JPH06320367A - Positioning table device - Google Patents

Positioning table device

Info

Publication number
JPH06320367A
JPH06320367A JP11353893A JP11353893A JPH06320367A JP H06320367 A JPH06320367 A JP H06320367A JP 11353893 A JP11353893 A JP 11353893A JP 11353893 A JP11353893 A JP 11353893A JP H06320367 A JPH06320367 A JP H06320367A
Authority
JP
Japan
Prior art keywords
slider
guide shaft
guide
linear
moving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11353893A
Other languages
Japanese (ja)
Inventor
Takeshi Matsushita
毅 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP11353893A priority Critical patent/JPH06320367A/en
Publication of JPH06320367A publication Critical patent/JPH06320367A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/44Movable or adjustable work or tool supports using particular mechanisms
    • B23Q1/56Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism
    • B23Q1/60Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism
    • B23Q1/62Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism with perpendicular axes, e.g. cross-slides
    • B23Q1/621Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism with perpendicular axes, e.g. cross-slides a single sliding pair followed perpendicularly by a single sliding pair
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/22Feeding members carrying tools or work
    • B23Q5/28Electric drives
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/18Machines moving with multiple degrees of freedom

Abstract

PURPOSE:To provide constitution of a positioning table device the size of which is reduced as the whole including space and which is designed to perform high- precise positioning with excellent reproducibility and at a high speed. CONSTITUTION:A positioning table device comprises a base table 1 provided on its upper surface with a magnetic pole surface in whose square region, permanent magnets 2 are laid in a checkboard-like state; two X-axis directional guide shafts 3 supported on the base table 1 along the parallel two sides of the square region; two sliders 4 moving in non-contact with a guide shaft along the respective guide shafts 3; and a Y-axis directional guide shaft 7 the both end parts of which are fixed to the X-axis directional slider 4. Further, the device comprises an Y-axis directional slider 8 moving in non-contact with a guide shaft 7 along the guide shaft 7; and a linear motor consisting of coil elements 4a and 8a arranged on the under surface of each slider and a checker board-like magnetic pole surface. Guide shafts are provided, on their sides with linear scales 5 and 9 respectively and detecting bodies 6 and 10 to detect an own position by utilizing the linear scales are carried on the sliders 4 and 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば半導体露光・
組立装置、精密工作機械、光学部品組立装置等に適用さ
れる,載置した被移動体をX,Y二軸の方向に移動させ
ることにより、指定の位置にもたらす位置決めテーブル
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a positioning table device which is applied to an assembling apparatus, a precision machine tool, an optical component assembling apparatus, and the like, and which brings a mounted object to be moved to a designated position by moving in the X and Y biaxial directions.

【0002】[0002]

【従来の技術】半導体製造装置等の位置決めテーブル装
置は、1μm以下の高精度位置決めが要求されるため、
ベーステーブル上に、X軸方向移動テーブルとY軸方向
移動テーブルとを、摩擦や発塵の少ない針状コロを介し
て上下方向に順に重ね合わせ、両移動テーブルの移動に
より移動するワークテーブル上の被移動体の移動量を計
測しながら両移動テーブルの各移動量を制御する構造が
一般的である。
2. Description of the Related Art Since a positioning table device such as a semiconductor manufacturing device requires a highly accurate positioning of 1 μm or less,
An X-axis direction moving table and a Y-axis direction moving table are superposed in this order on the base table in the vertical direction via needle rollers with less friction and dust generation, and the work table is moved by the movement of both moving tables. Generally, the structure is such that each moving amount of both moving tables is controlled while measuring the moving amount of the moving object.

【0003】図5は、従来の位置決めテーブル装置構成
の一例を示す概略斜視図である。この構造は、ベーステ
ーブル17と、ベーステーブル17上でX軸方向に軸受
けガイドされた第1の移動テーブル18と、第1の移動
テーブル18上でX軸と直交するY軸方向に軸受けガイ
ドされた第2の移動テーブル19と、第2の移動テーブ
ル19上に搭載したワーク取り付けテーブルとを上下に
重ねて組み立て、かつサーボモータ23,27、送りね
じ機構22,26を用いて第1の移動テーブル18,第
2の移動テーブル19をそれぞれベーステーブル17,
第1の移動テーブル18に対してX軸,Y軸方向に移動
操作し、ワーク取り付けテーブル28を指定位置に位置
決めさせる。なお、図中の符号35は、第1の移動テー
ブル18のX方向の移動を案内するためにベーステーブ
ル17の上面側に形成されたV字状溝の斜面に嵌め込ま
れた針状コロ列、36は第1,第2の移動テーブル1
8,19と図示されない被移動体(以下ワークとも記
す)との合計重量の約1/2を支える針状コロ列、37
は第1の移動テーブル18の上面側に形成されたV字状
溝の斜面に嵌め込まれた針状コロ列、39は第2の移動
テーブル19と図示されないワークとの合計重量の約1
/2を支える針状コロ列である。
FIG. 5 is a schematic perspective view showing an example of the configuration of a conventional positioning table device. This structure includes a base table 17, a first movable table 18 bearing-guided on the base table 17 in the X-axis direction, and a bearing guided on the first movable table 18 in the Y-axis direction orthogonal to the X-axis. The second moving table 19 and the work mounting table mounted on the second moving table 19 are vertically stacked and assembled, and the first movement is performed by using the servo motors 23 and 27 and the feed screw mechanisms 22 and 26. The table 18 and the second moving table 19 are respectively the base table 17,
The work attachment table 28 is positioned at a designated position by moving the first movement table 18 in the X-axis and Y-axis directions. Reference numeral 35 in the drawing denotes a needle-shaped roller row fitted to the slope of the V-shaped groove formed on the upper surface side of the base table 17 for guiding the movement of the first moving table 18 in the X direction, 36 is the first and second moving table 1
Needle-shaped roller row that supports about 1/2 of the total weight of the moving object (not shown) (hereinafter, also referred to as a work)
Is a needle roller row fitted on the slope of the V-shaped groove formed on the upper surface side of the first moving table 18, 39 is about 1 of the total weight of the second moving table 19 and the work (not shown).
It is a needle-shaped roller row that supports / 2.

【0004】また、このワーク取付けテーブル28の移
動量は、周波数を安定化する周波数安定化レーザ光源2
9から発光するレーザ光を分波器34でX,Y方向に分
光させ、この分光したレーザ光をそれぞれ第1の干渉計
30および第2の干渉計32に入射する一次光とし、第
1の干渉計30および第2の干渉計32から出てそれぞ
れ、ワーク取付けテーブル28に取り付けた第1の反射
鏡31および第2の反射鏡33で反射し、再び第1の干
渉計30および第2の干渉計32に入射するレーザ光を
二次光として、一次光と二次光との位相差から計測させ
る。そして、レーザ光にて計測したワーク取付けテーブ
ル28の位置の現在値と外部から設定した指定位置とが
一致するまで上記2つのサーボモータ23,27を駆動
させ、高精度位置決めを実現している。
Further, the movement amount of the work mounting table 28 is controlled by the frequency stabilizing laser light source 2 for stabilizing the frequency.
The laser light emitted from 9 is split in the X and Y directions by the demultiplexer 34, and the split laser light is used as the primary light incident on the first interferometer 30 and the second interferometer 32, respectively. The light exits from the interferometer 30 and the second interferometer 32, respectively, is reflected by the first reflecting mirror 31 and the second reflecting mirror 33 attached to the work attaching table 28, and is again reflected by the first interferometer 30 and the second The laser light incident on the interferometer 32 is used as the secondary light, and is measured from the phase difference between the primary light and the secondary light. Then, the two servo motors 23 and 27 are driven until the current value of the position of the work mounting table 28 measured by the laser beam and the designated position set from the outside coincide with each other, thereby realizing highly accurate positioning.

【0005】[0005]

【発明が解決しようとする課題】ところで、前記したサ
ーボモータ駆動の一般的な位置決めテーブル装置では、
次記のような難点がある。 (1)ベーステーブル,第1の移動テーブル,第2の移
動テーブルを上下に積み重ねているのでテーブル装置全
体の高さが大となるほか、負荷重量も重く、サーボモー
タに大きなトルクが要求される。
By the way, in the above-mentioned general positioning table device driven by a servo motor,
There are the following difficulties. (1) Since the base table, the first moving table, and the second moving table are vertically stacked, the height of the entire table device is large, the load weight is heavy, and a large torque is required for the servo motor. .

【0006】(2)レーザ光を利用してワーク取付けテ
ーブルの移動量を計測する方式は、レーザ光源,干渉
計,反射鏡等の高価な光学機器を必要とし、その上、こ
れらの光学機器の設置スペースを確保すると位置決めテ
ーブル装置として小型化できない。 (3)レーザ光による計測は、レーザ光を移動軸方向
(X軸方向,Y軸方向)に平行とする光軸調整が難し
く、再現性ある計測精度を得るためにはこの光軸調整に
熟練を要する。また、一般的にレーザ光の光路長がワー
ク取付けテーブルの移動量より長いために、レーザ光の
光路長における環境変化(室温、湿度、空気のゆらぎ)
の影響を受けやすく、計測精度の低下を招きやすい。
(2) The method of measuring the amount of movement of the work mounting table using laser light requires expensive optical equipment such as a laser light source, an interferometer, and a reflecting mirror. If the installation space is secured, the positioning table device cannot be downsized. (3) It is difficult to adjust the optical axis of the laser beam parallel to the moving axis direction (X-axis direction, Y-axis direction) in the measurement using the laser beam, and it is necessary to adjust this optical axis in order to obtain reproducible measurement accuracy. Requires. Also, since the optical path length of the laser beam is generally longer than the movement amount of the work mounting table, environmental changes in the optical path length of the laser beam (room temperature, humidity, air fluctuations)
Are likely to be affected by, and the measurement accuracy is likely to deteriorate.

【0007】(4)サーボモータの駆動でテーブルを直
線移動操作するためにサーボモータとテーブルとの間に
は送りねじ機構などの回転/直線変換機構を必要とし、
構造が複雑となり、かつ送りねじ機構のバックラッシ
(がた)が位置決め精度を低下させる原因にもなる。 (5)また、上記で構成するテーブル装置は、接触式の
直線案内軸受け、送りねじを使用しているため、テーブ
ル装置から発熱しやすい。そのため、高精度な位置決め
をする場合には、移動テーブルを低速で移動させ発熱を
抑制する方式がとられている。
(4) A rotation / linear conversion mechanism such as a feed screw mechanism is required between the servo motor and the table in order to linearly move the table by driving the servo motor.
The structure becomes complicated, and the backlash of the feed screw mechanism causes a decrease in positioning accuracy. (5) Further, since the table device configured as described above uses the contact type linear guide bearing and the feed screw, the table device easily generates heat. Therefore, in the case of performing highly accurate positioning, a method of moving the moving table at a low speed to suppress heat generation is adopted.

