JPH0640771A - Production of metal dispersed carbon material - Google Patents

Production of metal dispersed carbon material

Info

Publication number
JPH0640771A
JPH0640771A JP4332467A JP33246792A JPH0640771A JP H0640771 A JPH0640771 A JP H0640771A JP 4332467 A JP4332467 A JP 4332467A JP 33246792 A JP33246792 A JP 33246792A JP H0640771 A JPH0640771 A JP H0640771A
Authority
JP
Japan
Prior art keywords
metal
carbon
carbonaceous material
carbonaceous
chemically treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4332467A
Other languages
Japanese (ja)
Inventor
Masaki Fujii
井 政 喜 藤
Masanori Minohata
畑 正 則 箕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Oil Co Ltd
Original Assignee
Koa Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Oil Co Ltd filed Critical Koa Oil Co Ltd
Priority to JP4332467A priority Critical patent/JPH0640771A/en
Publication of JPH0640771A publication Critical patent/JPH0640771A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PURPOSE:To provide a method by which the selection of a metal used is diversified, a process for obtaining a metal dispersed carbon material contg. uniformly dispersed fine metal particles is facilitated and the carbon matrix is made variously porous or microporous. CONSTITUTION:A carbonaceous material having 0.55-4.1 atomic ratio of carbon to hydrogen and >=40 deg.C softening point is chemically treated so that the oxygen content of the carbonaceous material is increased by >=20.0wt.% when measured by element analysis, a metallic salt is brought into contact with the chemically treated carbonaceous material and they are fired at 500-2,000 deg.C in an inert atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属炭素複合材料に関
し、特に安価で製造工程の容易化が可能でかつ優れた金
属分散性を有する金属分散炭素材料の製造方法に関する
ものである。なお、本明細書において、炭素材料中に分
散される金属種としては、金属硫化物、金属窒化物など
の金属含有化合物をも包含する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal-carbon composite material, and more particularly to a method for manufacturing a metal-dispersed carbon material which is inexpensive, can be easily manufactured, and has excellent metal dispersibility. In the present specification, the metal species dispersed in the carbon material also include metal-containing compounds such as metal sulfides and metal nitrides.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】金属
炭素複合材料は、炭素材料の持つ、軽量、耐熱性、耐薬
品性、摺動性、導電性、熱伝導性などの特性に加えて、
金属の持つ、導電性、磁性、触媒活性、抗菌性、消臭性
などの特性を併せ持った優れた材料として、触媒、磁性
材料、導電性材料、抗菌性材料、消臭材料など、各種の
機能性材料としての利用が期待されている。このような
金属炭素複合材料のうち、特に、炭素マトリックス中に
金属微粒子が高分散した材料は、全体が均一な複合組織
を有するものとして、磁性材料、導電性材料など、ま
た、炭素マトリックスに微細細孔を有する場合には脱臭
・消臭材料として好適なものである。
2. Description of the Related Art Metal-carbon composite materials, in addition to the characteristics of carbon materials such as light weight, heat resistance, chemical resistance, slidability, electrical conductivity and thermal conductivity,
Various functions such as catalyst, magnetic material, conductive material, antibacterial material, deodorant material, etc. as an excellent material that has the characteristics of metal such as conductivity, magnetism, catalytic activity, antibacterial property and deodorant property. It is expected to be used as a flexible material. Among such metal-carbon composite materials, particularly, a material in which metal fine particles are highly dispersed in a carbon matrix is regarded as a material having a uniform composite structure as a whole, and a magnetic material, a conductive material, etc. When it has pores, it is suitable as a deodorizing / deodorizing material.

【0003】炭素マトリックス中に金属が高分散した材
料の製造技術として、例えば、有機金属錯体重合物を炭
素化する方法がある。これは、特開平1−234309
号、特開平1−252514号および特開平2−631
3号などに開示されるように重合性有機金属配位化合物
を重合して得られる重合体を不活性雰囲気下で熱処理す
ることによって金属炭素複合材料を得るものである。ま
た、炭素材料の吸着特性に注目したものとして、金属含
有活性炭の製造方法がある。これはピッチと有機金属化
合物との混合物を不融化処理の後、賦活処理して金属含
有活性炭を得るものである(特開平3−265510
号)。
As a technique for producing a material in which a metal is highly dispersed in a carbon matrix, for example, there is a method of carbonizing an organometallic complex polymer. This is disclosed in JP-A-1-234309.
JP-A-1-252514 and JP-A-2-631
As disclosed in No. 3 or the like, a polymer obtained by polymerizing a polymerizable organometallic coordination compound is heat-treated in an inert atmosphere to obtain a metal-carbon composite material. Further, as a method that pays attention to the adsorption property of the carbon material, there is a method for producing metal-containing activated carbon. This is one in which a mixture of pitch and an organometallic compound is infusibilized and then activated to obtain metal-containing activated carbon (Japanese Patent Laid-Open No. 3-265510).
issue).

【0004】これら従来の金属炭素複合材料は、何れも
複雑な構造をした錯体化合物を素原料とし、これをさら
に、煩雑な工程を含む重合反応を行って得られた重合物
を原料とする。しかも、引き続き行う焼成工程におい
て、昇温速度は重合物のゆっくりとした炭素化を進める
ために低速で行わなければならない。従って、調製に多
大な時間と費用を要し、得られたものは高価なものとな
らざるをえない。さらに、分散させる金属種類は、素原
料となる錯体化合物に配位しうるものに限られるため、
得ようとする炭素材料の種類が限定される。以上のこと
より、この方法は工業化には困難が伴うとものと考えら
れる。
Each of these conventional metal-carbon composite materials uses a complex compound having a complicated structure as a raw material, and further uses as a raw material a polymer obtained by performing a polymerization reaction including complicated steps. Moreover, in the subsequent firing step, the rate of temperature rise must be low in order to promote the slow carbonization of the polymer. Therefore, preparation requires a lot of time and cost, and the obtained product is inevitably expensive. Furthermore, since the kinds of metals to be dispersed are limited to those that can coordinate to the complex compound that is the raw material,
The type of carbon material to be obtained is limited. From the above, it is considered that this method is difficult to industrialize.

【0005】その他の方法としては、有機化合物に周期
表第IV族元素のハロゲン化物を炭素化する方法(特開平
2−133372号)、また、有機物に平均径1μm以
下の金属酸化物を混合した後炭素化する方法(特開平2
−6308号)などが開示されているが、これらの方法
においても金属の種類が限られること、炭素化時に有毒
ガスの発生があること、さらに金属の分散状態が必ずし
も均一な微粒子状のものでない等の問題点がある。
Another method is to carbonize a halide of a Group IV element of the periodic table into an organic compound (JP-A-2-133372), or to mix an organic compound with a metal oxide having an average diameter of 1 μm or less. Method for post-carbonization
No. 6308) is disclosed, but also in these methods, the kinds of metals are limited, toxic gas is generated during carbonization, and the dispersed state of the metal is not necessarily in the form of fine particles. There are problems such as.

【0006】[0006]

【課題を解決するための手段】本発明は上述した点に鑑
みてなさたものであり、金属種類の選択の多様化が図ら
れるとともに、微粒子の金属種が材料中に均一に分散し
た金属分散炭素を得るための工程の容易化が図られ、さ
らには、炭素マトリックスの多孔化、微細細孔化などの
多様化が図られた方法を提供することを目的としてい
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned points, and it is possible to diversify the selection of metal types and to disperse metal species of fine particles uniformly in a material. It is an object of the present invention to provide a method in which the process for obtaining carbon is facilitated and further, the carbon matrix is diversified such as porous and fine pores.

【0007】先に、本発明者らは、炭素質物質に対して
化学的処理を行いある種の官能基を導入することによ
り、微粉化性、可溶化性、発泡性およびバインダー性な
どの新しい機能を付与することができることを見出して
いる(特開昭63−139080号、特開昭63−13
9011号、特開昭64−9808号、特願平2−20
7770号、特願平3−72458号)。本発明者らは
さらに鋭意研究の結果、この化学処理物が金属イオンと
のイオン交換性を有することを利用して、該処理物に金
属塩を接触させることにより金属イオンが該処理物中に
分散し、しかもその金属イオンは焼成処理後においても
金属種として炭素中に均一な分散状態で存在していると
の知見を得て本発明を完成するに至ったものである。
Previously, the present inventors have conducted a chemical treatment on a carbonaceous material to introduce a functional group of a certain kind, whereby a new property such as pulverization property, solubilization property, foaming property and binder property has been obtained. It has been found that a function can be imparted (JP-A-63-139080, JP-A-63-13).
9011, JP-A-64-9808, Japanese Patent Application No. 2-20
7770, Japanese Patent Application No. 3-72458). As a result of further intensive studies, the present inventors have utilized the fact that this chemically treated product has an ion-exchange property with a metal ion to bring the metal salt into contact with the treated product by bringing a metal salt into contact with the treated product. The present invention has been completed based on the finding that the metal ions are dispersed and are present in the carbon in a uniformly dispersed state as a metal species even after the baking treatment.

【0008】すなわち、本発明における金属分散炭素の
製造方法は、炭素と水素との原子比(C/H)が0.5
5〜4.1の範囲にありかつ軟化点が40℃以上の炭素
質物質に対して化学的処理を行うことによって該炭素質
物質の元素分析値における酸素分の増加量が20.0重
量%以上となるように調製し、次いでこの化学的処理さ
れた炭素質物質に金属塩を接触させた後、不活性雰囲気
中において500〜2000℃の温度範囲で焼成するこ
とを特徴とするものである。
That is, in the method for producing metal-dispersed carbon according to the present invention, the atomic ratio of carbon to hydrogen (C / H) is 0.5.
By chemically treating a carbonaceous material having a softening point of 40 ° C. or higher in the range of 5 to 4.1, the increase in oxygen content in the elemental analysis value of the carbonaceous material is 20.0% by weight. It is characterized in that it is prepared as described above, then, a metal salt is brought into contact with this chemically treated carbonaceous material, and then baked in a temperature range of 500 to 2000 ° C. in an inert atmosphere. .

【0009】以下、本発明をさらに詳細に説明する。 (1)炭素質材料 本発明に係る金属分散炭素材料の原料である炭素質物質
は、石炭、重質歴青物である石油系または(および)石
炭系のピッチおよび(または)重質油類、あるいはこれ
らピッチおよび(または)重質油類の熱処理によって製
造される炭素質メソフェースおよび(または)生コーク
スなどが用いられ得る。
The present invention will be described in more detail below. (1) Carbonaceous Material The carbonaceous material that is a raw material of the metal-dispersed carbon material according to the present invention is coal, petroleum-based or (and) coal-based pitch and / or heavy oil that is a heavy bituminous product, Alternatively, carbonaceous mesophase and / or raw coke produced by heat treatment of these pitches and / or heavy oils may be used.

【0010】これら炭素質物質の原料として用いられる
石炭は亜炭、かっ炭、無煙炭等の石炭類また、ピッチお
よび(または)重質油としては、コールタールピッチ、
石炭液化物の石炭系ピッチ、石油の蒸溜残渣油、ナフサ
の熱分解時に副生するナフサタールピッチ、ナフサ等の
流動接触分解法(FCC法)で副生するFCCデカント
オイル等の石油系ピッチおよび(または)重質油、PV
C等の合成高分子の熱分解で得られるピッチ等が挙げら
れるが、炭素化処理によって易黒鉛性炭素を与えるもの
であれば特に種類は問わない。但し、本発明における炭
素質物質としては、炭素と水素との原子比(C/H)が
0.55〜4.1の範囲にあり、かつ、軟化点が40℃
以上のものを用いる。上記原子比が0.55未満または
4.1を越えると、目的とする良好な金属分散炭素材料
を得ることが難しくなるので好ましくない。
The coal used as a raw material for these carbonaceous substances is coal such as lignite, brown coal, anthracite, and pitch and / or heavy oil is coal tar pitch,
Coal liquefied coal pitch, petroleum distillation residue oil, naphtha tar pitch by-produced during thermal decomposition of naphtha, petroleum pitch such as FCC decant oil by-produced by fluid catalytic cracking (FCC method) such as naphtha, and (Or) heavy oil, PV
Examples thereof include pitches obtained by thermal decomposition of synthetic polymers such as C, but the kind is not particularly limited as long as carbonization treatment gives graphitizable carbon. However, as the carbonaceous material in the present invention, the atomic ratio (C / H) of carbon and hydrogen is in the range of 0.55 to 4.1, and the softening point is 40 ° C.
Use the above. If the atomic ratio is less than 0.55 or exceeds 4.1, it is difficult to obtain the desired good metal-dispersed carbon material, which is not preferable.

【0011】また、軟化点については、40℃以上とす
ることが肝要である。本発明の方法においては、炭素質
物質を化学的処理する方法が不均一系反応で行われる
が、この不均一系反応を液‐固系もしくは気‐固系反応
とすることより化学的処理操作を効率的に行うことがで
きるので好ましい。そのため炭素質物質の軟化点が40
℃未満では、効率的な化学的処理操作を行うことが困難
となるので好ましくない。
It is important that the softening point is 40 ° C. or higher. In the method of the present invention, a method for chemically treating a carbonaceous substance is carried out by a heterogeneous reaction, but by treating this heterogeneous reaction as a liquid-solid system or a gas-solid system reaction, a chemical treatment operation is performed. Is preferable because it can be efficiently performed. Therefore, the softening point of carbonaceous material is 40
When the temperature is lower than 0 ° C, it becomes difficult to perform an efficient chemical treatment operation, which is not preferable.

【0012】40℃未満の軟化点を有するピッチを用い
る場合においては、予め、エアーブローイング処理を行
うことによって軟化点を40℃以上に調整しておくこと
が必要である。勿論、エアーブローイング処理は軟化点
40℃以上を有するピッチに対しても予め行ってもよ
く、このような態様も本発明の範囲に含まれる。
When a pitch having a softening point of less than 40 ° C. is used, it is necessary to previously adjust the softening point to 40 ° C. or higher by performing an air blowing process. Of course, the air blowing treatment may be performed in advance even on a pitch having a softening point of 40 ° C. or higher, and such an embodiment is also included in the scope of the present invention.

【0013】さらに本発明においては、ピッチ類を熱処
理して得られる炭素質メソフェースや生コークスも、上
記の条件を具備する限りにおいて、原料として用いるこ
とができる。 (2)化学的処理物 この化学的処理は、次の工程における金属とのイオン交
換性を発現させるために必要な、カルボキシル基、水酸
基、スルホン酸基などの官能基を芳香族置換反応もしく
は側鎖の酸化反応により炭素質物質に導入するために行
うが、化学的処理された該炭素質物質の元素分析値にお
ける酸素分の増加量を20.0重量%以上になるように
制御することが肝要である。
Further, in the present invention, carbonaceous mesophase and raw coke obtained by heat-treating pitches can also be used as a raw material as long as the above conditions are satisfied. (2) Chemically treated product This chemically treated product is an aromatic substitution reaction or side reaction of a functional group such as a carboxyl group, a hydroxyl group or a sulfonic acid group, which is necessary for exhibiting ion exchangeability with a metal in the next step. It is carried out in order to introduce into the carbonaceous substance by chain oxidation reaction, but it is possible to control the increase of oxygen content in the elemental analysis value of the chemically treated carbonaceous substance to be 20.0% by weight or more. It is essential.

【0014】この酸素分の増加率は、得られる金属イオ
ン交換体のイオン交換量や、金属の分散度を優れたもの
にする上で特に重要である。すなわち、酸素分の増加量
が20.0重量%未満の場合においては、良好な分散状
態を示す金属分散炭素を得ることが困難となるので好ま
しくない。
The rate of increase of the oxygen content is particularly important for making the ion exchange amount of the obtained metal ion exchanger and the dispersity of the metal excellent. That is, when the amount of increase in the oxygen content is less than 20.0% by weight, it is difficult to obtain metal-dispersed carbon exhibiting a good dispersion state, which is not preferable.

【0015】上述した化学的処理を行う方法としては、
硝酸もしくは硫酸と硝酸との混酸または(及び)過酸化
水素水、重クロム酸塩水溶液、過マンガン酸塩水溶液な
どの酸化剤で炭素質物質を処理することによってこれを
行うことができる。この場合の硫酸と硝酸はいずれも高
濃度のもの、すなわち、硫酸では95%以上、硝酸では
60%以上の濃度のものが好ましく使用される。また、
硫酸と硝酸との混酸は種々の混合割合のものが用いられ
る。さらに、酸化剤として用いる溶液も30%以上の高
濃度のものが好ましく用いられる。 (3)金属塩 本発明に用いる金属塩とは、広義に解釈されるべきであ
り、硝酸塩、硫酸塩、酢酸塩、塩化物などの金属と酸と
の中和物や、複塩、錯体などの高次化合物の塩、さらに
はキレート化合物、金属カルボニル化合物などで、それ
自身が溶融してイオン化するか、溶媒に溶解したときに
イオン化するものが用いられる。
As a method of performing the above-mentioned chemical treatment,
This can be done by treating the carbonaceous material with nitric acid or a mixed acid of sulfuric acid and nitric acid or / and an oxidizing agent such as aqueous hydrogen peroxide, an aqueous dichromate solution, an aqueous permanganate solution. In this case, the sulfuric acid and nitric acid are both highly concentrated, that is, the sulfuric acid having a concentration of 95% or more and the nitric acid having a concentration of 60% or more are preferably used. Also,
As the mixed acid of sulfuric acid and nitric acid, various mixed ratios are used. Further, the solution used as the oxidant is preferably a solution having a high concentration of 30% or more. (3) Metal salt The metal salt used in the present invention should be interpreted in a broad sense, and includes neutralized products of metals and acids such as nitrates, sulfates, acetates, chlorides, double salts and complexes. A salt of a higher-order compound, a chelate compound, a metal carbonyl compound, or the like, which is itself melted and ionized, or ionized when dissolved in a solvent is used.

【0016】溶媒は金属塩を溶解して金属イオンを生じ
るものであれば特に限定はされない。例えば、水、酸性
もしくは塩基性水溶液、アルコール類、ケトン類、エー
テル類、アミン類、カルボン酸類、複素環化合物などの
極性有機溶剤などがあるが、中でも水が簡便に用いられ
る。 (4)金属塩溶液との接触 上記(2)において調製した化学処理物中には、反応に
より導入された官能基(カルボニル基、カルボキシル
基、水酸基、スルホン酸基など)が存在する。これらの
官能基はイオン性溶媒中でのイオン化性が高いため、金
属イオンと容易にイオン交換し、金属イオンが化学処理
物中に取り込まれる。しかも、官能基は化学処理物中の
内部まで均一に導入されているため、金属イオンが化学
処理物中に均一に取り込まれる。また、この反応は室温
で速やかに起こるため、化学処理物と金属塩溶液とを接
触させる程度でよい。過剰な金属塩溶液は必要に応じて
ろ過などによって分離するが、混合物をそのまま乾燥し
てもよい。
The solvent is not particularly limited as long as it dissolves the metal salt and produces a metal ion. Examples thereof include water, acidic or basic aqueous solutions, alcohols, ketones, ethers, amines, carboxylic acids, and polar organic solvents such as heterocyclic compounds. Among them, water is conveniently used. (4) Contact with metal salt solution In the chemically treated product prepared in (2) above, there are functional groups (carbonyl group, carboxyl group, hydroxyl group, sulfonic acid group, etc.) introduced by the reaction. Since these functional groups have high ionizability in an ionic solvent, they are easily ion-exchanged with metal ions, and the metal ions are incorporated into the chemically treated product. Moreover, since the functional group is uniformly introduced into the chemically treated product, the metal ions are uniformly incorporated into the chemically treated product. Moreover, since this reaction occurs rapidly at room temperature, it is sufficient to bring the chemically treated product into contact with the metal salt solution. The excess metal salt solution is separated by filtration or the like as necessary, but the mixture may be dried as it is.

【0017】先に述べたように、該化学処理物はバイン
ダー性がある。従って、金属塩と接触させた後の混合ス
ラリーを、そのまま、もしくはフィラーとなるものを混
合した後、常法の型込め成型器などを用いてブロック体
に成型することによって、ブロック状の金属分散炭素材
料を製造することができる。このとき、フィラーの混合
は溶媒の除去後に行ってもよい。また、溶媒の除去法と
して噴霧乾燥法を用いることにより、球状に造粒もしく
は賦型することも可能である。
As mentioned above, the chemically treated product has a binder property. Therefore, the mixed slurry after being brought into contact with the metal salt is mixed as it is or after being mixed as a filler, and then molded into a block body using a conventional molding and molding machine to obtain a block-shaped metal dispersion. A carbon material can be manufactured. At this time, the mixing of the filler may be performed after removing the solvent. Further, by using a spray drying method as a method for removing the solvent, it is also possible to granulate or shape into a spherical shape.

【0018】ところで、(2)の方法で炭素質物質を調
整して得られた化学的処理物は、親水性の官能基の作用
により、塩基性水溶液もしくは極性の有機溶媒に可溶性
を示すことが知られている(特願平2−207770
号、3−72458号)。従って、金属塩を溶解する溶
媒として塩基性水溶性もしくは極性の有機溶媒を用いた
場合には、化学的処理物も溶媒に溶解するため、金属イ
オンとのイオン交換物は一旦均一な溶液状態もしくは一
部が溶解した懸濁状態となる。このときに可溶状態とな
った成分は、pHの調整や、溶媒の蒸発により析出させ
て回収される。このものは、溶解状態を経ない場合に比
べて、金属が化学処理物中において、より均一に分散し
た状態となるため、分散度を上げるときは本法が好まし
く用いられる。この溶液状の混合物についても噴霧乾燥
法を用いることにより、球状の金属分散炭素材料を製造
することができる。 (5)焼成処理 上記(4)で調製したものを500℃〜2000℃の範
囲で不活性雰囲気下焼成処理する。焼成温度は分散させ
る金属の種類によるが、通常は、金属の融点以下の温度
とするのが好ましい。ただし、融点以上の温度に焼成条
件(温度、時間)を調整することは高分散した金属粒子
同士した金属粒子同士の合体が起こるため、金属粒径を
大きい方に調整することになる。
By the way, the chemically treated product obtained by preparing the carbonaceous substance by the method (2) may be soluble in a basic aqueous solution or a polar organic solvent due to the action of the hydrophilic functional group. Known (Japanese Patent Application No. 2-207770)
No. 3-72458). Therefore, when a basic water-soluble or polar organic solvent is used as the solvent for dissolving the metal salt, the chemically treated product is also dissolved in the solvent, and therefore the ion exchange product with the metal ion is once in a uniform solution state or It becomes a suspended state in which a part is dissolved. The component in the soluble state at this time is recovered by being precipitated by adjusting the pH and evaporating the solvent. In this case, the metal is in a more uniformly dispersed state in the chemically treated product as compared with the case where it does not go through the dissolved state, so this method is preferably used when increasing the degree of dispersion. A spherical metal-dispersed carbon material can be produced by using the spray-drying method for this solution mixture. (5) Firing treatment The material prepared in (4) above is fired in an inert atmosphere in the range of 500 ° C to 2000 ° C. Although the firing temperature depends on the kind of the metal to be dispersed, it is usually preferable to set the temperature to the melting point of the metal or lower. However, adjusting the firing conditions (temperature, time) to a temperature equal to or higher than the melting point causes coalescence of highly dispersed metal particles with each other, so that the metal particle size is adjusted to a larger one.

