JPH0640772U - Low temperature regenerator - Google Patents

Low temperature regenerator

Info

Publication number
JPH0640772U
JPH0640772U JP7558692U JP7558692U JPH0640772U JP H0640772 U JPH0640772 U JP H0640772U JP 7558692 U JP7558692 U JP 7558692U JP 7558692 U JP7558692 U JP 7558692U JP H0640772 U JPH0640772 U JP H0640772U
Authority
JP
Japan
Prior art keywords
regenerator
plate
cold storage
shaped
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7558692U
Other languages
Japanese (ja)
Other versions
JP2563272Y2 (en
Inventor
巍洲 橋本
瑞 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP1992075586U priority Critical patent/JP2563272Y2/en
Publication of JPH0640772U publication Critical patent/JPH0640772U/en
Application granted granted Critical
Publication of JP2563272Y2 publication Critical patent/JP2563272Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/003Gas cycle refrigeration machines characterised by construction or composition of the regenerator

Abstract

(57)【要約】 【目的】 ヘリウムガス等の冷媒を用いた冷凍機に用い
る低温蓄冷器に関し、蓄冷器における蓄冷材の充填率を
高め、高効率の蓄冷器を提供することを目的とする。 【構成】 両端に通気孔(7、9)を有し、内部に収容
空間を有する容器(4)と、前記容器の収納空間内に収
容され、蓄冷材料で形成され、貫通孔部(3)と貫通孔
部に連続する溝部(2)とを有する複数の板状体であっ
て、重ね合わせた時、貫通孔部と溝部の射影の少なくと
も一部が互いに重なり合うように配置された複数の板状
蓄冷材とを有する。
(57) [Abstract] [Purpose] An object of the present invention is to provide a low-temperature regenerator used in a refrigerator that uses a refrigerant such as helium gas to increase the filling rate of regenerator material in the regenerator and to provide a highly efficient regenerator. . A container (4) having ventilation holes (7, 9) at both ends and an accommodation space inside, and a through hole portion (3) accommodated in the accommodation space of the container and formed of a cold storage material. And a plurality of plate-shaped bodies having a groove portion (2) continuous to the through hole portion, wherein the plurality of plates are arranged such that at least a part of projections of the through hole portion and the groove portion overlap each other when superposed. A cold storage material.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、低温蓄冷器に関し、特にヘリウムガス等の冷媒を用いた冷凍機に用 いる低温蓄冷器に関する。 The present invention relates to a low temperature regenerator, and more particularly to a low temperature regenerator used in a refrigerator using a refrigerant such as helium gas.

【0002】[0002]

【従来の技術】[Prior art]

極低温冷凍機としては、ギフォード・マクマホン(GM)サイクル冷凍機や、 ソルベー冷凍機あるいはスターリング冷凍機などがあり、いずれも冷凍サイクル 内に蓄冷器を備えたディスプレーサを有している。 Cryogenic refrigerators include Gifford-McMahon (GM) cycle refrigerators, solvee refrigerators and Stirling refrigerators, all of which have a displacer with a regenerator in the refrigeration cycle.

【0003】 その冷凍サイクルは、圧縮機から送出された高圧の冷媒ガスを断熱膨張させる 吸熱工程の前後で冷媒ガスが蓄冷器を通過し、その際に蓄冷材との間で熱交換を 行う。冷媒ガスとしては、絶対温度10〜20°K付近でも液化しないヘリウム ガスなどが用いられる。In the refrigeration cycle, the refrigerant gas passes through the regenerator before and after the endothermic process of adiabatically expanding the high-pressure refrigerant gas sent from the compressor, and at that time, heat exchange is performed with the regenerator material. As the refrigerant gas, helium gas or the like that does not liquefy even at an absolute temperature of 10 to 20 ° K.

【0004】 図3に、蓄冷器を備えた従来の技術によるGMサイクル冷凍機の構造を示す。 10は圧縮機であり、冷媒のヘリウムガスを圧縮する。圧縮されたヘリウムガス はガスクーラ11で冷却され、さらに油分離器12で冷媒ガス中に混入したオイ ルミスト等を除去する。FIG. 3 shows the structure of a conventional GM cycle refrigerator provided with a regenerator. Reference numeral 10 is a compressor, which compresses helium gas as a refrigerant. The compressed helium gas is cooled by the gas cooler 11, and the oil separator 12 further removes oil mist and the like mixed in the refrigerant gas.