【0008】本発明の目的は、装置構成に必要なスペー
スを含め装置全体として小型化され、高精度の位置決め
が装置環境の影響少なく容易かつ再現性よく、かつ高速
に可能な位置決めテーブル装置の構成を提供することで
ある。
The object of the present invention is to reduce the size of the entire apparatus including the space required for the apparatus configuration, and to configure a positioning table apparatus capable of high-accuracy positioning easily, with good reproducibility, and at high speed with little influence of the apparatus environment. Is to provide.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、被移動体をベーステーブル上でX軸方向とY軸方向
とに移動させつつ指定位置にもたらす位置決め装置を、
平坦な上面の方形領域内に、磁極面形状が方形の板状も
しくは柱状の永久磁石を、隣り合う磁極面の極性が異な
るように碁盤状に敷きつめて該上面に固着したベーステ
ーブルと;1個は長手方向に沿う側面に該側面に隣接す
る物体の長手方向の位置を検出するためのリニアスケー
ルを備え、それぞれ前記テーブル面の方形領域の対向2
辺に沿いかつ該対向2辺と直角方向の対向2辺を跨いで
ベーステーブルに固定される2個の第1の案内軸と;そ
れぞれ第1の案内軸に沿って該案内軸と非接触に移動可
能として下部にコイル面が前記碁盤状磁極面と対向する
ようにコイル素子を取り付け碁盤状磁極面とともにリニ
アモータを構成させるとともに、1個にはみずからの案
内軸長手方向の位置を前記案内軸側面のリニアスケール
を利用して検出する検出体を担持させた2個の第1のス
ライダと;前記第1の案内軸と同一構造に形成され長手
方向が第1の案内軸の長手方向と直角になるように両端
部がそれぞれ前記2個の第1のスライダに固定される第
2の案内軸と;前記検出体を担持した方の第1のスライ
ダと同一構造に形成されるとともに、被移動体が載置さ
れるワーク取付けテーブルを備えた第2のスライダと;
を用いて構成し、前記第1および第2のスライダに被移
動体の位置検出機能と駆動機能とを備えさせるようにす
る。
In order to solve the above-mentioned problems, there is provided a positioning device for moving a movable body on a base table in the X-axis direction and the Y-axis direction to bring it to a designated position.
One base table in which a plate-shaped or columnar permanent magnet having a rectangular pole surface shape is laid in a square pattern so that the polarities of adjacent magnetic pole surfaces are different from each other and fixed to the upper surface in a rectangular region of a flat upper surface; Is provided with a linear scale on the side surface along the longitudinal direction for detecting the position in the longitudinal direction of an object adjacent to the side surface.
Two first guide shafts fixed to the base table along the sides and straddling the opposite two sides perpendicular to the opposite two sides; and in non-contact with the guide shafts respectively along the first guide axes; A coil element is attached to the lower part so that the coil surface faces the grid-shaped magnetic pole surface to form a linear motor together with the grid-shaped magnetic pole surface, and the position of the single guide shaft in the longitudinal direction is the guide shaft. Two first sliders carrying a detection body for detection using a linear scale on the side surface; a longitudinal direction formed at the same structure as the first guide shaft and perpendicular to the longitudinal direction of the first guide shaft. A second guide shaft whose both ends are respectively fixed to the two first sliders so as to have the same structure as that of the first slider carrying the detection body and to be moved. Workpiece mounting on which the body is placed A second slider having a Buru;
And the first and second sliders are provided with a position detection function and a drive function for the moving body.

【0010】ここで、第1および第2の案内軸側面のリ
ニアスケールを長手方向に配列された回折格子、リニア
スケールを利用してみずからの位置を検出する検出体を
光源と受光素子とを組み合わせた光電検出ヘッドとすれ
ば極めて好適である。また、各スライダを各案内軸に沿
って非接触に移動可能とする非接触移動構造は、案内軸
の上面,リニアスケールを持たないほうの側面およびリ
ニアスケールを有する方の側面をリニアスケールを含
み、軸方向実質全長にわたり平坦に形成するとともに、
スライダに、案内軸上面と側面とにそれぞれ対面すると
ともに該対面する面を貫通して外部から圧縮空気を導入
する空気導入口を有する浮上面および案内軸を備えさ
せ、スライダを浮き上がらせて非接触に移動させる静圧
浮上移動構造とすれば極めて好適である。
Here, the linear scales on the side surfaces of the first and second guide shafts are arranged in the longitudinal direction to form a diffraction grating, and the linear scale is used as a detector to detect a position from the light source and a light receiving element. The photoelectric detection head is extremely suitable. In addition, the non-contact moving structure that allows each slider to move in a non-contact manner along each guide axis includes a linear scale on the upper surface of the guide shaft, the side surface not having the linear scale, and the side surface having the linear scale. , While being formed flat over the entire axial length,
The slider is provided with an air bearing surface and a guide shaft that face the guide shaft upper surface and the side surface, respectively, and have air inlets that penetrate the facing surfaces and introduce compressed air from the outside. It is extremely suitable to use a static pressure levitation moving structure that moves the slab to the above position.

【0011】[0011]

【作用】位置決め移動テーブルを以上のように構成する
ことにより、 (1)従来のX軸(Y軸)方向移動テーブルに該当する
第1のスライダと、Y軸(X軸)方向移動テーブルに該
当する第2のスライダとがベーステーブル上面側の同じ
高さを移動する構造とすることができ、装置の高さを従
来と比べて低くすることができる。
By configuring the positioning movement table as described above, (1) it corresponds to the first slider corresponding to the conventional X-axis (Y-axis) direction movement table and the Y-axis (X-axis) direction movement table. The second slider can be configured to move at the same height on the upper surface side of the base table, and the height of the device can be made lower than in the conventional case.

【0012】(2)各スライダを各案内軸に沿って非接
触に移動可能となるようにしてスライダの下部にコイル
素子を取り付け、ベーステーブル面上の碁盤状磁極面と
組み合わせてリニアモータを構成するようにすると、ス
ライダの移動が装置の固定部材とは全く非接触に行わ
れ、第2のスライダに搭載された被移動体を高速に移動
させてもスライダは発熱することがなく、高速位置決め
が可能になる。
(2) A coil element is attached to the lower part of the slider so that each slider can be moved in a non-contact manner along each guide shaft, and a linear motor is constructed by combining with a grid-shaped magnetic pole surface on the base table surface. By doing so, the slider is moved without any contact with the fixing member of the apparatus, and the slider does not generate heat even when the object to be moved mounted on the second slider is moved at high speed. Will be possible.

【0013】(3)位置決めのために2個の第1の案内
軸のうちの1つ、および第2の案内軸のそれぞれ側面に
リニアスケールを備えさせ、このリニアスケールを利用
してみずからの案内軸長手方向の位置を検出するための
検出体をスライダに担持させるようにすれば、スライダ
の案内軸長手方向の位置が直接的に計測され、レーザ光
線を位置検出に用いる場合のような調整を必要とするこ
となく、かつ室温や空気のゆらぎのような装置環境の影
響を受けることなく再現性の高い計測が可能となる。ま
た、従来必要としたレーザ装置や光学機器等の高価な計
測手段も不要となる。
(3) For positioning, one of the two first guide shafts and the second guide shaft are provided with linear scales on their respective side surfaces, and the linear scales are used to guide the user. If the slider carries a detector for detecting the position in the longitudinal direction of the shaft, the position of the slider in the longitudinal direction of the guide shaft can be directly measured, and adjustment as in the case of using a laser beam for position detection can be performed. Highly reproducible measurement can be performed without need and without being affected by the device environment such as room temperature and air fluctuation. Further, expensive measuring means such as a laser device and an optical device which are conventionally required are not required.

【0014】そして第1および第2の案内軸側面のリニ
アスケールを長手方向に配列された回折格子、リニアス
ケールを利用してみずからの位置を検出する検出体を光
源と受光素子とを組み合わせた光電検出ヘッドとして、
被移動体の位置検出を光学的に行うようにすれば、ベー
ステーブル上面の碁盤状磁極面から上方へ出る磁束のじ
ょう乱を受けることなく位置検出が可能となり、高精度
の位置決めが容易となる。
Further, the linear scales on the side surfaces of the first and second guide shafts are arranged in the longitudinal direction, and a detector for detecting the position of the linear scale using the linear scale is combined with a light source and a light receiving element. As a detection head,
If the position of the movable body is optically detected, the position can be detected without being disturbed by the magnetic flux upward from the grid-shaped magnetic pole surface on the upper surface of the base table, and high-precision positioning is facilitated. .

【0015】さらに、各スライダを各案内軸に沿って非
接触に移動可能とする非接触移動構造を、案内軸の上
面,リニアスケールを持たないほうの側面およびリニア
スケールを有する方の側面をリニアスケールを含み、軸
方向実質全長にわたり平坦に形成するとともに、スライ
ダに、案内軸上面と側面とにそれぞれ対面するとともに
該対面する面を貫通して外部から圧縮空気を導入する空
気導入口を有する浮上面および案内面を備えさせ、スラ
イダを浮き上がらせて非接触に移動させる静圧浮上移動
構造とすれば、スライダの浮上面および案内面の空気導
入口から導入される圧縮空気の空気導入口入口の静圧を
一定に保持することにより、浮上面の浮上高さおよび案
内面と案内軸側面との隙間が高精度に一定に保たれるの
で、リニアモータでは、スライダ下部と碁盤状磁極面と
の間の空隙が精度高く一定に保たれ、スライダと碁盤状
磁極面との面方向相対位置が同一の場合の面方向駆動力
の変動が極めて小さくなり、スライダ位置の検出信号に
よるスライダ移動量の精度が向上する。なお、案内軸側
面のリニアスケールを回折格子とする場合は、回折格子
の形成に、平坦な側面に形成した深さ100μm程度の
構内に微小ピッチの目盛線が蒸着によりパターン形成さ
れるので、案内軸側面をリニアスケールを含んで平坦に
形成することは容易に可能である。
Furthermore, a non-contact moving structure that allows each slider to move in a non-contact manner along each guide shaft is provided with a linear upper surface, a side surface without a linear scale and a side surface with a linear scale. A levitation device that includes a scale, is formed flat over substantially the entire axial length, and has a slider that has an air inlet that faces the upper surface and side surfaces of the guide shaft and that penetrates the facing surfaces and introduces compressed air from the outside. If a static pressure levitation moving structure is provided in which the slider and the guide surface are provided so that the slider floats and moves in a non-contact manner, the air inlet of compressed air introduced from the air inlet of the slider's air bearing surface and guide surface By keeping the static pressure constant, the flying height of the air bearing surface and the gap between the guide surface and the side surface of the guide shaft can be maintained with high accuracy. , The gap between the slider lower part and the grid-shaped magnetic pole surface is maintained with high precision and accuracy, and the fluctuation of the surface-direction driving force becomes extremely small when the relative surface position of the slider and the grid-shaped magnetic pole surface is the same. The accuracy of the slider movement amount based on the position detection signal is improved. When the linear scale on the side surface of the guide shaft is used as the diffraction grating, a fine pitch scale line is formed by vapor deposition in the premises with a depth of about 100 μm formed on the flat side surface when forming the diffraction grating. It is easily possible to form the axial side surface to be flat, including the linear scale.