【0019】昇温速度は通常は限定しないが、特に、多
孔質の金属分散炭素材料を得たい場合には、官能基とし
てニトロ基が含まれる化学処理を行い、さらに昇温速度
60℃/hr以上で焼成することによってこれを得るこ
とができる。
The rate of temperature increase is not usually limited, but in particular, in order to obtain a porous metal-dispersed carbon material, a chemical treatment containing a nitro group as a functional group is performed, and the rate of temperature increase is 60 ° C./hr. This can be obtained by firing as described above.

【0020】また、上記(4)の金属塩溶液との接触に
おいて、上記(2)において調整した化学処理物中の官
能基を残存させるように該接触を調整することによっ
て、焼成時に膨張と発泡反応を行わせてセル状に発達し
た多孔質構造を形成することができる。そしてこのセル
状の多孔質構造を有する金属分散炭素材料は、焼成によ
り黒鉛化構造が発達し、これにより圧縮−回復特性の弾
性機能を有する金属分散炭素材料を得ることができる。
このように、本発明においては、化学的処理された炭素
質物質中の官能基を核炭素質物質中に残存させるように
前記金属塩の接触工程を制御することによって、多孔質
構造を形成しかつ多孔質構造中に金属を分散させてなる
炭素材料を得ることができるのである。
Further, in the contact with the metal salt solution of the above (4), the contact is adjusted so that the functional group in the chemical treatment product prepared in the above (2) is left, so that expansion and foaming at the time of firing. The reaction can be carried out to form a cellularly developed porous structure. Then, the metal-dispersed carbon material having the cellular porous structure has a graphitized structure developed by firing, whereby a metal-dispersed carbon material having an elastic function of compression-recovery characteristics can be obtained.
As described above, in the present invention, a porous structure is formed by controlling the contact step of the metal salt so that the functional groups in the chemically treated carbonaceous material remain in the nuclear carbonaceous material. Moreover, it is possible to obtain a carbon material in which a metal is dispersed in a porous structure.

【0021】ところで、この焼成処理において分散され
ている金属種が、金属の種類や同時に含有される元素組
成にもよるが、炭化物、酸化物、硫化物、窒化物などを
生成する。特に、炭化物は金属とマトリックス炭素との
反応で生成し易く、しかも、金属‐炭素界面に生成した
炭化物層は金属の化学的安定性を向上させる。
By the way, the metal species dispersed in this calcination process generate carbides, oxides, sulfides, nitrides, etc., depending on the kind of metal and the elemental composition contained at the same time. In particular, carbide is likely to be formed by the reaction between the metal and the matrix carbon, and the carbide layer formed at the metal-carbon interface improves the chemical stability of the metal.

【0022】また、ほとんどの金属は炭素の結晶の発達
を促す触媒作用があることが知られている(「改訂炭素
材料入門」, 炭素材料協会,p.34、A.Oya,
S.Otani,Carbon,19,391(198
1)等)。上記本発明の方法によれば、これらの金属を
用いた場合には、比較的低い焼成温度で黒鉛構造が発現
しやすくなり、したがって、炭素質の黒鉛化を進めよう
とする場合には温度の低下を図ることができる。
It is known that most metals have a catalytic action for promoting the development of carbon crystals ("Introduction to Revised Carbon Materials", Japan Carbon Society, p.34, A. Oya,
S. Otani, Carbon, 19, 391 (198
1) etc.). According to the method of the present invention, when these metals are used, the graphite structure is likely to be developed at a relatively low firing temperature, and therefore, when the graphitization of carbonaceous material is attempted to proceed, It can be lowered.

【0023】さらに、金属塩溶液の溶媒として、KO
H,NaOHなどのアルカリ金属水酸化物水溶液を用い
た場合には、これらの賦活助剤としての作用により、焼
成処理後、水洗処理することで微細細孔を有する金属分
散炭素材料が得られる。また、微細細孔を形成させる他
の方法としては、通常の炭素材から活性炭を製造する方
法としてよく知られている、ガス賦活法や薬品賦活法が
そのまま焼成処理品に適用できる。 (6)金属含有量 該金属分散炭素中の金属含有量は望ましくは1〜30重
量%である。1重量%未満では金属添加の効果が小さ
く、また、30重量%を超えると均一な分散状態が得ら
れ難い。この金属含有量を調整する方法としては以下の
方法がある。
Further, as a solvent for the metal salt solution, KO
When an aqueous solution of an alkali metal hydroxide such as H or NaOH is used, the metal-dispersed carbon material having fine pores can be obtained by performing a rinsing treatment and a water rinsing treatment due to the action of these activating aids. Further, as another method for forming fine pores, a gas activation method or a chemical activation method, which is well known as a method for producing activated carbon from an ordinary carbon material, can be directly applied to the calcined product. (6) Metal Content The metal content in the metal-dispersed carbon is preferably 1 to 30% by weight. If it is less than 1% by weight, the effect of metal addition is small, and if it exceeds 30% by weight, it is difficult to obtain a uniform dispersed state. The method for adjusting the metal content is as follows.

【0024】すなわち、炭素質物質の化学処理におい
て、温度、時間、酸濃度などの処理条件を調整すると処
理物中の官能基の量を調整することができる。従って、
それによって金属イオンとのイオン交換量が変化し、金
属量が調整できることになる。また、化学処理物と接触
させる金属塩溶液の濃度を変えることにより金属イオン
量の絶対量が変わるため、金属量の調整が可能である。
さらに、焼成処理物を金属溶解性の溶液、例えば鉱酸な
どを用いて洗浄処理することによっても可能である。と
ころで、この処理により、炭素表面に存在する金属のみ
ならず、マトリックス中に分散している金属粒子をも溶
出させるので、該処理物の多孔化も行われ得る。
That is, in the chemical treatment of the carbonaceous substance, the amount of functional groups in the treated product can be adjusted by adjusting the treatment conditions such as temperature, time and acid concentration. Therefore,
As a result, the amount of ion exchange with the metal ions changes, and the amount of metal can be adjusted. In addition, since the absolute amount of the metal ion is changed by changing the concentration of the metal salt solution that is brought into contact with the chemically treated product, the amount of metal can be adjusted.
Furthermore, it is also possible to wash the calcined product with a metal-soluble solution, such as a mineral acid. By the way, not only the metal existing on the carbon surface but also the metal particles dispersed in the matrix are eluted by this treatment, so that the treated product can be made porous.

【0025】一方、炭素量を調整することでも金属含有
量を調整することが可能であり、焼成処理時に雰囲気を
酸化雰囲気にするか、焼成処理物を酸化処理するこによ
り可能である。また、この方法によっても、多孔化や、
さらに、活性化のための金属の表面出しが行われる。
On the other hand, the metal content can be adjusted by adjusting the amount of carbon, and it is possible to make the atmosphere into an oxidizing atmosphere during the firing treatment or to subject the fired product to an oxidation treatment. Also, by this method, porosity,
Further, the surface of the metal for activation is exposed.

【0026】以上のようにして得られる金属分散炭素材
料の表面状態、金属の同定、分散度および含有量を以下
の方法で確認した。すなわち、表面状態は走査型電子顕
微鏡(SEM)で観察し、巨視的な金属の同定や分散状
態は電子線マイクロアナライザー(EPMA)で解析し
た。また、そのときの金属の結晶性についてX線回折分
析を行った。さらに、微視的な金属の分布や分散状態お
よび炭素の状態は、透過型電子顕微鏡(TEM)により
観察した。金属分散量は、試料を空気中800℃で灰化
した後、JIS−KO102に準拠して炎光法で測定し
た。
The surface state, metal identification, dispersity and content of the metal-dispersed carbon material obtained as described above were confirmed by the following methods. That is, the surface state was observed with a scanning electron microscope (SEM), and the macroscopic identification and dispersion state of metal were analyzed with an electron beam microanalyzer (EPMA). Further, X-ray diffraction analysis was performed on the crystallinity of the metal at that time. Further, the microscopic distribution and dispersion state of metal and the state of carbon were observed by a transmission electron microscope (TEM). The metal dispersion amount was measured by the flame method according to JIS-KO102 after ashing the sample in air at 800 ° C.

【0027】[0027]

【実施例】以下、本発明の実施例を説明するが、本発明
はこれら実施例の記載に制限されるものではない。
EXAMPLES Examples of the present invention will be described below, but the present invention is not limited to the description of these examples.

【0028】実施例1 デイレードコーカー法で得られた石油系生コークスを
0.35mm以下に粉砕した。この元素組成は炭素9
5.1重量%、水素3.1重量%、窒素0.6重量%で
あった。この5gを300mlの三角フラスコに96%
硫酸と70%硝酸の1:1容量比の混酸100mlを入
れた中に攪拌しながら少量ずつ全量加えた後、予め80
℃に加熱した油浴で4時間保持した。ついで、ガラスフ
ィルター(No.4)でろ過し、水で十分洗浄した後、
乾燥した。収率は140重量%であった。この元素組成
は、炭素52.3重量%、水素1.7重量%、窒素6.
6重量%、酸素39.4重量%であった。得られた化学
的処理物10gに硝酸コバルト6水和物5gを水50m
lに溶解させた溶液を加え、攪拌した。100℃で一晩
乾燥した後、黒鉛ルツボに入れ、窒素ガス流通下、25
℃/hrで昇温し1000℃で1時間保持して焼成し
た。収率は化学的処理物に対して30.6重量%であっ
た。この焼成物について、さらに、10%の熱塩酸中で
処理した後、充分水洗して乾燥した。この酸洗浄による
重量減少は5.0重量%であった。
Example 1 A petroleum-based raw coke obtained by the delayed coker method was pulverized to 0.35 mm or less. This elemental composition is carbon 9
The content was 5.1% by weight, 3.1% by weight hydrogen, and 0.6% by weight nitrogen. 96% of this 5 g in a 300 ml Erlenmeyer flask
After adding 100 ml of a mixed acid of sulfuric acid and 70% nitric acid in a volume ratio of 1: 1 in 100 ml with stirring, add 80
It was kept in an oil bath heated to ° C for 4 hours. Then, after filtering with a glass filter (No. 4) and thoroughly washing with water,
Dried. The yield was 140% by weight. The elemental composition is as follows: carbon 52.3% by weight, hydrogen 1.7% by weight, nitrogen 6.
It was 6% by weight and oxygen was 39.4% by weight. 5 g of cobalt nitrate hexahydrate was added to 10 g of the obtained chemically treated product in 50 m of water.
The solution dissolved in 1 was added and stirred. After drying at 100 ° C. overnight, put in a graphite crucible, and under a nitrogen gas flow, 25
The temperature was raised at .degree. C./hr and the temperature was kept at 1000.degree. C. for 1 hour for firing. The yield was 30.6% by weight based on the chemically treated product. The fired product was further treated in 10% hot hydrochloric acid, washed thoroughly with water and dried. The weight loss due to this acid washing was 5.0% by weight.

【0029】このようにして得られた試料(第1表中の
番号1)について、コバルトの分散状態をEPMAおよ
びTEMで観察した結果を図1〜図5に示す。これらの
結果より、コバルトは炭素マトリックス中に約10nm
の微粒子となって、均一に分散していることがわかる。
また、X線回折結果を図6に示した。ピークは弱いがコ
バルト金属が確認された。さらに、同様の方法で金属の
種類や塩の種類を変えて行った結果を併せて表1に示
す。これについて、EPMA、SEM等の測定結果を図
5〜図26に示す。また、第1表の番号2,6,10お
よび12について、金属の定量分析を行った。その結果
も第1表中に示す。
With respect to the sample (No. 1 in Table 1) thus obtained, the dispersion state of cobalt was observed by EPMA and TEM, and the results are shown in FIGS. From these results, cobalt is about 10 nm in the carbon matrix.
It can be seen that they become fine particles and are uniformly dispersed.
The X-ray diffraction result is shown in FIG. Although the peak was weak, cobalt metal was confirmed. Table 1 also shows the results obtained by changing the type of metal and the type of salt by the same method. About this, the measurement result of EPMA, SEM, etc. is shown in FIGS. Further, with respect to Nos. 2, 6, 10 and 12 in Table 1, quantitative analysis of metals was performed. The results are also shown in Table 1.

【0030】[0030]

【表1】 実施例2 予め減圧蒸留により、沸点約430℃以下の低沸点成分
を除去したFCCデカントオイル10kgを20Lの容
器に入れ、窒素ガス気流中、攪拌しながら430℃まで
加熱し、12時間保持した後、加熱を停止し放冷した。
内部の温度が250℃に達したとき、内容物を取り出し
4.0kgのピッチを得た。このピッチをバケット型の
遠心分離機を用いて50rpm、280℃60分間処理
して光学的異方性成分を分離した。得られたピッチの収
量は3.6kgで、光学的にほぼ等方性を示した。これ
をさらに、425℃まで加熱し、1時間保持したのち、
400℃まで降温して10時間保った。得られたものの
収量は1.7kgで、光学的に全面が異方性を示した
(炭素質メソフェース)。トルエン不溶分78重量%,
キノリン不溶分40重量%,軟化点260℃で、元素分
析値は炭素95.3重量%,水素4.3重量%であっ
た。
[Table 1] Example 2 10 kg of FCC decant oil from which low-boiling components having a boiling point of about 430 ° C. or less were previously removed by vacuum distillation was placed in a 20 L container, heated to 430 ° C. with stirring in a nitrogen gas stream, and held for 12 hours. The heating was stopped and the mixture was allowed to cool.
When the internal temperature reached 250 ° C., the contents were taken out to obtain 4.0 kg of pitch. This pitch was treated with a bucket centrifuge at 50 rpm and 280 ° C. for 60 minutes to separate the optically anisotropic component. The yield of the obtained pitch was 3.6 kg, which was optically isotropic. This is further heated to 425 ° C and held for 1 hour,
The temperature was lowered to 400 ° C. and kept for 10 hours. The yield of the obtained product was 1.7 kg, and the entire surface was optically anisotropic (carbonaceous mesophase). 78% by weight of toluene insoluble matter,
The quinoline insoluble content was 40% by weight, the softening point was 260 ° C., and the elemental analysis values were carbon 95.3% by weight and hydrogen 4.3% by weight.