【0005】 油分離器12を出たヘリウムガスは配管通路を開閉する吸気バルブ13を介し て配管14で蓄冷器を内蔵するコールドヘッド20に導入される。コールドヘッ ド20を出た冷媒のヘリウムガスは配管15から配管通路を開閉する排気バルブ 16を通過してサージタンク17を通過したのち常温常圧の冷媒ガスとなって圧 縮機10の入り口に戻る。以上のサイクルを繰り返すことによりコールドヘッド 20の先端部が冷却され極低温にいたる。The helium gas discharged from the oil separator 12 is introduced into a cold head 20 having a built-in regenerator through a pipe 14 via an intake valve 13 that opens and closes a pipe passage. The helium gas of the refrigerant that has exited the cold head 20 passes from the pipe 15 through the exhaust valve 16 that opens and closes the pipe passage, passes through the surge tank 17, and then returns to the inlet of the compressor 10 as a refrigerant gas at room temperature and pressure. . By repeating the above cycle, the tip of the cold head 20 is cooled and reaches an extremely low temperature.

【0006】 次に、コールドヘッド20の構造についてさらに説明する。外側容器であるシ リンダ21の内部に内側容器である蓄冷器を備えたディスプレーサ22が配置さ れる。ディスプレーサ22はその内部の空間に蓄冷材23を充填している。Next, the structure of the cold head 20 will be further described. A displacer 22 having a regenerator as an inner container is arranged inside a cylinder 21 as an outer container. The displacer 22 is filled with the regenerator material 23 in its internal space.

【0007】 蓄冷材23は熱容量が大きく、熱交換効率が高い材料と構造を持ち、内部を冷 媒ガスが通過できるようにすることが必要である。このため、銅合金のメッシュ を積層したり、あるいは均一な粒径の鉛粒が充填される。24と25は冷媒ガス が蓄冷材23を出入りするための通路である。The cold storage material 23 needs to have a material and a structure having a large heat capacity and a high heat exchange efficiency so that the cooling medium gas can pass through the inside. For this reason, copper alloy meshes are laminated or lead particles having a uniform particle size are filled. Reference numerals 24 and 25 are passages through which the refrigerant gas enters and leaves the regenerator material 23.

【0008】 ディスプレーサ22は外側容器21の内側を動力装置(図示せず)によって上 下に駆動され、上死点と下死点との間を往復直線運動するようにされる。なお、 上死点は下部の膨張室28の容積が最小になる点、すなわちディスプレーサが図 中最も下に動いた点である。図2はディスプレーサ22が上死点と下死点とのほ ぼ中間部に位置している様子を示している。The displacer 22 is driven up and down inside the outer container 21 by a power unit (not shown) so as to reciprocate linearly between the top dead center and the bottom dead center. The top dead center is the point where the volume of the lower expansion chamber 28 is minimized, that is, the displacer moves to the bottom in the figure. FIG. 2 shows that the displacer 22 is located approximately in the middle between the top dead center and the bottom dead center.

【0009】 ディスプレーサ22の上部外壁にはガスシール27が取り付けてあり、冷凍を 発生する膨張室28の冷媒ガスが流出入する時、ディスプレーサ22と外側容器 21との間の隙間を通って冷媒ガスが移動しないように気密シールしている。A gas seal 27 is attached to the upper outer wall of the displacer 22, and when the refrigerant gas in the expansion chamber 28 that generates freezing flows in and out, the refrigerant gas passes through the gap between the displacer 22 and the outer container 21. Has an airtight seal to prevent movement.

【0010】 次に、GM冷凍サイクルについて説明する。最初ディスプレーサ22が上死点 の位置で、排気バルブ16を閉じた状態で、吸気バルブ13を徐々に開けていく 。圧縮機10で高圧になったヘリウム冷媒ガスが吸気バルブ13と配管14を通 って、コールドヘッド20に導入される。Next, the GM refrigeration cycle will be described. First, the displacer 22 is at the position of the top dead center, and the intake valve 13 is gradually opened while the exhaust valve 16 is closed. The high-pressure helium refrigerant gas in the compressor 10 is introduced into the cold head 20 through the intake valve 13 and the pipe 14.

【0011】 次にディスプレーサ22を上死点から下死点に移動すると、冷媒ガスは通路2 4を通って蓄冷材23を通過する。その際、冷媒ガスは蓄冷材23と熱交換し、 蓄冷材23に熱を奪われ、通路25を通って下部の膨張室28に到る。Next, when the displacer 22 is moved from the top dead center to the bottom dead center, the refrigerant gas passes through the passage 24 and the cold storage material 23. At that time, the refrigerant gas exchanges heat with the regenerator material 23, the heat is removed by the regenerator material 23, and passes through the passage 25 to reach the lower expansion chamber 28.

【0012】 次に、ディスプレーサ22が下死点にある状態で、吸気バルブ13が閉じられ 、排気バルブ16を徐々に開放してゆくと、高圧の冷媒ガスは圧縮機10の入り 口側との圧力差によって一気に断熱膨張してその温度が低下し、膨張室28の冷 媒ガスは吸熱してフランジ29を介して周囲を冷却する。Next, while the displacer 22 is at the bottom dead center, the intake valve 13 is closed and the exhaust valve 16 is gradually opened, so that the high-pressure refrigerant gas enters the inlet side of the compressor 10. Due to the pressure difference, the temperature of the expansion chamber 28 is adiabatically expanded and the temperature of the expansion chamber 28 is lowered.

【0013】 さらに、ディスプレーサ22を下死点から上死点に向かって下降させると、膨 張室28の冷えた冷媒ガスは通路25、蓄冷材23、通路24、配管15、排気 バルブ16、サージタンク17、圧縮機10へと流れる。その際、冷媒ガスは蓄 冷材23と熱交換し、蓄冷材23を冷却する。以上の冷凍サイクルを繰り返して 冷却が行われる。Further, when the displacer 22 is lowered from the bottom dead center toward the top dead center, the cooled refrigerant gas in the expansion chamber 28 receives the passage 25, the regenerator material 23, the passage 24, the pipe 15, the exhaust valve 16, and the surge. It flows to the tank 17 and the compressor 10. At that time, the refrigerant gas exchanges heat with the cold storage material 23 to cool the cold storage material 23. Cooling is performed by repeating the above refrigeration cycle.

【0014】 スターリング冷凍機においては、圧力が脈動する冷媒ガスが、バルブを介さず 直接ディスプレーサに供給される。ディスプレーサは、脈動する冷媒ガスと位相 をずらせて往復運動し、冷凍サイクルを実施する。ディスプレーサは、外部から の駆動源によって駆動しても、フリーピストン的に配置してもよい。In the Stirling refrigerator, the refrigerant gas whose pressure pulsates is directly supplied to the displacer without passing through a valve. The displacer reciprocates with the pulsating refrigerant gas out of phase to perform the refrigeration cycle. The displacer may be driven by an external drive source or may be arranged as a free piston.

【0015】 極低温の冷却を行なう場合、極低温側蓄冷器においては、球状の鉛粒子がよく 用いられる。球状粒子を蓄冷材として用いた場合、振動等を利用して充填しても その充填率は60%程度である。When performing cryogenic cooling, spherical lead particles are often used in the cryogenic-side regenerator. When spherical particles are used as the regenerator material, the filling rate is about 60% even if they are filled using vibration or the like.

【0016】 極低温に達すると、多くの材料はその比熱を急激に低下させる。たとえば、3 0Kから4K程度まで冷媒ガスを冷却する場合、接触するガスの温度領域で高い 比熱を有する蓄冷材を用いることが望まれる。When reaching cryogenic temperatures, many materials sharply reduce their specific heat. For example, when cooling the refrigerant gas from about 30K to about 4K, it is desirable to use a cold storage material having a high specific heat in the temperature range of the gas to be contacted.

【0017】 ある温度範囲に亘って高い比熱を実現しようとする時は、その温度範囲の各部 分で高い比熱を有する数種の材料を蓄冷材として用いることが有効である。この 場合は、数種の材料を積層上にディスプレーサに充填することが行なわれるが、 これらの材料が混合してしまうとその効果が減少してしまうため、混合を防止す るために仕切りが必要である。When attempting to realize high specific heat over a certain temperature range, it is effective to use several kinds of materials having high specific heat in each part of the temperature range as the cold accumulating material. In this case, the displacer is filled with several kinds of materials on the stack. However, if these materials are mixed, the effect will be reduced, so a partition is necessary to prevent mixing. Is.

【0018】[0018]

【考案が解決しようとする課題】 蓄冷器の限られたスペースに、より冷却能力の高い蓄冷材を充填しようとする とき、なるべく多くの蓄冷材を充填することが望まれる。球状粒子の蓄冷材を用 いた場合の充填率は上述のように60%程度で制限されてしまう。より多くの蓄 冷材を充填しようとする時は、蓄冷材を球状粒子以外の形状とすることが望まれ る。When attempting to fill a limited space of a regenerator with a regenerator material having a higher cooling capacity, it is desired to replenish as much regenerator material as possible. When a cold storage material having spherical particles is used, the filling rate is limited to about 60% as described above. When it is attempted to fill more regenerator material, it is desirable that the regenerator material has a shape other than spherical particles.

【0019】 また、数種の材料を蓄冷材として用いた場合、球状粒子の蓄冷材を用いると、 仕切りが必要である。仕切りを用いることは、組み立てを複雑化するばかりでな く、運転中に仕切りが破れると蓄冷材が混合してしまい、信頼性が低下する。In addition, when several kinds of materials are used as the cold storage material, if a cold storage material of spherical particles is used, a partition is required. The use of partitions not only complicates the assembly, but if the partitions are broken during operation, the cold storage material is mixed and reliability is reduced.

【0020】 本考案の目的は、蓄冷器における蓄冷材の充填率を高め、高効率の蓄冷器を提 供することである。 本考案の他の目的は、組み立てが簡単で信頼性の高い蓄冷器を提供することで ある。An object of the present invention is to provide a highly efficient regenerator by increasing the filling rate of the regenerator material in the regenerator. Another object of the present invention is to provide a regenerator that is easy to assemble and reliable.

【0021】[0021]

【課題を解決するための手段】[Means for Solving the Problems]

本考案の低温蓄冷器は、両端に通気孔を有し、内部に収容空間を有する容器と 、前記容器の収納空間内に収容され、蓄冷材料で形成され、貫通孔部と貫通孔部 に連続する溝部とを有する複数の板状体であって、重ね合わせた時、貫通孔部と 溝部の射影の少なくとも一部が互いに重なり合うように配置された複数の板状蓄 冷材とを有する。 The low temperature regenerator of the present invention comprises a container having ventilation holes at both ends and a housing space inside, a container housed in the housing space of the container, formed of a cold storage material, and connected to the through hole portion and the through hole portion. And a plurality of plate-shaped cold storage materials arranged such that at least a part of the projections of the through-hole portion and the groove portion overlap each other when they are overlapped with each other.

【0022】[0022]

【作用】[Action]

複数の板状蓄冷材を用いることにより、球状蓄冷材を用いた場合と比べ、充填 率を高めることができる。 By using a plurality of plate-shaped cold storage materials, the filling rate can be increased as compared with the case where spherical cold storage materials are used.

【0023】 板状蓄冷材に溝部と溝部に連続する貫通孔部を設けることにより、板状蓄冷材 と冷媒の接触面積を充分高めることができる。貫通孔部と溝部の射影が少なくと も一部互いに重なり、ガス通路が確保される。このため、高い冷却機能を実現で きる。By providing the plate-shaped cold storage material with the groove portion and the through-hole portion continuous to the groove portion, the contact area between the plate-shaped cold storage material and the refrigerant can be sufficiently increased. At least a part of the projection of the through hole and the projection of the groove overlap each other, and a gas passage is secured. Therefore, a high cooling function can be realized.

【0024】[0024]

【実施例】【Example】

図1は、板状蓄冷材の構成を示す。図1(A)は板状蓄冷材の表面側の構成を 示す上面図、図1(B)は板状蓄冷材の断面構造を示す断面図、図1(C)は板 状蓄冷材の裏面の構成を示す底面図である。 FIG. 1 shows the configuration of a plate-shaped cold storage material. FIG. 1 (A) is a top view showing the front side structure of the plate-shaped cold storage material, FIG. 1 (B) is a sectional view showing the cross-sectional structure of the plate-shaped cold storage material, and FIG. 1 (C) is the back surface of the plate-shaped cold storage material. It is a bottom view which shows the structure of.

【0025】 板状蓄冷材1は、円盤形状を有し、その表面に同心円状の溝2が形成されてい る。溝部2内には、溝部底面から裏面に達する貫通孔部3か形成されている。蓄 冷材1は、たとえば希土類元素や遷移金属等を含む磁性材料の焼結によって作成 される。The plate-shaped regenerator material 1 has a disc shape, and concentric grooves 2 are formed on the surface thereof. In the groove portion 2, a through hole portion 3 reaching from the bottom surface of the groove portion to the back surface is formed. The regenerator material 1 is produced, for example, by sintering a magnetic material containing a rare earth element, a transition metal or the like.

【0026】 焼結によって薄い円盤状の板状蓄冷材1を形成した後、その少なくとも片面を 平らな平面にする。平らな平面を下にし、板状蓄冷材1に同心円状の細い溝部2 を形成する。After the thin disk-shaped plate regenerator material 1 is formed by sintering, at least one surface thereof is made flat. A flat concentric circular groove 2 is formed in the plate-shaped cold storage material 1 with the flat plane facing down.

【0027】 続いて、溝部の底から板状蓄冷材の底面に達する小さな貫通孔部3を多数形成 する。たとえば、板状蓄冷材1は、約3mm以下の厚さを有し、その片面に幅1 mm程度以下、高さ1mm程度以下の溝部2を形成し、溝部2の底面に直径1m m程度以下の貫通孔部を形成する。貫通孔部の分布は目的に応じて種々に変更で きるが、板状蓄冷材1のどの部分も溝部を通る冷媒ガスと効率的に熱交換が行な えるように設計する。Subsequently, a large number of small through holes 3 reaching the bottom of the plate-shaped cool storage material from the bottom of the groove are formed. For example, the plate-shaped regenerator material 1 has a thickness of about 3 mm or less, and a groove 2 having a width of about 1 mm or less and a height of about 1 mm or less is formed on one surface thereof, and the bottom surface of the groove 2 has a diameter of about 1 mm or less. Through holes are formed. The distribution of the through holes can be variously changed according to the purpose, but any part of the plate-shaped regenerator material 1 is designed so that heat exchange can be efficiently performed with the refrigerant gas passing through the groove.

【0028】 図2はディスプレーサの構成を示す。図2(A)はディスプレーサへの蓄冷材 の充填の様子を示す概略断面図であり、図2(B)、(C)は、ディスプレーサ 内の板状蓄冷材の重ねかたを示す概略断面図である。FIG. 2 shows the structure of the displacer. FIG. 2 (A) is a schematic cross-sectional view showing how the cold storage material is filled into the displacer, and FIGS. 2 (B) and 2 (C) are schematic cross-sectional views showing how the plate-shaped cold storage materials are stacked in the displacer. Is.

【0029】 図2(A)に示すように、ディスプレーサ4は、シリンダ5内に配置され、そ の内部に積層した板状蓄冷材1を充填する。シリンダ5は一端が閉じており、デ ィスプレーサ4との間に冷却空間6を画定する。As shown in FIG. 2A, the displacer 4 is arranged in the cylinder 5 and is filled with the laminated plate-shaped cold storage material 1. The cylinder 5 is closed at one end and defines a cooling space 6 between the cylinder 5 and the displacer 4.

【0030】 ディスプレーサ4は、冷却空間側に冷媒ガスの通過する開口(通気孔)7を有 する円筒形状を有し、他端に通気孔9を形成する蓋材8が配置される。蓋材8を 取り除いた状態で、ディスプレーサ4に板状蓄冷材1を積層し、蓋材8を押し込 むことによって板状蓄冷材1を固定する。なお、ディスプレーサ4の蓋材8側に はさらに冷媒ガスを通過させるための通気孔9も設けられている。The displacer 4 has a cylindrical shape having an opening (ventilation hole) 7 through which a refrigerant gas passes on the cooling space side, and a lid member 8 forming a vent hole 9 is arranged at the other end. With the lid member 8 removed, the plate-shaped cool storage material 1 is stacked on the displacer 4, and the lid member 8 is pushed in to fix the plate-shaped cool storage material 1. In addition, a vent hole 9 is provided on the cover member 8 side of the displacer 4 for allowing a refrigerant gas to pass therethrough.

【0031】 板状蓄冷材は、図1に示すような構成を有するが、同心円状の溝部2に形成さ れる貫通孔部3の間隔は各板状蓄冷材において同一であっても異なっていてもよ い。The plate-shaped cold storage material has a structure as shown in FIG. 1, but the intervals of the through holes 3 formed in the concentric circular groove portions 2 may be the same or different in each plate-shaped cold storage material. Good.

【0032】 図2(B)は、積層する板状蓄冷材の貫通孔部のピッチが異なるときの重ねか たを示す。この場合、隣接する板状蓄冷材の貫通孔部のピッチを異なるようにす れば、どのように積層させても図2(B)に示すように貫通孔部の大部分は隣接 する板状蓄冷材において重ならず、冷媒ガスは溝部2を介して隣接する板状蓄冷 材の貫通孔部3へと流れる。このようにして、板状蓄冷材と冷媒ガスの効率的な 熱交換が実現できる。FIG. 2B shows a stacking method when the pitch of the through holes of the plate-shaped cool storage material to be stacked is different. In this case, if the pitches of the through holes of the adjacent plate-shaped regenerator materials are made different, most of the through holes are adjacent to each other, regardless of how they are stacked, as shown in FIG. The refrigerant gas does not overlap in the cold storage material, and the refrigerant gas flows through the groove portion 2 to the through hole portion 3 of the adjacent plate-shaped cold storage material. In this way, efficient heat exchange between the plate-shaped regenerator material and the refrigerant gas can be realized.

【0033】 板状蓄冷材の孔の配置が同一の場合には、図2(C)に示すように、貫通孔部 3が重ならないように隣接する板状蓄冷材を積層する。このような配置を実現す るために、板状蓄冷材の一部に嵌合する係合部を設けてもよい。たとえば、板状 蓄冷材の表面側に凹部を設け、底面側に対応する形状の凸部を形成し、積層する 際に凹部と凸部が係合するようにすればよい。When the holes of the plate-shaped regenerator material are the same, as shown in FIG. 2C, adjacent plate-shaped regenerator materials are laminated so that the through-hole portions 3 do not overlap each other. In order to realize such an arrangement, an engaging portion that fits a part of the plate-shaped cold storage material may be provided. For example, a concave portion may be provided on the front surface side of the plate-shaped cold storage material, a convex portion having a corresponding shape may be formed on the bottom surface side, and the concave portion and the convex portion may be engaged when stacked.

【0034】 板状蓄冷材の熱伝導率が高い場合には、隣接する板状蓄冷材間で高い熱伝導が 発生し、有効な温度分布を形成するのが困難な場合もある。板状蓄冷材の材料と して磁性材料を用いると、磁性材料は一般に低い熱伝導率を有するため、熱伝導 を制限するためには効果的である。When the heat conductivity of the plate-shaped cold storage material is high, high heat conduction occurs between adjacent plate-shaped cold storage materials, and it may be difficult to form an effective temperature distribution. When a magnetic material is used as the material of the plate-shaped cold storage material, the magnetic material generally has a low thermal conductivity, and therefore it is effective for limiting the thermal conductivity.

【0035】 溝部と貫通孔部とを有する板状蓄冷材を用いることにより、所望の冷媒ガスの 流れを確保すると共に、蓄冷材の充填率を70%以上に高めることも可能となる 。より多くの蓄冷材を用いることにより、蓄冷器全体での熱容量を高め、冷凍能 力の向上を図ることが可能となる。By using the plate-shaped regenerator material having the groove and the through hole, it is possible to secure a desired flow of the refrigerant gas and to increase the filling rate of the regenerator material to 70% or more. By using more regenerator material, the heat capacity of the regenerator as a whole can be increased and the refrigerating capacity can be improved.

【0036】 磁性体のように、低温領域で比熱のピークを有する材料を用いる場合、比熱の ピーク位置が異なる複数材料を積層することにより、効果的な冷凍能力を実現す ることができる。球状蓄冷材を用いた場合と比べ、異種材料を用いても異種材料 間に仕切りを形成する必要がなく、組み立てが簡単になり、使用中における蓄冷 材の混合を生じることもない。When a material having a specific heat peak in a low temperature region such as a magnetic body is used, an effective refrigerating capacity can be realized by stacking a plurality of materials having different specific heat peak positions. Compared with the case of using the spherical cold storage material, even if different materials are used, it is not necessary to form a partition between different materials, the assembly is simplified, and the cold storage material is not mixed during use.

【0037】 なお、溝部や貫通孔部の形状、分布は上述に説明したものの他、種々に変更す ることが可能である。たとえば、溝部を放射線状に設けてもよく、さらに中央部 に円盤上の溝部や周辺に環状の溝部を組み合わせること等もできる。また、連続 せず、途中で分断される溝部を設けてもよい。The shapes and distributions of the grooves and the through holes can be variously modified in addition to those described above. For example, the groove portions may be provided in a radial pattern, and further, a groove portion on a disk may be combined with the central portion and an annular groove portion may be combined with the periphery. Further, a groove portion which is not continuous and may be divided in the middle may be provided.

