsorbents for use in the separation of carbon monoxide and/or unsaturated hydrocarbons from mixed gases
US5891324A (en) Acid-containing activated carbon for adsorbing mercury from liquid hydrocarbons
JPH01155945A (en) Production of adsorbent for separating and recovering co
JPS6265918A (en) Adsorbent for separating and recovering co, its production and method for separating and recovering high-purity co by using its adsorbent
CN113353958A (en) Clean production process of hexafluorophosphate
JP3446771B2 (en) Method for producing high specific surface area carbon material
US3029575A (en) Chlorine separation process
EP0145539A2 (en) Mercury adsorbent carbons and carbon molecular sieves
JP2007229707A (en) Organic gas adsorbent
JPS58156517A (en) Adsorptive separation method of carbon monoxide
JPH064131B2 (en) Method for producing carbon monoxide adsorbent
JPH07503489A (en) How to remove iodine compounds from acetic acid
JP3062759B2 (en) Manufacturing method of carbon dioxide adsorbent
JPH0834605A (en) Adsorbent for water treatment
KR102677862B1 (en) A method for manufacturing a granular adsorbent for separating carbon monoxide or carbon disulfide, a granular adsorbent for separating carbon monoxide and carbon disulfide produced therefrom, and a separation device comprising the granular adsorbent
JPS6148977B2 (en)
JPS6253223B2 (en)
JPH09290150A (en) Novel composite, its preparation, and carbon monoxide adsorbing agent composed of the composite
JP3717265B2 (en) New carbon monoxide adsorbent
JPH0826711A (en) Activated carbon for removing trihalomethane
JPH0149643B2 (en)
JPS6265919A (en) Adsorbent for separating and recovering co, its production and method for separating and recovering co by using its adsorbent
JPH0724762B2 (en) Method for producing adsorbent for CO separation and recovery
JPS634844A (en) Adsorbent for carbon monoxide
JPH02122812A (en) Adsorption and separation process for ammonia in gas

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees