JPH0640284B2 - Attitude detection device - Google Patents
Attitude detection deviceInfo
- Publication number
- JPH0640284B2 JPH0640284B2 JP60279330A JP27933085A JPH0640284B2 JP H0640284 B2 JPH0640284 B2 JP H0640284B2 JP 60279330 A JP60279330 A JP 60279330A JP 27933085 A JP27933085 A JP 27933085A JP H0640284 B2 JPH0640284 B2 JP H0640284B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- posture
- stage
- spot position
- light spot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/70775—Position control, e.g. interferometers or encoders for determining the stage position
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Control Of Position Or Direction (AREA)
Description
【発明の詳細な説明】 [発明の属する分野] 本発明は直線的に移動可能な物体の姿勢を検出する姿勢
検出装置に関する。このような姿勢検出装置は、特に半
導体製造のリソグラフィ工程における高精度な位置決め
ステージ装置をはじめ、超精密工作機械の送りテーブル
装置、各種計測装置用高精度ステージ等、あらゆる高精
度運動ステージ装置に応用可能な光線案内型リニアステ
ージ装置用として好適に用いることができる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a posture detection device that detects the posture of a linearly movable object. This attitude detection device is applied to all high-precision motion stage devices such as high-precision positioning stage devices in the semiconductor manufacturing lithography process, feed table devices for ultra-precision machine tools, and high-precision stages for various measuring devices. It can be preferably used for a possible light guide type linear stage device.
[従来の技術] 従来、高精度な直進運動を実現するためには必要な精度
に見合った機械的な案内、例えばリニアボールベアリン
グや静圧軸受案内機構が用いられてきた。従って、テー
ブルの運動精度はこれら案内機構の形状精度に依存する
ため高精度な運動を実現するには高度の機械工作技術と
多大な時間をかける加工が不可欠であり、非常に高価な
ものとなっていた。また、数メートルから数十メートル
といった長ストロークを高精度に運動させることは機械
的な案内をもってしてはほとんど不可能に近かった。[Prior Art] Conventionally, in order to realize highly accurate linear motion, mechanical guides that match the required accuracy, such as linear ball bearings and hydrostatic bearing guide mechanisms, have been used. Therefore, since the motion accuracy of the table depends on the shape accuracy of these guide mechanisms, advanced machine tool technology and machining that requires a great deal of time are indispensable for realizing highly accurate motion, which is very expensive. Was there. In addition, it is almost impossible to move a long stroke of several meters to several tens of meters with high precision by using a mechanical guide.
[発明の目的] 本発明の目的は、上述従来例の問題点に鑑み、高価かつ
高精度な機械案内を必要とせずに高精度な直進運動を実
現する手段を提供するとともに、長ストロークの高精度
直進運動を実現する手段を提供することにある。[Object of the Invention] In view of the problems of the above-mentioned conventional example, an object of the present invention is to provide a means for realizing a highly accurate linear motion without requiring expensive and highly accurate machine guidance, and to achieve a high long stroke. It is to provide a means for realizing a precision straight movement.
[発明の概略] 本発明は、最も好適な実施例によれば、高精度な直進運
動が必要なステージ装置において用いられる。この場
合、例えば可動ステージ上に光源であるレーザ発振器を
設け光学系によってステージ進行方向および逆進行方向
にレーザ光を分割、発射し、外部に備えた光点位置検出
装置にてレーザ光の位置の変動を捉える。さらに可動ス
テージに姿勢制御用アクチュエータを備え、上記光点位
置検出装置の出力をフィードバックさせて姿勢を一定に
保つ。[Outline of the Invention] According to the most preferred embodiment, the present invention is used in a stage apparatus that requires highly accurate linear movement. In this case, for example, a laser oscillator, which is a light source, is provided on the movable stage, and the optical system divides and emits the laser light in the stage advancing direction and the reverse advancing direction, and the position of the laser light is detected by an external light spot position detector. Capture fluctuations. Further, the movable stage is provided with an attitude control actuator, and the output of the light spot position detection device is fed back to maintain the attitude constant.
また、進行方向と直角な方向に一定距離をおいて上述の
レーザ光をもう1本平行に走らせ、進行方向を軸とする
回転(ローリング運動)をも検出可能とする。Further, another laser beam described above is made to run in parallel in a direction perpendicular to the traveling direction, and rotation (rolling motion) about the traveling direction can be detected.
[実施例] 第1図は、本発明の一実施例に係る光線案内型リニアス
テージ装置の構成を示す。また、第2〜4図は、本発明
の原理説明図である。第1図において、1は光源である
ところのレーザ発振器、2はレーザ光線を2分するハー
フミラー、3はレーザ光線を折曲げるビームベンダー、
4はハーフミラー、5は1/4λ板、6は平面ミラー、
7はビームベンダー、8a〜8cは2次元の光点位置検
出素子(PSD)、9はステージ本体、10a,10bは仮ガ
イド、11はステージ本体9を駆動するリニアモータ、12
はステージ本体の姿勢を制御するアクチュエータ例えば
ピエゾ素子である。[Embodiment] FIG. 1 shows the configuration of a light guide type linear stage device according to an embodiment of the present invention. 2 to 4 are explanatory views of the principle of the present invention. In FIG. 1, 1 is a laser oscillator which is a light source, 2 is a half mirror that divides a laser beam in half, 3 is a beam bender that bends the laser beam,
4 is a half mirror, 5 is a quarter-lambda plate, 6 is a plane mirror,
7 is a beam bender, 8a to 8c are two-dimensional light spot position detecting elements (PSD), 9 is a stage body, 10a and 10b are temporary guides, 11 is a linear motor for driving the stage body 9, 12
Is an actuator for controlling the posture of the stage body, for example, a piezo element.
上記構成において、レーザ発振器1により発振されたレ
ーザ光線は、ハーフミラー2によって2方向に分けら
れ、一方はそのまま直進し、他方は90°折曲げられてビ
ームベンダー7を経て位置検出素子8cに入射する。直
進した光線はビームベンダー3で90°折曲げられハーフ
ミラー4でさらに2方向に分割される。一方はそのまま
直進し、他方は再び90°折曲げられて位置検出素子8aに
入射する。直進した光線は1/4λ板5、平面ミラー
6、再び1/4λ板5と戻り、ハーフミラー4で折曲げ
られ位置検出素子8bに入射する。そして、駆動用リニア
モータ11によってステージ本体9が駆動されるとき、ス
テージ本体が理想的な運動状態からはずれて姿勢に変動
をきたすと位置検出素子8a〜8c上に入射しているレ
ーザ光点の位置変化として表れる。In the above configuration, the laser beam oscillated by the laser oscillator 1 is divided into two directions by the half mirror 2, one goes straight as it is, the other is bent 90 ° and enters the position detection element 8c via the beam bender 7. To do. The straight ray is bent 90 ° by the beam bender 3 and further divided into two directions by the half mirror 4. One goes straight as it is, and the other bends 90 ° again and enters the position detection element 8a. The straight ray travels back to the 1/4 λ plate 5, the plane mirror 6 and the 1/4 λ plate 5 again, is bent by the half mirror 4 and enters the position detection element 8b. Then, when the stage main body 9 is driven by the driving linear motor 11, if the stage main body deviates from an ideal motion state and changes in posture, the laser light spots incident on the position detection elements 8a to 8c are changed. It appears as a change in position.
第2図は、姿勢変化(ピッチング)による光点の位置変
化の様子を説明する図である。同図において、ステージ
本体9上の光源1から発振されたレーザ光線は光学系に
よって左右に直進する2本のビームとなって光点位置検
出素子8a,8bに入射している。第2図(A)の姿勢
を理想的なものとして、この時の8a,8b上のレーザ
光点位置を原点とする。次に同図(B)のようにステー
ジ本体9の姿勢に変動が生じると、レーザ光線はステー
ジ本体9と共に傾くため、光点位置検出素子8a,8b
上の光点はそれぞれx1,−x2変化する。このときス
テージ9の傾き角をθとすれば、8a,8bの間隔を
1として tanθ=(x1+x2)/1…(1) と表される。この関係式(1)は同図(C)のごとく、
ステージ位置が変化しても成り立つため、ステージ位置
によってエラー検出精度は変化しない利点がある。この
関係はヨーイングについても全く同様である。FIG. 2 is a diagram for explaining how the position of the light spot changes due to a posture change (pitching). In the figure, the laser beam oscillated from the light source 1 on the stage main body 9 is incident on the light spot position detecting elements 8a and 8b as two beams that move straight left and right by the optical system. The posture of FIG. 2 (A) is assumed to be ideal, and the laser light point positions on 8a and 8b at this time are set as the origin. Next, when the posture of the stage main body 9 changes as shown in FIG. 6B, the laser beam tilts together with the stage main body 9, so that the light spot position detecting elements 8a and 8b are detected.
The upper light spots change by x 1 and −x 2 , respectively. At this time, if the inclination angle of the stage 9 is θ, the interval between 8a and 8b is
1 is expressed as tan θ = (x 1 + x 2 ) / 1 (1). This relational expression (1) is as shown in FIG.
Since it holds even if the stage position changes, there is an advantage that the error detection accuracy does not change depending on the stage position. This relationship is exactly the same for yawing.
ローリングについてはやや異なり、第1図の光点位置検
出素子8aと8cの出力を用いてやはり(1)式の関係
で現わすことができる。但し、間隔1の代りに光点位
置検出素子8a,8cに入射する2本の平行光線の間隔
2を用いる。The rolling is slightly different and can be expressed by the relationship of the expression (1) using the outputs of the light spot position detecting elements 8a and 8c in FIG. However, instead of the interval 1 , the interval between the two parallel rays incident on the light spot position detecting elements 8a and 8c
2 is used.
第3図は、ステージ9の進行方向の位置が何らかの手段
(例えばレーザ測長器)で測定可能な場合の説明図であ
る。同図において、ステージの左側の光点位置検出素子
8b面からの距離をaとすれば、ステージ9の上下方向
の並進量zは、 z=x2−a・tanθ…(2) で表現できる。これはヨーシング方向についても同様で
ある。従ってステージ位置が測定可能な場合は6自由度
全ての動きが測定可能となる。FIG. 3 is an explanatory diagram when the position of the stage 9 in the traveling direction can be measured by some means (for example, a laser length measuring device). In the figure, if the distance from the surface of the light spot position detecting element 8b on the left side of the stage is a, the vertical translation amount z of the stage 9 can be expressed by z = x 2 −a · tan θ (2) . This also applies to the yawing direction. Therefore, when the stage position can be measured, the movement in all 6 degrees of freedom can be measured.
第4図は、制御系を含んだ本発明システムの説明図であ
る。同図において、13は光点位置検出部、14は演算司令
部、そして15はアクチュエータドライバである。光点位
置検出素子8によってステージ9より射出されたレーザ
光の光点位置を検出し、その値から理想的なステージ姿
勢となるように指令を出し、ドライバ15を介してステー
ジ本体9に内蔵したアクチュエータ12を駆動し、姿勢制
御する。FIG. 4 is an explanatory diagram of the system of the present invention including a control system. In the figure, 13 is a light spot position detection unit, 14 is an operation command unit, and 15 is an actuator driver. The light spot position detecting element 8 detects the light spot position of the laser light emitted from the stage 9, and issues a command from that value to set the ideal stage posture, which is incorporated in the stage main body 9 via the driver 15. The actuator 12 is driven to control the attitude.
この光線案内型リニアステージ装置は、可動テーブル上
に光源であるレーザ発振器を搭載しステージ進行方向と
進行逆方向にレーザを発射し、そのレーザ光点位置を検
出するようにしたため以下の長所を有する。This light guide type linear stage device has the following advantages because a laser oscillator, which is a light source, is mounted on a movable table and a laser is emitted in a direction opposite to the stage traveling direction and the laser light point position is detected. .
(1)ステージの姿勢変化をステージがどの位置にあっ
ても同じ精度で測定が可能である。(1) The posture change of the stage can be measured with the same accuracy regardless of the position of the stage.
(2)ピッチングとヨーイングについては光点位置検出
素子の間隔1が大きくとれるため大きな拡大率で測定
が可能である。(2) Pitching and yawing can be measured at a large enlargement ratio because the interval 1 between the light spot position detecting elements can be set large.