【0016】[0016]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図1は装置の全体構成を示す図であり、装置本
体の基台となるベーステーブル1は、略矩形状の,材質
が鋼板のような磁性材で作られたプレート体上面の方形
領域内に、磁極面形状が正方形の板状もしくは柱状の永
久磁石2を、図のように、隣り合う磁極面の極性が異な
るように碁盤状に敷きつめ、接着材等を用いてプレート
体に一体化したものである。このベーステーブル1の上
面側には、それぞれ、上記方形領域のX方向平行2辺に
沿い、以下に詳細を説明する2個の第1の案内軸3がY
方向の平行2辺を跨いでベーステーブル1上に案内軸支
持体3aを介して支持されている。第1の案内軸3は第
1のスライダ4のX方向移動を案内するものであり、断
面が略矩形状に形成され、また第1のスライダ4は、案
内軸3を包囲する短い角筒状に形成され、角筒の各周壁
面に形成された図示されない空気導入口を通してエアが
外部から圧送されており、第1のスライダ4は、その上
面と案内軸3の上面の間に数十μmの隙間を形成して浮
上し、案内軸3と非接触に保たれている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing the entire configuration of the apparatus. A base table 1 which is a base of the apparatus main body is a substantially rectangular shape and is formed in a rectangular area on the upper surface of a plate body made of a magnetic material such as a steel plate. , A plate-shaped or columnar permanent magnet 2 having a square pole face shape is laid in a grid pattern so that adjacent pole faces have different polarities as shown in the figure, and is integrated with a plate body by using an adhesive or the like. Is. On the upper surface side of the base table 1, two first guide shafts 3, which will be described in detail below, are provided along the two parallel sides of the rectangular region in the X direction.
It is supported on the base table 1 across two parallel sides of the direction via a guide shaft support 3a. The first guide shaft 3 guides the movement of the first slider 4 in the X direction, and has a substantially rectangular cross section, and the first slider 4 has a short rectangular tubular shape surrounding the guide shaft 3. The air is pressure-fed from the outside through an air introduction port (not shown) formed on each peripheral wall surface of the rectangular tube, and the first slider 4 has a distance of several tens of μm between its upper surface and the upper surface of the guide shaft 3. And is kept in non-contact with the guide shaft 3.

【0017】また、第1の案内軸3と同一構造に形成さ
れた第2の案内軸7が、第1の案内軸3と直交するよう
に両端部を第1のスライダ4に固定され、第2のスライ
ダ8のY方向移動を案内する。第2のスライダ8も第1
のスライダ4と同一構造に形成され、各周壁面の空気導
入口から圧送されたエアにより第2の案内軸7と非接触
状態に保持される。なお、第2のスライダ8の上面には
ワーク取付けテーブル11が固定されている。
A second guide shaft 7 formed in the same structure as the first guide shaft 3 is fixed at its both ends to the first slider 4 so as to be orthogonal to the first guide shaft 3, The movement of the second slider 8 in the Y direction is guided. The second slider 8 is also the first
The slider 4 is formed in the same structure as the slider 4 and is held in a non-contact state with the second guide shaft 7 by the air pressure-fed from the air introduction port of each peripheral wall surface. A work mounting table 11 is fixed to the upper surface of the second slider 8.

【0018】図3に被移動体の位置検出のための検出部
の配位を示し、図4に検出部の拡大図を示す。第1の案
内軸3のいずれか一方(図3では右側)および第2の案
内軸7のそれぞれ一方の側面には、図4に示すように、
回接格子の蒸着を容易にするための,深さが約100μ
mの溝が形成され、この溝に回折格子を約100μmの
厚みに蒸着形成し、側面を軸方向全長にわたり平坦にす
る。回折格子は配列方向をスライダ4,8の移動方向と
同一方向とすることにより、案内軸側面にリニアスケー
ルを形成する。
FIG. 3 shows the orientation of the detector for detecting the position of the moving body, and FIG. 4 shows an enlarged view of the detector. As shown in FIG. 4, one of the first guide shafts 3 (on the right side in FIG. 3) and one side face of the second guide shaft 7 are
Depth is about 100μ to facilitate the deposition of the contact grid.
m groove is formed, and a diffraction grating is formed by vapor deposition in this groove to a thickness of about 100 μm, and the side surface is flattened over the entire axial length. The diffraction grating forms a linear scale on the side surface of the guide shaft by making the arrangement direction the same as the moving direction of the sliders 4, 8.

【0019】リニアスケール5,9とそれぞれ対向する
第1,第2のスライダ4,8には、可干渉光線を射出す
る発光素子14と、リニアスケール5,9で回折,反射
された前記可干渉光線を受光する検出素子15とを備え
た検出体6,10が、検出体全体のリニアスケールに対
する傾きの微調整ができるよう、調整ばね17と押さえ
ねじ16とで取り付けられている。スライダ4,8の案
内軸長手方向の位置もしくは移動量は、リニアスケール
5,9を構成している回折格子からの回折,反射光を、
スライダ4,8と一体となって移動する検出素子15で
検出することにより計測される。
The first and second sliders 4 and 8 facing the linear scales 5 and 9 respectively emit a light emitting element 14 that emits a coherent light beam and the coherent light diffracted and reflected by the linear scales 5 and 9. The detection bodies 6 and 10 including the detection element 15 that receives a light beam are attached by an adjustment spring 17 and a cap screw 16 so that the inclination of the entire detection body with respect to the linear scale can be finely adjusted. The positions or movement amounts of the sliders 4 and 8 in the longitudinal direction of the guide axis are determined by the diffraction and reflected light from the diffraction gratings that form the linear scales 5 and 9.
It is measured by detecting with the detection element 15 that moves integrally with the sliders 4 and 8.

【0020】それぞれ角筒状に形成された第1,第2の
スライダ4,8の下面には、図2に示すように、それぞ
れ、薄型平板状のコイルヨーク4b,8b,が固定さ
れ、さらに、コイルヨーク4b,8bの下面にそれぞれ
X軸コイル素子4a,Y軸コイル素子8aが固定され、
ベーステーブル1上面の永久磁石2と、コイルヨーク4
b,8b,コイル素子4a,8aとでリニア直流モータ
を構成する。
As shown in FIG. 2, thin flat plate-shaped coil yokes 4b and 8b are fixed to the lower surfaces of the first and second sliders 4 and 8 each formed in a rectangular tube shape. , The X-axis coil element 4a and the Y-axis coil element 8a are fixed to the lower surfaces of the coil yokes 4b and 8b, respectively.
The permanent magnet 2 on the upper surface of the base table 1 and the coil yoke 4
b, 8b and coil elements 4a, 8a constitute a linear DC motor.

【0021】図2において、それぞれX軸,Y軸方向の
リニアスケール5,9からの回折,反射光を検出した検
出体6,10からの検出信号は、装置本体とは別置のコ
ントローラのX軸カウンタおよびY軸カウンタにそれぞ
れ入力され、それぞれX軸方向,Y軸方向の位置が検出
され、この位置と指定位置との差に相当した,正負の極
性をもつ電気量がモータ制御部で計算され、この電気量
がリニア直流モータ12,13のコイル素子4a,8a
に送られる。これにより、各スライダ4,8は、この電
気量に相当した分X軸,Y軸方向に、かつ電気量の極性
によって指示される方向に移動する。
In FIG. 2, the detection signals from the detectors 6 and 10 which detect the diffraction and reflected light from the linear scales 5 and 9 in the X-axis and Y-axis directions, respectively, are detected by the X-axis of the controller separate from the apparatus main body. Input to the axis counter and Y-axis counter respectively, the position in the X-axis direction and the position in the Y-axis direction are respectively detected, and the electric quantity with positive and negative polarities corresponding to the difference between this position and the designated position is calculated by the motor control unit. Then, this electric quantity is applied to the coil elements 4a and 8a of the linear DC motors 12 and 13.
Sent to. As a result, the sliders 4 and 8 move in the X-axis and Y-axis directions corresponding to this amount of electricity, and in the direction indicated by the polarity of the amount of electricity.

【0022】[0022]

【発明の効果】本発明では、位置決めテーブル装置を以
上のように構成したので、以下に記載する効果が得られ
る。請求項1の装置では、 (1)それぞれ従来のX軸方向,Y軸方向移動テーブル
に該当する第1,第2のスライダがベーステーブル上面
側の同じ高さを移動する構造とすることができ、装置の
高さを従来と比べて低くすることができるとともに、被
移動体の位置検出が第1,第2のスライダの移動領域内
で可能となり、位置検出に長い光路長を必要とするレー
ザ光線を用いる場合のように検出手段のための広いスペ
ースを必要としなくなった。これにより、位置決めテー
ブル装置が全体として小型化され、設置スペースの余剰
を生じ、この余剰スペースの有効活用が可能になる。
According to the present invention, since the positioning table device is constructed as described above, the following effects can be obtained. In the apparatus according to claim 1, (1) the first and second sliders corresponding to the conventional X-axis direction and Y-axis direction moving tables, respectively, can be structured to move at the same height on the upper surface side of the base table. In addition, the height of the device can be made lower than that of the conventional one, and the position of the moving object can be detected within the moving area of the first and second sliders, and the laser that requires a long optical path length for position detection. It does not require as much space for the detection means as it does with the light beam. As a result, the positioning table device is downsized as a whole, an extra installation space is generated, and this extra space can be effectively utilized.

【0023】(2)各スライダを各案内軸に沿って非接
触に移動可能とするとともに、各スライダの駆動をスラ
イダ下部にリニアモータを構成して行うようにしたの
で、スライダが装置の固定部と全く非接触に移動可能と
なり、スライダを高速に移動させても発熱が生じないた
め、高速位置決めが可能となり、位置決めテーブル装置
を使用する製造装置のスループットが向上する。また被
移動体の移動時にねじ棒のバックラッシに基づくような
移動誤差を伴わないので高精度の位置決めが可能とな
り、加工された被移動体の品質が高レベルに均一化され
る。
(2) Since each slider can be moved along each guide shaft in a non-contact manner, and each slider is driven by a linear motor arranged below the slider, the slider is fixed to the fixing portion of the apparatus. Since it can be moved in a completely non-contact manner and heat is not generated even if the slider is moved at a high speed, high-speed positioning is possible and the throughput of the manufacturing apparatus using the positioning table device is improved. In addition, since there is no movement error due to backlash of the screw rod when the movable body is moved, high-accuracy positioning is possible, and the quality of the processed movable body is made uniform at a high level.

【0024】(3)案内軸の側面にリニアスケールを備
えさせ、リニアスケールと対面する検出体をスライダに
担持させてスライダの位置検出を可能にしたので、スラ
イダの位置が直接的に検出され、レーザ光線を位置検出
に用いる場合のような、困難な調整を必要とすることな
く、かつ室温や空気のゆらぎ等のような装置環境の影響
を受けにくい、再現性の高い計測が可能となり、指定位
置で加工される被移動体の品質が均一化されやすくな
る。また、レーザ装置や光学機器等の高価な計測手段を
必要とせず、装置のコストが低減される。
(3) Since the linear scale is provided on the side surface of the guide shaft and the detection body facing the linear scale is carried on the slider to enable the position detection of the slider, the position of the slider is directly detected. It enables highly reproducible measurement without requiring difficult adjustments such as when using a laser beam for position detection, and less susceptible to the device environment such as room temperature and air fluctuations. The quality of the moving object processed at the position is likely to be uniform. In addition, the cost of the device is reduced because an expensive measuring device such as a laser device or an optical device is not required.

【0025】請求項2の装置では、ベーステーブル上面
の碁盤状磁極面から上方へ出る磁束のじょう乱を受ける
ことなく被移動体の位置検出が可能となり、検出精度が
高くなるので、加工された被移動体の品質レベルが均一
化される。請求項3の装置では、案内軸表面とスライダ
の浮上面,案内面との間に導入するエアの空気導入口入
口の静圧を一定に保つことにより、案内軸表面とスライ
ダの浮上面,案内面との隙間が高精度に一定に保たれる
ので、リニアモータ駆動力の面内分布が安定し、位置の
検出信号によって得られる同一移動量信号に対する移動
距離の変動が小さくなり、移動量の精度が向上し、被移
動体の品質レベルの均一性が向上する。
In the apparatus according to the second aspect, the position of the movable body can be detected without being disturbed by the magnetic flux upwardly emitted from the cross-shaped magnetic pole surface on the upper surface of the base table, and the detection accuracy is improved. The quality level of the moving object is made uniform. According to the apparatus of claim 3, the static pressure at the air inlet of air introduced between the guide shaft surface and the slider air bearing surface and the guide surface is kept constant, so that the guide shaft surface and the slider air bearing surface, the guide surface. Since the gap with the surface is kept constant with high accuracy, the in-plane distribution of the linear motor driving force becomes stable, the fluctuation of the moving distance for the same moving amount signal obtained by the position detection signal becomes small, and the movement amount The accuracy is improved, and the uniformity of the quality level of the moving object is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による位置決めテーブル装置構成の一実
施例を示す斜視図
FIG. 1 is a perspective view showing an embodiment of the configuration of a positioning table device according to the present invention.

【図2】本発明における被移動体の位置検出ならびに移
動の方法を示す被移動体移動システム構成図
FIG. 2 is a configuration diagram of a moving body moving system showing a method of detecting and moving a position of a moving body according to the present invention.

【図3】本発明における被移動体位置検出のための検出
部の配位を示す検出部配位図
FIG. 3 is a detection unit configuration diagram showing the configuration of a detection unit for detecting the position of a moving object according to the present invention.

【図4】図3における検出部の拡大図FIG. 4 is an enlarged view of the detection unit in FIG.

【図5】従来の位置決めテーブル装置構成の一例を示す
斜視図
FIG. 5 is a perspective view showing an example of the configuration of a conventional positioning table device.

【符号の説明】[Explanation of symbols]

1 ベーステーブル 2 永久磁石 3 第1の案内軸 3a 案内軸支持体 4 第1のスライダ 4a コイル素子 4b コイルヨーク 5 第1のリニアスケール 6 第1の検出体 7 第2の案内軸 8 第2のスライダ 8a コイル素子 8b コイルヨーク 9 第2のリニアスケール 10 第2の検出体 11 ワーク取付けテーブル 12 リニアモータ 13 リニアモータ 14 光源 15 受光素子 1 base table 2 permanent magnet 3 first guide shaft 3a guide shaft support 4 first slider 4a coil element 4b coil yoke 5 first linear scale 6 first detector 7 second guide shaft 8 second Slider 8a Coil element 8b Coil yoke 9 Second linear scale 10 Second detection body 11 Work mounting table 12 Linear motor 13 Linear motor 14 Light source 15 Light receiving element

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H02K 41/02 C 7346−5H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H02K 41/02 C 7346-5H

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】平坦な上面の方形領域内に、磁極面形状が
方形の板状もしくは柱状の永久磁石を、隣り合う磁極面
の極性が異なるように碁盤状に敷きつめて該上面に固着
したベーステーブルと;1個は長手方向に沿う側面に該
側面に隣接する物体の長手方向の位置を検出するための
リニアスケールを備え、それぞれ前記テーブル面の方形
領域の対向2辺に沿いかつ該対向2辺と直角方向の対向
2辺を跨いでベーステーブルに固定される2個の第1の
案内軸と;それぞれ第1の案内軸に沿って該案内軸と非
接触に移動可能として下部にコイル面が前記碁盤状磁極
面と対面するようにコイル素子を取り付け碁盤状磁極面
とともにリニアモータを構成させるとともに、1個には
みずからの案内軸長手方向の位置を前記案内軸側面のリ
ニアスケールを利用して検出する検出体を担持させた2
個の第1のスライダと;前記第1の案内軸と同一構造に
形成され長手方向が第1の案内軸の長手方向と直角にな
るように両端部がそれぞれ前記2個の第1のスライダに
固定される第2の案内軸と;前記検出体を担持した方の
第1のスライダと同一構造に形成されるとともに、被移
動体が載置されるワーク取付けテーブルを備えた第2の
スライダと;を備えてなり、前記第1および第2のスラ
イダに被移動体の位置検出機能と駆動機能とを備えさせ
たことを特徴とする位置決めテーブル装置。
1. A base in which a rectangular plate-shaped or columnar permanent magnet having a magnetic pole surface shape is laid in a square shape on a flat upper surface so that adjacent magnetic pole surfaces have different polarities, and fixed to the upper surface. A table; one is provided with a linear scale on a side surface along the longitudinal direction for detecting a longitudinal position of an object adjacent to the side surface, the table being along two opposite sides of a rectangular area of the table surface and the opposite side 2 Two first guide shafts fixed to the base table straddling two opposite sides in a direction perpendicular to the side; and a coil surface on the lower part which is movable along the first guide shafts in a non-contact manner with the guide shafts. A coil element is mounted so that it faces the board-shaped magnetic pole surface to form a linear motor together with the board-shaped magnetic pole surface, and the position of the guide shaft in the longitudinal direction from one side is determined by the linear scale on the side surface of the guide shaft. 2 was supported detector for detecting and
A plurality of first sliders; both ends of the first slider are respectively formed in the same structure as the first guide shaft so that the longitudinal direction is perpendicular to the longitudinal direction of the first guide shaft. A second guide shaft that is fixed; a second slider that is formed in the same structure as the first slider that carries the detection body and that has a work mounting table on which the movable body is mounted. A positioning table device, characterized in that the first and second sliders are provided with a position detecting function and a driving function of the moving body.
【請求項2】請求項第1項に記載の位置決めテーブル装
置において、第1および第2の案内軸側面のリニアスケ
ールを長手方向に配列された回折格子、リニアスケール
を利用してみずからの位置を検出する検出体を光源と受
光素子とを組み合わせた光電検出ヘッドとすることを特
徴とする位置決めテーブル装置。
2. The positioning table device according to claim 1, wherein the linear scales on the side surfaces of the first and second guide shafts are arranged in the longitudinal direction by using a diffraction grating and a linear scale to determine the position of the linear scale. A positioning table device, wherein a detection body to be detected is a photoelectric detection head in which a light source and a light receiving element are combined.
【請求項3】請求項第1項または第2項に記載の位置決
めテーブル装置において、各スライダを各案内軸に沿っ
て非接触に移動可能とする非接触移動構造は、案内軸の
上面,リニアスケールを持たないほうの側面およびリニ
アスケールを有する方の側面をリニアスケールを含み、
軸方向実質全長にわたり平坦に形成するとともに、スラ
イダに、案内軸上面と側面とにそれぞれ対面するととも
に該対面する面を貫通して外部から圧縮空気を導入する
空気導入口を有する浮上面および案内面を備えさせ、ス
ライダを浮き上がらせて非接触に移動させる静圧浮上移
動構造とすることを特徴とする位置決めテーブル装置。
3. The positioning table device according to claim 1 or 2, wherein the non-contact moving structure that allows each slider to move in a non-contact manner along each guide shaft includes a top surface of the guide shaft and a linear structure. Includes a linear scale on the side without the scale and the side with the linear scale,
The air bearing surface and the guide surface are formed flat over substantially the entire length in the axial direction, and have an air inlet that faces the upper surface and side surfaces of the guide shaft and penetrates through the facing surfaces to introduce compressed air from the outside. And a static pressure levitation moving structure that floats the slider and moves the slider in a non-contact manner.
JP11353893A 1993-05-17 1993-05-17 Positioning table device Pending JPH06320367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11353893A JPH06320367A (en) 1993-05-17 1993-05-17 Positioning table device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11353893A JPH06320367A (en) 1993-05-17 1993-05-17 Positioning table device