【0038】 溝部の断面形状は矩形だけでなく、三角形、半円形、またはこれらの変形ない し組み合わせでもよい。 冷媒ガスが隣接する板状蓄冷材を通過して流れ、板状蓄冷材の各部分が通過す る冷媒ガスと有効な熱交換を行なえる構成であれば、どのような構成をとっても よい。The cross-sectional shape of the groove portion is not limited to a rectangular shape, but may be a triangular shape, a semicircular shape, or a modification or combination thereof. Any configuration may be adopted as long as the refrigerant gas flows through the adjacent plate-shaped regenerator material and each part of the plate-shaped regenerator material can effectively exchange heat with the refrigerant gas passing therethrough.

【0039】 以上実施例に沿って本考案を説明したが、本考案はこれらに制限されるもので はない。たとえば、種々の変更、改良、組み合わせ等が可能なことは当業者に自 明であろう。Although the present invention has been described above with reference to the embodiments, the present invention is not limited thereto. For example, it will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

【0040】[0040]

【考案の効果】[Effect of device]

蓄冷器における蓄冷材の充填率を向上させることができる。 また、複数種類の蓄冷材を用いた場合にも、仕切りを設けることなく、複数の 蓄冷材の混合を防止することができる。 The filling rate of the regenerator material in the regenerator can be improved. Further, even when a plurality of types of cold storage materials are used, it is possible to prevent mixing of a plurality of cold storage materials without providing a partition.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による低温蓄冷器に用いる蓄冷
材の構成を示す平面図および断面図である。
FIG. 1 is a plan view and a cross-sectional view showing a configuration of a cold storage material used in a low temperature cool storage device according to an embodiment of the present invention.

【図2】図1に示す蓄冷材を充填したディスプレーサの
構成を示す概略断面図である。
FIG. 2 is a schematic cross-sectional view showing the configuration of the displacer filled with the cold storage material shown in FIG.

【図3】従来の技術によるGMサイクル冷凍機の構成を
示す概略断面図である。
FIG. 3 is a schematic cross-sectional view showing a configuration of a GM cycle refrigerator according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 板状蓄冷材 2 溝部 3 貫通孔部 4 ディスプレーサ 5 シリンダ 6 冷却空間 7 開口(通気孔) 8 蓋材 9 通気孔 1 Plate-shaped cold storage material 2 Groove part 3 Through hole part 4 Displacer 5 Cylinder 6 Cooling space 7 Opening (vent hole) 8 Lid material 9 Vent hole

Claims (4)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 両端に通気孔(7、9)を有し、内部に
収容空間を有する容器(4)と、 前記容器の収納空間内に収容され、蓄冷材料で形成さ
れ、貫通孔部(3)と貫通孔部に連続する溝部(2)と
を有する複数の板状体であって、重ね合わせた時、貫通
孔部と溝部の射影の少なくとも一部が互いに重なり合う
ように配置された複数の板状蓄冷材(1)とを有する低
温蓄冷器。
1. A container (4) having vent holes (7, 9) at both ends and having a storage space inside, and a through hole portion (4) housed in the storage space of the container and formed of a cold storage material. 3) A plurality of plate-shaped bodies having a groove portion (2) continuous with the through hole portion, and a plurality of plate-like bodies arranged so that at least a part of projections of the through hole portion and the groove portion overlap each other when they are overlapped. Low temperature regenerator having the plate-shaped regenerator material (1).
【請求項2】 前記容器(4)が両端にガス流通孔
(7、9)を有する円筒形状であり、前記複数の板状蓄
冷材(1)が円板形状であり、前記溝部(2)が各板状
蓄冷材に設けられた同心円状溝である請求項1記載の低
温蓄冷器。
2. The container (4) has a cylindrical shape having gas circulation holes (7, 9) at both ends, the plurality of plate-shaped cold storage materials (1) have a disk shape, and the groove (2). The low temperature regenerator according to claim 1, wherein is a concentric circular groove provided in each plate-shaped regenerator material.
【請求項3】 前記貫通孔部(3)が隣接する板状蓄冷
材(1)間でほぼ重なり合わないように配置された請求
項2記載の低温蓄冷器。
3. The low temperature regenerator according to claim 2, wherein the through holes (3) are arranged so as not to substantially overlap between the adjacent plate-shaped regenerator materials (1).
【請求項4】 前記蓄冷材料が磁性体である請求項1〜
3のいずれかに記載の低温蓄冷器。
4. The regenerator material is a magnetic material.
The low temperature regenerator according to any one of 3 above.
JP1992075586U 1992-10-30 1992-10-30 Low temperature regenerator Expired - Fee Related JP2563272Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1992075586U JP2563272Y2 (en) 1992-10-30 1992-10-30 Low temperature regenerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1992075586U JP2563272Y2 (en) 1992-10-30 1992-10-30 Low temperature regenerator