【0031】この炭素質メソフェースを0.25mm以
下に粉砕し、5gを300mlの三角フラスコに96%
硫酸を100ml入れた中に加え、100℃で加熱した
油浴で1時間保持した。次いでガラスフィルター(N
o.4)でろ過し、水で十分洗浄した後、乾燥した。収
率は130重量%で、元素組成は、炭素65.4重量
%、水素3.0重量%、酸素25.5重量%、硫黄6.
1重量%、であった。得られた化学処理物について実施
例1と同様に硝酸コバルト6水和物を用いて実施した。
1000℃焼成品の収率は、化学的処理物に対して5
7.3重量%で、10%の熱塩酸で処理した後の重量減
少は12.5重量%であった。この試料のEPMAおよ
びSEM像を図13に示す。
This carbonaceous mesophase was pulverized to 0.25 mm or less, and 5 g was put in a 300 ml Erlenmeyer flask at 96%.
Sulfuric acid was added to 100 ml and the mixture was kept in an oil bath heated at 100 ° C. for 1 hour. Then glass filter (N
o. It was filtered in 4), washed thoroughly with water, and then dried. The yield was 130% by weight, and the elemental composition was as follows: carbon 65.4% by weight, hydrogen 3.0% by weight, oxygen 25.5% by weight, sulfur 6.
It was 1% by weight. The obtained chemically treated product was used in the same manner as in Example 1 using cobalt nitrate hexahydrate.
The yield of 1000 ° C calcined product is 5 with respect to the chemically treated product.
At 7.3% by weight, the weight loss after treatment with 10% hot hydrochloric acid was 12.5% by weight. EPMA and SEM images of this sample are shown in FIG.

【0032】実施例3 実施例2に用いたと同じ炭素質メソフェース5gを、3
00mlの三角フラスコに31%過酸化水素水を100
ml入れた中に加え、100℃で加熱した油浴で3時間
保持した。次いでガラスフィルター(No.4)でろ過
し、水洗した後、乾燥した。収率は90%で、元素組成
は、炭素75.8重量%、水素3.0重量%、酸素2
0.5重量%であった。得られた化学処理物について実
施例1と同様に硝酸コバルト6水和物を用いて実施し
た。1000℃焼成品の収率は、化学的処理物に対して
59.1重量%で、10%の熱塩酸で処理した後の重量
減少は10.8重量%であった。この試料について、E
PMA観察した結果を図14に示す。実施例4 実施例1で示した第1表中No.14の試料(石油系生
コークスの化学的処理物10gに、塩化第二鉄6水和物
5gを水溶液中で混合した後、蒸発乾固したもの)1
1.7gを、500mlの円筒状ガラス容器に入れ、3
00℃まで加熱した塩浴中に投入し、30分間保持し
た。さらにアルゴン気流中、400℃/hrの昇温速度
で2000℃まで加熱し、30分間保持して黒鉛化処理
した。収率は、原料(化学的処理物+塩化第二鉄)に対
して17.1wt%であった。次に、圧縮弾性を以下の
ようにして求めた。黒鉛化処理した試料を0.3mm以
下とし、その0.2gを内径10mmのシリンダー状容
器に入れ、上部から1kg/cm2 の荷重を加えた。このと
きの試料高さを基準(h0 )とした。そして500もし
くは5000kg/cm2 の荷重を加え高さを測定した(h
1 )。ついで、荷重を除き、そのときの高さをh2 とし
た。これらの値から次式によって充填密度、圧縮率およ
び回復率を求めた。 充填密度(g/cm3 )=試料重量(g)÷0.52 πho …(1) 圧縮率(%)=((ho −h1 )÷h0 )×100 …(2) 回復率(%)=((h2 −h1 )÷(h0 −h1 ))×100 …(3) その結果を第2表に示す。さらに、X線回折法(学振
法)により、スペクトル中のシャープなピークについ
て、結晶性パラメータを求めたところ、d002=0.
3354nm、Lc>100nmであった。 第 2 表 充填密度 荷重 圧縮率 回復率 (g/cm3 ) (kg/cm2 ) (%) (%) 0.25 500 85 89 5000 92 85
Example 3 5 g of the same carbonaceous mesophase used in Example 2 was added to 3 g.
Add 100% 31% hydrogen peroxide to a 00 ml Erlenmeyer flask.
The solution was added to the solution in a ml, and the mixture was kept in an oil bath heated at 100 ° C. for 3 hours. Then, it was filtered with a glass filter (No. 4), washed with water, and then dried. The yield is 90% and the elemental composition is as follows: carbon 75.8% by weight, hydrogen 3.0% by weight, oxygen 2
It was 0.5% by weight. The obtained chemically treated product was used in the same manner as in Example 1 using cobalt nitrate hexahydrate. The yield of the 1000 ° C. calcined product was 59.1% by weight based on the chemically treated product, and the weight loss after the treatment with 10% hot hydrochloric acid was 10.8% by weight. For this sample, E
The results of PMA observation are shown in FIG. Example 4 No. 1 in Table 1 shown in Example 1 14 samples (10 g of chemically treated petroleum-based raw coke, 5 g of ferric chloride hexahydrate in an aqueous solution, and then evaporated to dryness) 1
Put 1.7g into a 500ml cylindrical glass container, 3
It was put into a salt bath heated to 00 ° C. and kept for 30 minutes. Furthermore, in an argon stream, it was heated to 2000 ° C. at a temperature rising rate of 400 ° C./hr and kept for 30 minutes for graphitization. The yield was 17.1 wt% based on the raw material (chemically treated product + ferric chloride). Next, the compression elasticity was determined as follows. The graphitized sample was 0.3 mm or less, and 0.2 g of the sample was placed in a cylindrical container having an inner diameter of 10 mm, and a load of 1 kg / cm 2 was applied from above. The height of the sample at this time was used as a reference (h0). Then, a load of 500 or 5000 kg / cm 2 was applied and the height was measured (h
1). Then, the load was removed and the height at that time was set to h2. From these values, the packing density, compression rate and recovery rate were calculated by the following equations. Packing density (g / cm 3 ) = Sample weight (g) ÷ 0.5 2 πho (1) Compressibility (%) = ((ho −h1) ÷ h0) × 100 (2) Recovery rate (%) = ((H2-h1) / (h0-h1)) * 100 (3) The results are shown in Table 2. Furthermore, when the crystallinity parameter was determined for a sharp peak in the spectrum by the X-ray diffraction method (Gakushin method), d002 = 0.
It was 3354 nm and Lc> 100 nm. Table 2 Packing density Load Compressibility Recovery rate (g / cm 3 ) (kg / cm 2 ) (%) (%) 0.25 500 85 85 89 5000 92 85

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1、No.1で得られたコバルト分散炭
素材のEPMA(電子線マイクロアナライザー)図。
FIG. 1 is a schematic diagram of Example 1, No. The EPMA (electron beam microanalyzer) figure of the cobalt dispersion carbon material obtained by 1.

【図2】実施例1、No.1で得られたコバルト分散炭
素材の画像解析結果を示すSEM(走査型電子顕微鏡)
写真。
FIG. 2 shows Example 1, No. SEM (scanning electron microscope) showing the image analysis result of the cobalt-dispersed carbon material obtained in 1.
Photo.

【図3】図2のSEM写真の画像解析写真。FIG. 3 is an image analysis photograph of the SEM photograph of FIG.

【図4】実施例1、No.1で得られたコバルト分散炭
素材のTEM(透過型電子顕微鏡)像。
FIG. 4 shows Example 1, No. 1 is a TEM (transmission electron microscope) image of the cobalt-dispersed carbon material obtained in 1.

【図5】図4の拡大写真。FIG. 5 is an enlarged photograph of FIG.

【図6】X線回折結果を示す回折グラフ。FIG. 6 is a diffraction graph showing an X-ray diffraction result.

【図7】実施例1、No.2(コバルト)のEPMA
図。
FIG. 7: Example 1, No. EPMA of 2 (cobalt)
Fig.

【図8】実施例1、No.3(コバルト)のEPMA
図。
FIG. 8: Example 1, No. EPMA of 3 (cobalt)
Fig.

【図9】実施例1、No.4(コバルト)のEPMA
図。
9 is a schematic diagram of Example 1, No. EPMA of 4 (cobalt)
Fig.