(3)ステージ進行方向の位置が何らかの手段(例えば
レーザ測長器等)で既知である場合には演算処理により
進行方向と直角方向の並進行運動量も知ることができ、
6自由度の動き全てが測定可能となる。(3) When the position in the traveling direction of the stage is known by some means (for example, a laser length measuring device), the parallel traveling momentum in the direction perpendicular to the traveling direction can be known by calculation processing.
All movements in 6 degrees of freedom can be measured.
(4)検出したステージの姿勢変動を戻すようにステー
ジ内蔵のアクチュエータをフィードバック制御すること
により、ガイドの精度に無関係なステージシステムが構
成でき、ガイドの製作コストが下がる。(4) By performing feedback control of the actuator incorporated in the stage so as to return the detected posture variation of the stage, a stage system can be configured which is independent of the accuracy of the guide, and the manufacturing cost of the guide is reduced.
(5)機械的なガイドでは不可能な長ストロークのリニ
アステージに対しても本発明を応用することにより他精
度なものが製作可能となる。(5) By applying the present invention to a linear stage having a long stroke, which is impossible with a mechanical guide, another precision stage can be manufactured.
[発明の効果] 以上説明図したように、本発明によれば、直進可動物体
の姿勢を他精度に検知することができる。また、本発明
になる姿勢検出装置を用いれば、高価かつ高精度な機械
案内を必要とせずに高精度な直進運動を実現するリニア
ステージ装置を提供することができ、さらに長ストロー
クの高精度直進運動を実現できる。[Effects of the Invention] As described above, according to the present invention, the posture of a straight moving object can be detected with another accuracy. Further, by using the attitude detection device according to the present invention, it is possible to provide a linear stage device that realizes highly accurate linear motion without requiring expensive and highly accurate machine guidance, and further, it is possible to provide a long stroke highly accurate linear motion. Exercise can be realized.
第1図は、本発明の一実施例に係る光線案内型リニアス
テージ装置の斜視図、 第2図は、第1図の装置におけるピッチング量測定原理
説明図、 第3図は、第1図の装置においてステージ位置が測定可
能な場合の上下方向並進量測定原理説明図、 第4図は、本発明の姿勢検出装置を適用した光線案内型
リニアステージ装置の構成である。 1:レーザ発振器、2,4:ハーフミラー、 3,7:ビームベンダー、5:1/4λ板、 6:平面ミラー、8:光点位置検出装置、 9:ステージ本体、10:仮ガイド、 11:リニアモータ、12:アクチュエータ(ピエゾ素
子)、13:光点位置検出部、14:演算司令部、 15:アクチュエータドライバ部。1 is a perspective view of a light guide type linear stage apparatus according to an embodiment of the present invention, FIG. 2 is an explanatory view of a pitching amount measuring principle in the apparatus of FIG. 1, and FIG. FIG. 4 is an explanatory view of the principle of vertical translation amount measurement when the stage position can be measured by the apparatus, and FIG. 4 shows the configuration of a ray guide type linear stage apparatus to which the posture detection apparatus of the present invention is applied. 1: laser oscillator, 2, 4: half mirror, 3, 7: beam bender, 5: 1/4 λ plate, 6: plane mirror, 8: light spot position detection device, 9: stage body, 10: temporary guide, 11 : Linear motor, 12: Actuator (piezo element), 13: Light spot position detection unit, 14: Arithmetic control unit, 15: Actuator driver unit.
Claims (3)
勢を検出する装置であって、 上記可動物体に搭載され該可動物体の進行方向および逆
方向に向けて光を出射する光学系と、 上記基盤上に固設され上記光学系からの出射光をそれぞ
れ受光しその受光位置を検出する少なくとも2つの光点
位置検出手段と、 上記各光点位置検出手段からの光点位置検出信号に基づ
いて上記可動物体の基準姿勢からの変位を検知する姿勢
検知手段と を有することを特徴とする姿勢検出装置。1. An apparatus for detecting a posture of an object that is linearly movable with respect to a base, the optical system being mounted on the movable object and emitting light in a traveling direction and a reverse direction of the movable object. And at least two light spot position detecting means fixed to the base for receiving the emitted light from the optical system and detecting the light receiving positions, and light spot position detection signals from the respective light spot position detecting means. And a posture detecting means for detecting the displacement of the movable object from the reference posture based on the above.