Publications (2)

Publication Number Publication Date
JPH0640772U true JPH0640772U (en) 1994-05-31
JP2563272Y2 JP2563272Y2 (en) 1998-02-18

Family

ID=13580457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1992075586U Expired - Fee Related JP2563272Y2 (en) 1992-10-30 1992-10-30 Low temperature regenerator

Country Status (1)

Country Link
JP (1) JP2563272Y2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185339A (en) * 1996-10-30 1998-07-14 Toshiba Corp Cryogenic cold storage material, refrigerating machine employing the same and heat shielding material
JP2015175548A (en) * 2014-03-14 2015-10-05 アイシン精機株式会社 Cool storage type refrigerator
JP2015178916A (en) * 2014-03-19 2015-10-08 住友重機械工業株式会社 regenerator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58169379U (en) * 1982-04-30 1983-11-11 株式会社島津製作所 regenerator
JPS6263590U (en) * 1985-09-30 1987-04-20
JPH01142250A (en) * 1987-11-30 1989-06-05 Toshiba Corp Regenerator for stirling engine
JPH02130355A (en) * 1988-11-09 1990-05-18 Mitsubishi Electric Corp Cold heat accumulator for cryogenic use
JPH04268166A (en) * 1991-02-25 1992-09-24 Toshiba Corp Cryogenic heat accumulation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58169379U (en) * 1982-04-30 1983-11-11 株式会社島津製作所 regenerator
JPS6263590U (en) * 1985-09-30 1987-04-20
JPH01142250A (en) * 1987-11-30 1989-06-05 Toshiba Corp Regenerator for stirling engine
JPH02130355A (en) * 1988-11-09 1990-05-18 Mitsubishi Electric Corp Cold heat accumulator for cryogenic use
JPH04268166A (en) * 1991-02-25 1992-09-24 Toshiba Corp Cryogenic heat accumulation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185339A (en) * 1996-10-30 1998-07-14 Toshiba Corp Cryogenic cold storage material, refrigerating machine employing the same and heat shielding material
JP2015175548A (en) * 2014-03-14 2015-10-05 アイシン精機株式会社 Cool storage type refrigerator
JP2015178916A (en) * 2014-03-19 2015-10-08 住友重機械工業株式会社 regenerator

Also Published As

Publication number Publication date
JP2563272Y2 (en) 1998-02-18

Similar Documents

Publication Publication Date Title
US3218815A (en) Cryogenic refrigeration apparatus operating on an expansible fluid and embodying a regenerator
US7594406B2 (en) Regenerator and cryogenics pump
JP5889743B2 (en) Regenerative refrigerator
US5609034A (en) Cooling system
JP3602823B2 (en) Pulsating tube refrigerator
JPH0217788B2 (en)
JP2650437B2 (en) Cold storage cryogenic refrigerator
JPH0640772U (en) Low temperature regenerator
JP2012255590A (en) Cryopump, and cryogenic refrigerator
JP3293538B2 (en) Cool storage refrigerator
JPH07318181A (en) Very low temperature freezer
JP2831809B2 (en) Cryogenic refrigeration equipment
JPH10115472A (en) Pulse tube refrigerator
JP2002286311A (en) Cryogenic refrigerating machine
JP2521299Y2 (en) Cold generation mechanism of cryogenic refrigerator
JP3271370B2 (en) Cryogenic refrigerator
JPH11257769A (en) Cold storage refrigerating machine
JPH09243189A (en) Pulse-tube refrigerator
JPH06207754A (en) Regenerator in freezer and its manufacturing method
JP3363697B2 (en) Refrigeration equipment
JP2505300Y2 (en) Cooling material leakage preventive device
JP2003329327A (en) Pulse tube refrigerating machine
JPH0452467A (en) Cryogenic refrigerator
JP2549861Y2 (en) Regenerator for cryogenic refrigerator
JPH11223398A (en) Heat exchanger for heat engine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971021

LAPS Cancellation because of no payment of annual fees