【図10】実施例1、No.5(ニッケル)のEPMA
図。
10 is a schematic diagram of Example 1, No. EPMA of 5 (nickel)
Fig.

【図11】実施例1、No.5(ニッケル)のSEM
像。
FIG. 11: Example 1, No. 5 (nickel) SEM
image.

【図12】実施例1、No.6(ニッケル)のEPMA
図。
12 is a schematic diagram of Example 1, No. EPMA of 6 (nickel)
Fig.

【図13】実施例1、No.7(ニッケル)のEPMA
図。
13 is a schematic diagram of Example 1, No. EPMA of 7 (nickel)
Fig.

【図14】実施例1、No.8(ニッケル)のEPMA
図。
14 is a schematic diagram of Example 1, No. 8 (nickel) EPMA
Fig.

【図15】実施例1、No.8(ニッケル)のSEM
像。
15 is a schematic diagram of Example 1, No. 8 (nickel) SEM
image.

【図16】実施例1、No.9(銅)のEPMA図。16 is a schematic diagram of Example 1, No. EPMA figure of 9 (copper).

【図17】実施例1、No.9(銅)のSEM像。FIG. 17: Example 1, No. 9 (copper) SEM image.

【図18】図17のSEM写真の画像解析写真。FIG. 18 is an image analysis photograph of the SEM photograph of FIG.

【図19】実施例1、No.9(銅)のX線回折結果を
示す回折グラフ。
19 is a schematic diagram of Example 1, No. The diffraction graph which shows the X-ray-diffraction result of 9 (copper).

【図20】実施例1、No.10(銅)のEPMA図。FIG. 20 shows Example 1, No. EPMA figure of 10 (copper).

【図21】実施例1、No.11(銅)のEPMA図。21 shows Example 1, No. EPMA diagram of 11 (copper).

【図22】実施例1、No.12(鉄)のSEM像。22 is a schematic diagram of Example 1, No. SEM image of 12 (iron).

【図23】実施例1、No.12(鉄)のTEM像。23 is a schematic diagram of Example 1, No. TEM image of 12 (iron).

【図24】図23の拡大写真。FIG. 24 is an enlarged photograph of FIG. 23.

【図25】実施例1、No.13(鉄)のEPMA図。25 is a schematic diagram of Example 1, No. EPMA diagram of 13 (iron).

【図26】実施例1、No.14(鉄)のEPMA図。26 is a schematic diagram of Example 1, No. EPMA diagram of 14 (iron).

【図27】実施例2のEPMA図。FIG. 27 is an EPMA diagram of Example 2.

【図28】実施例2のSEM像。28 is an SEM image of Example 2. FIG.

【図29】実施例3のEPMA図。FIG. 29 is an EPMA diagram of Example 3.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年6月24日[Submission date] June 24, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1、No.1で得られたコバルト分散炭
素材のEPMA(電子線マイクロアナライザー)図。
FIG. 1 is a schematic diagram of Example 1, No. The EPMA (electron beam microanalyzer) figure of the cobalt dispersion carbon material obtained by 1.

【図2】実施例1、No.1で得られたコバルト分散炭
素材の画像解析結果を示すセラミック材料の組織を示す
SEM(走査型電子顕微鏡)写真。
FIG. 2 shows Example 1, No. 1 is an SEM (scanning electron microscope) photograph showing the structure of a ceramic material showing the image analysis result of the cobalt-dispersed carbon material obtained in 1.

【図3】図2のSEM写真の画像解析のセラミック材料
の組織を示す写真。
FIG. 3 is a photograph showing the structure of a ceramic material in the image analysis of the SEM photograph of FIG.

【図4】実施例1、No.1で得られたコバルト分散炭
素材のTEM(透過型電子顕微鏡のセラミック材料の組
織を示す写真。
FIG. 4 shows Example 1, No. TEM of the cobalt-dispersed carbon material obtained in 1 (a photograph showing the structure of the ceramic material of a transmission electron microscope).

【図5】図4の拡大したセラミック材料の組織を示す写
真。
5 is a photograph showing the structure of the enlarged ceramic material of FIG.

【図6】X線回折結果を示す回折グラフ。FIG. 6 is a diffraction graph showing an X-ray diffraction result.

【図7】実施例1、No.2(コバルト)のEPMA
図。
FIG. 7: Example 1, No. EPMA of 2 (cobalt)
Fig.

【図8】雑誌例1、No.3(コバルト)のEPMA
図。
FIG. 8: Magazine example 1, No. EPMA of 3 (cobalt)
Fig.

【図9】実施例1、No.4(コバルト)のEPMA
図。
9 is a schematic diagram of Example 1, No. EPMA of 4 (cobalt)
Fig.

【図10】実施例1、No.5(ニッケル)のEPMA
図。
10 is a schematic diagram of Example 1, No. EPMA of 5 (nickel)
Fig.

【図11】実施例1、No.5(ニッケル)のSEMの
セラミック材料の組織を示す写真。
FIG. 11: Example 1, No. The photograph which shows the structure of the ceramic material of 5 (nickel) SEM.

【図12】実施例1、No.6(ニッケル)のEPMA
図。
12 is a schematic diagram of Example 1, No. EPMA of 6 (nickel)
Fig.

【図13】実施例1、No.7(ニッケル)のEPMA
図。
13 is a schematic diagram of Example 1, No. EPMA of 7 (nickel)
Fig.

【図14】実施例1、No.8(ニッケル)のEPMA
図。
14 is a schematic diagram of Example 1, No. 8 (nickel) EPMA
Fig.

【図15】実施例1、No.8(ニッケル)のSEMの
セラミック材料の組織を示す写真。
15 is a schematic diagram of Example 1, No. The photograph which shows the structure of the ceramic material of 8 (nickel) SEM.

【図16】実施例1、No.9(銅)のEPMA図。16 is a schematic diagram of Example 1, No. EPMA figure of 9 (copper).

【図17】実施例1、No.9(銅)のSEMのセラミ
ック材料の組織を示す写真。
FIG. 17: Example 1, No. The photograph which shows the structure of the ceramic material of 9 (copper) SEM.

【図18】図17のSEMの画像解析のセラミック材料
の組織を示す写真。
FIG. 18 is a photograph showing the structure of the ceramic material in the image analysis of the SEM of FIG.

【図19】実施例1、No.9(銅)のX線回折結果を
示す回折グラフ。
19 is a schematic diagram of Example 1, No. The diffraction graph which shows the X-ray-diffraction result of 9 (copper).

【図20】実施例1、No.10(銅)のEPMA図。FIG. 20 shows Example 1, No. EPMA figure of 10 (copper).

【図21】実施例1、No.11(銅)のEPMA図。21 shows Example 1, No. EPMA diagram of 11 (copper).

【図22】実施例1、No.12(鉄)のSEMのセラ
ミック材料の組織を示す写真。
22 is a schematic diagram of Example 1, No. The photograph which shows the structure of the ceramic material of 12 (iron) SEM.

【図23】実施例1、No.12(鉄)のTEMのセラ
ミック材料の組織を示す写真。
23 is a schematic diagram of Example 1, No. The photograph which shows the structure of the ceramic material of 12 (iron) TEM.

【図24】図23の拡大したセラミック材料の組織を示
す写真。
FIG. 24 is a photograph showing the structure of the enlarged ceramic material of FIG. 23.

【図25】実施例1、No.13(鉄)のEPMA図。25 is a schematic diagram of Example 1, No. EPMA diagram of 13 (iron).

【図26】実施例1、No.14(鉄)のEPMA図。26 is a schematic diagram of Example 1, No. EPMA diagram of 14 (iron).

【図27】実施例2のEPMA図。FIG. 27 is an EPMA diagram of Example 2.