勢検知手段の出力に基づき上記可動ステージの姿勢を負
帰還的に変位させる姿勢制御手段とを有する光線案内型
リニアステージ装置である特許請求の範囲第1項に記載
の姿勢検出装置。2. A light guide type linear stage device in which the movable object has a movable stage and a posture control means for displacing the posture of the movable stage in a negative feedback manner based on the output of the posture detection means. The attitude detection device according to item 1 of the above.
あるいは逆方向のいずれか一方向に前記出射光と一定距
離だけ離れた平行光を出射するものであり、前記姿勢制
御手段が、該出射光の受光位置を検出する光点位置検出
手段および前記少なくとも2つの光点位置検出手段の出
力に基づいて行方向を軸とする回転運動に対しても姿勢
制御するものである特許請求の範囲第2項に記載の姿勢
検出装置。3. The optical system emits parallel light, which is separated from the emitted light by a predetermined distance, in one of the traveling direction and the opposite direction of the movable stage, and the attitude control means outputs the parallel light. A posture control is also performed with respect to a rotational movement about a row direction based on the outputs of the light spot position detecting means for detecting the light receiving position of the emitted light and the at least two light spot position detecting means. The posture detection device according to item 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60279330A JPH0640284B2 (en) | 1985-12-13 | 1985-12-13 | Attitude detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60279330A JPH0640284B2 (en) | 1985-12-13 | 1985-12-13 | Attitude detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62139013A JPS62139013A (en) | 1987-06-22 |
JPH0640284B2 true JPH0640284B2 (en) | 1994-05-25 |
Family
ID=17609672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60279330A Expired - Lifetime JPH0640284B2 (en) | 1985-12-13 | 1985-12-13 | Attitude detection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0640284B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2902225B2 (en) * | 1992-09-30 | 1999-06-07 | キヤノン株式会社 | Positioning device |
-
1985
- 1985-12-13 JP JP60279330A patent/JPH0640284B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS62139013A (en) | 1987-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4575942A (en) | Ultra-precision two-dimensional moving apparatus | |
US5288167A (en) | Laser beam guidance device for civil engineering/earthmoving plant | |
US4655594A (en) | Displacement device, particularly for the photolithographic treatment of a substrate | |
US20070216892A1 (en) | Integrated large XY rotary positioning table with virtual center of rotation | |
JPH07106516B2 (en) | Positioning stage | |
KR100663939B1 (en) | Long range stage with full stroke nano resolution for high vacuum | |
US12106993B2 (en) | Method and device for aligning substrates | |
JP2001518606A (en) | Device for detecting the position of two objects | |
US5698843A (en) | Apparatus for measuring motion errors of five degrees of freedom along guideway | |
GB2120401A (en) | Dual-axis interferometer measuring system | |
US10663040B2 (en) | Method and precision nanopositioning apparatus with compact vertical and horizontal linear nanopositioning flexure stages for implementing enhanced nanopositioning performance | |
JP3480192B2 (en) | XY stage positioning device | |
JPH0640284B2 (en) | Attitude detection device | |
Ibaraki et al. | Diagnosis and compensation of motion errors in NC machine tools by arbitrary shape contouring error measurement | |
WO2002091436A1 (en) | Apparatus for the measurement or machining of an object, provided with a displacement stage with wedge-shaped guides | |
JP6054134B2 (en) | Ultra-precision shape measuring device | |
JP4753657B2 (en) | Surface shape measuring apparatus and surface shape measuring method | |
US6466324B1 (en) | Servo guided stage system with yaw sensor | |
JPH0715367B2 (en) | Displacement / rotation detection method and attitude control device | |
JPH06320367A (en) | Positioning table device | |
CN114719787B (en) | Multi-degree-of-freedom detection device based on parallel light paths | |
JPH09211337A (en) | Article placing base | |
CN1232798C (en) | Linear movement reference device of cylindricity instrument with laser penetrance and reflection monitoring compensation | |
JPS60203804A (en) | Measuring instrument of straightness | |
JP2593463B2 (en) | Processing path tracking device for three-dimensional work |