Publications (1)

Publication Number Publication Date
JPH06320367A true JPH06320367A (en) 1994-11-22

Family

ID=14614864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11353893A Pending JPH06320367A (en) 1993-05-17 1993-05-17 Positioning table device

Country Status (1)

Country Link
JP (1) JPH06320367A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003066174A (en) * 2001-08-28 2003-03-05 Osaki Engineering Co Ltd Stage device
JP2006071536A (en) * 2004-09-03 2006-03-16 Yaskawa Electric Corp Xy-positioning device
JP2007143385A (en) * 2005-10-21 2007-06-07 Yaskawa Electric Corp Direct acting rotation actuator and system
US7602091B2 (en) 2004-02-25 2009-10-13 Canon Kabushiki Kaisha Positioning apparatus and exposure apparatus
JP2010281982A (en) * 2009-06-04 2010-12-16 Kohzu Precision Co Ltd Positioning stage
CN113074635A (en) * 2021-03-29 2021-07-06 哈尔滨市科佳通用机电股份有限公司 Calibration bolt and method for detecting bolt loosening by using same
CN114279327A (en) * 2021-12-23 2022-04-05 湖南凌翔磁浮科技有限责任公司 Size detection method for high-speed suspension electromagnet box girder
CN114792875A (en) * 2021-01-25 2022-07-26 南京以太通信技术有限公司 Filter electrode manufacturing equipment and manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003066174A (en) * 2001-08-28 2003-03-05 Osaki Engineering Co Ltd Stage device
US7602091B2 (en) 2004-02-25 2009-10-13 Canon Kabushiki Kaisha Positioning apparatus and exposure apparatus
JP2006071536A (en) * 2004-09-03 2006-03-16 Yaskawa Electric Corp Xy-positioning device
JP2007143385A (en) * 2005-10-21 2007-06-07 Yaskawa Electric Corp Direct acting rotation actuator and system
JP2010281982A (en) * 2009-06-04 2010-12-16 Kohzu Precision Co Ltd Positioning stage
CN114792875A (en) * 2021-01-25 2022-07-26 南京以太通信技术有限公司 Filter electrode manufacturing equipment and manufacturing method
CN114792875B (en) * 2021-01-25 2023-10-20 南京以太通信技术有限公司 Filter electrode manufacturing equipment and manufacturing method
CN113074635A (en) * 2021-03-29 2021-07-06 哈尔滨市科佳通用机电股份有限公司 Calibration bolt and method for detecting bolt loosening by using same
CN114279327A (en) * 2021-12-23 2022-04-05 湖南凌翔磁浮科技有限责任公司 Size detection method for high-speed suspension electromagnet box girder

Similar Documents

Publication Publication Date Title
KR100818581B1 (en) Stage device
EP0342639B1 (en) Microlithographic apparatus
US4667139A (en) Table device
EP0244012B1 (en) Positioning device
US6188195B1 (en) Exposure method, and method of making exposure apparatus having dynamically isolated support structure
EP1055163B1 (en) High-speed precision positioning apparatus
TW528881B (en) Position measuring apparatus
US7271879B2 (en) Decoupled planar positioning system
US5806193A (en) Tilt and movement apparatus using flexure and air cylinder
JP3942971B2 (en) Mobile drive unit
US20150280529A1 (en) Positioning Device in Gantry Type of Construction
JPH06320367A (en) Positioning table device
JP4198338B2 (en) Stage equipment
US5101301A (en) High-accuracy traveling table apparatus
JP3242450B2 (en) Motorized stage
JP4402112B2 (en) Flat direct drive with position measuring system
JP2015046331A (en) Stage device and charged particle beam device
CN116295105B (en) Optical interference type micro-machined wafer surface morphology measuring device and measuring method
Horie et al. High-speed positioning of a surface motor-driven planar stage
US20050223791A1 (en) Measuring apparatus and method for thin board
EP0427302A2 (en) Master optical disk recording apparatus
McDermott et al. A fast precision scanning microscope stage
Maguire Multi-degree of freedom position sensor for planar motors
Kossyk et al. Device photolithography: The primary pattern generator part ii-mechanical design
JPH0622398B2 (en) Linear motor