【図28】実施例2のSEMのセラミック材料の組織を
示す写真。
28 is a photograph showing the structure of the ceramic material of the SEM of Example 2. FIG.

【図29】実施例3のEPMA図。FIG. 29 is an EPMA diagram of Example 3.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】炭素と水素との原子比(C/H)が0.5
5〜4.1の範囲にありかつ軟化点が40℃以上の炭素
質物質に対して化学的処理を行うことによって該炭素質
物質の元素分析値における酸素分の増加量が20.0重
量%以上となるように調製し、次いでこの化学的処理さ
れた炭素質物質に金属塩を接触させた後、不活性雰囲気
中において500〜2000℃の温度範囲で焼成するこ
とを特徴とする、金属分散炭素材料の製造方法。
1. The atomic ratio of carbon to hydrogen (C / H) is 0.5.
By chemically treating a carbonaceous material having a softening point of 40 ° C. or higher in the range of 5 to 4.1, the increase in oxygen content in the elemental analysis value of the carbonaceous material is 20.0% by weight. A metal dispersion characterized by being prepared as described above and then contacting the chemically treated carbonaceous substance with a metal salt, followed by firing in a temperature range of 500 to 2000 ° C. in an inert atmosphere. Carbon material manufacturing method.
【請求項2】炭素質物質が、炭素質メソフェース、石
炭、コークス、石油系および(または)石炭系のピッチ
および(または)重質油からなる、請求項1に記載の方
法。
2. The method of claim 1, wherein the carbonaceous material comprises carbonaceous mesophase, coal, coke, petroleum-based and / or coal-based pitch and / or heavy oil.
【請求項3】炭素質物質の軟化点を、エアーブローイン
グ処理によって40℃以上に調整する工程を含む、請求
項1に記載の方法。
3. The method according to claim 1, comprising the step of adjusting the softening point of the carbonaceous material to 40 ° C. or higher by an air blowing treatment.
【請求項4】化学的処理が、硝酸、硫酸もしくは硝酸と
硫酸との混酸および(または)過酸化水素水、重クロム
酸塩水溶液、過マンガン酸塩水溶液等の酸化剤で炭素質
物質を処理することからなる、請求項1に記載の方法。
4. The chemical treatment is carried out by treating the carbonaceous substance with nitric acid, sulfuric acid or a mixed acid of nitric acid and sulfuric acid and / or an oxidizing agent such as hydrogen peroxide solution, dichromate aqueous solution, permanganate aqueous solution. The method of claim 1, comprising:
【請求項5】金属塩が硝酸塩、硫酸塩、酢酸塩、塩化物
などの金属と酸との中和物、複塩、錯体などの高次化合
物の塩、キレート化合物、金属カルボニル化合物などの
溶媒に可溶なものからなる、請求項1に記載の方法。
5. A metal salt, such as a nitrate, a sulfate, an acetate, a neutralized product of a metal and an acid such as a chloride, a double salt, a salt of a higher compound such as a complex, a chelate compound, a solvent such as a metal carbonyl compound. The method according to claim 1, which is soluble in water.
【請求項6】前記化学的処理された炭素質物質中の官能
基を該炭素質物質中に残存させるように前記金属塩の接
触工程を制御することによって、多孔質構造を形成しか
つ多孔質構造中に金属を分散させるようにした、請求項
1に記載の方法。
6. A porous structure is formed and a porous structure is formed by controlling the contact process of the metal salt so that the functional group in the chemically treated carbonaceous material remains in the carbonaceous material. The method according to claim 1, wherein the metal is dispersed in the structure.
JP4332467A 1992-05-25 1992-11-18 Production of metal dispersed carbon material Pending JPH0640771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4332467A JPH0640771A (en) 1992-05-25 1992-11-18 Production of metal dispersed carbon material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP15740692 1992-05-25
JP4-157406 1992-05-25
JP4332467A JPH0640771A (en) 1992-05-25 1992-11-18 Production of metal dispersed carbon material

Publications (1)

Publication Number Publication Date
JPH0640771A true JPH0640771A (en) 1994-02-15

Family

ID=26484877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4332467A Pending JPH0640771A (en) 1992-05-25 1992-11-18 Production of metal dispersed carbon material

Country Status (1)

Country Link
JP (1) JPH0640771A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231113A (en) * 2008-03-24 2009-10-08 Nippon Steel Chem Co Ltd Active material for negative electrode of nonaqueous electrolyte secondary battery, and method of manufacturing nonaqueous electrolyte secondary battery
WO2012115073A1 (en) * 2011-02-21 2012-08-30 東洋炭素株式会社 Metal-carbon composite material and method for producing same
KR20150087627A (en) * 2014-01-22 2015-07-30 주식회사 엘지화학 A Method for Preparation of Poly Aromatic Oxide and a Poly Aromatic Oxide Prepared by the Same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231113A (en) * 2008-03-24 2009-10-08 Nippon Steel Chem Co Ltd Active material for negative electrode of nonaqueous electrolyte secondary battery, and method of manufacturing nonaqueous electrolyte secondary battery
WO2012115073A1 (en) * 2011-02-21 2012-08-30 東洋炭素株式会社 Metal-carbon composite material and method for producing same
JP2012171826A (en) * 2011-02-21 2012-09-10 Toyo Tanso Kk Metal-carbon composite material, and method for producing the same
KR20150087627A (en) * 2014-01-22 2015-07-30 주식회사 엘지화학 A Method for Preparation of Poly Aromatic Oxide and a Poly Aromatic Oxide Prepared by the Same

Similar Documents

Publication Publication Date Title
Hunter et al. Iron-catalyzed graphitization for the synthesis of nanostructured graphitic carbons
CN109309214B (en) Preparation method of carbon-coated nickel nano composite material
US7718156B2 (en) Method for manufacturing carbon nanostructures having minimal surface functional groups
US3917806A (en) Method for the preparation of carbon moldings and activated carbon molding therefrom
US20090041653A1 (en) Method for the preparation of porous graphite carbon with high crystallinity using sucrose as a carbon precursor
Song et al. Influence of ferrocene addition on the morphology and structure of carbon from petroleum residue
Gibson et al. 87. Amorphous carbon
CN104058381B (en) A kind of method and nano carbon microsphere being prepared nano carbon microsphere by coal liquefaction residue
CN109529903B (en) Method for preparing nickel-nitrogen co-doped carbon material by using hydrotalcite as template
Prakash et al. Reticulated porous carbon foam with cobalt oxide nanoparticles for excellent oxygen evolution reaction
JPH0511049B2 (en)
JPH0640771A (en) Production of metal dispersed carbon material
KR100813178B1 (en) Hollow graphitic nanocarbon using polymers incorporated with metal catalysts and Preparation method of it
CA1051806A (en) Process for the conversion of pitch into crystalloidal pitch
JP3099976B2 (en) Carbon-based shape-selective catalyst and method for producing the same
CN112744804B (en) Method for preparing carbon material from heavy oil slurry
CN110306261B (en) Preparation method of spiral nano carbon fiber
RU2221744C2 (en) Method to produce metal-containing carbon nanostructures from organic compound with additives of inorganic salts
CN108675278A (en) A kind of nano carbon microsphere and preparation method thereof prepared by coal tar asphalt
JPS6239689A (en) Method of modifying pitch
CN118495521A (en) Bean dreg carbon nano tube and preparation method thereof
JPH09316457A (en) Production of both high-softening point pitch having mesopore and carbonaceous material supporting metal
CN112657466B (en) Method for preparing hollow carbon adsorbent by taking paraffin oil decoloration waste soil as raw material and application
KR102569206B1 (en) Method for manufacturing fuel cell catalyst support through ultra-high speed dispersion of nano silica particles
JP4861633B2 (en) Method for producing carbon / tin oxide nanocomposite