JPH0638754A - Production of immobilized biocatalyst using polyvinyl alcohol - Google Patents

Production of immobilized biocatalyst using polyvinyl alcohol

Info

Publication number
JPH0638754A
JPH0638754A JP3974392A JP3974392A JPH0638754A JP H0638754 A JPH0638754 A JP H0638754A JP 3974392 A JP3974392 A JP 3974392A JP 3974392 A JP3974392 A JP 3974392A JP H0638754 A JPH0638754 A JP H0638754A
Authority
JP
Japan
Prior art keywords
microorganism
aqueous solution
polyvinyl alcohol
boric acid
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3974392A
Other languages
Japanese (ja)
Other versions
JPH072114B2 (en
Inventor
Kokusei Chin
国誠 陳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3974392A priority Critical patent/JPH072114B2/en
Publication of JPH0638754A publication Critical patent/JPH0638754A/en
Publication of JPH072114B2 publication Critical patent/JPH072114B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE: To readily produce a immobilized biocatalyst having high water resistance and mechanical strength and excellent in biological activity in a short time at a low cost.
CONSTITUTION: In production of immobilized biocatalyst of an microorganism or an enzyme by polyvinyl alcohol by subjecting a mixture comprising polyvinyl alcohol and a microorganism or an enzyme to gelation treatment in 3 wt.% to saturated aqueous solution of boric acid to produce gel globes, the resultant gel globes are immersed into 3-20 wt.% phosphoric acid or phosphoric acid salt aqueous solution to cure these gel globes.
COPYRIGHT: (C)1994,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は排水処理分野および生化
学産業において有用な、ポリビニルアルコールを用いる
固定化生体触媒の製造法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing an immobilized biocatalyst using polyvinyl alcohol, which is useful in the field of wastewater treatment and the biochemical industry.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】様々
な天然または合成高分子材料を利用して微生物菌体また
は酵素を包括する技術は、1980年代から注目されつ
つあり、しかも実際工業生産に応用されて成功している
例も少なくない。たとえば、高フルクトースシロップ、
6−APA、L−アミノ酸などの生化学製品の生産など
があげられる。通常固定化担体に使われる代表的な高分
子材料としてはポリアクリルアミド、κ−カラギーナ
ン、アルギン酸ナトリウムおよび寒天などがある。ポリ
アクリルアミドは他の高分子より安価で、よく採用され
るが、一般的な連続反応器に適する球状顆粒に製するこ
とがむずかしく、かつその単体分子および重合促進剤に
はいずれも毒性があり、微生物菌体などの固定化操作に
適しない。κ−カラギーナンは成形し易く、毒性も低い
が、高価であることがその主な欠点である。アルギン酸
ナトリウムはコストが低く、球状にし易いが、リン酸
塩、ナトリウム、カリウムなどのカチオンを含む反応液
ではゲル強度がかなり不安定となり、甚だしくは崩壊す
ることもある。また、寒天ゲルは機械強度が弱すぎて、
長期操作に適しない。したがって、微生物菌体などの固
定化技術を有効に生化学製品の工業化工程、とくに最近
注目を浴びている廃水処理の分野に応用するには、微生
物や酵素の生化学活性を失活させることのない、低コス
トかつ機械強度の高い担体材料およびその製造法が開発
されなければならない。
2. Description of the Related Art Techniques for encapsulating microbial cells or enzymes using various natural or synthetic polymer materials have been attracting attention since the 1980s, and are actually applied to industrial production. There are quite a few examples that have been successful. For example, high fructose syrup,
Examples include production of biochemical products such as 6-APA and L-amino acid. Typical polymer materials that are commonly used for immobilization carriers include polyacrylamide, κ-carrageenan, sodium alginate, and agar. Polyacrylamide is cheaper than other polymers and is often used, but it is difficult to make spherical granules suitable for general continuous reactors, and both the single molecule and the polymerization accelerator are toxic, Not suitable for immobilizing microbial cells. κ-Carrageenan is easy to mold and has low toxicity, but its main drawback is that it is expensive. Although sodium alginate is low in cost and easy to be spherical, the reaction solution containing cations such as phosphate, sodium and potassium may cause the gel strength to be considerably unstable and may be severely disintegrated. Also, the mechanical strength of agar gel is too weak,
Not suitable for long-term operation. Therefore, in order to effectively apply the immobilization technology of microbial cells to the industrialization process of biochemical products, especially in the field of wastewater treatment, which has recently attracted attention, it is necessary to deactivate the biochemical activity of microorganisms and enzymes. A low cost, high mechanical strength carrier material and its manufacturing method must be developed.

【0003】ポリビニルアルコール(PVA)は、酢酸
ビニル単体から重合およびアルコール化により製造され
る水溶性樹脂である。ポリビニルアルコールは毒性がな
く人体にも無害と認められ、成形が容易で機械強度が高
く、かつ安価で量産できる工業化高分子原料であるた
め、固定化生体触媒の担体として非常に適している。
Polyvinyl alcohol (PVA) is a water-soluble resin produced by polymerizing and alcoholizing vinyl acetate alone. Polyvinyl alcohol is recognized as non-toxic and harmless to the human body, is an industrialized polymer raw material that is easy to mold, has high mechanical strength, and can be mass-produced at low cost, and is therefore very suitable as a carrier for immobilized biocatalysts.

【0004】近年、欧米と日本の特許公報にはPVAを
利用した数々の微生物固定化技術が公開されている。た
とえば、PVA水溶液と微生物を混合したのち、凍結真
空乾燥または冷凍解凍法でゲル固定化を行う方法(特開
昭57−14129および特開昭61−13938
5)、紫外線照射により光架橋構造を有するゲルを形成
する方法(特開平1−454372)、PVA水溶液と
微生物を混合し、飽和ホウ酸水溶液と接触させてゲル化
する方法(特開昭61−100193)などがある。上
記方法によれば強度の高いゲルがえられ、微生物や酵素
を固定化するための担体とすることができるが、なお多
くの改良すべき欠点がある。冷凍乾燥の方法において
は、材料を−30〜−80℃の低温にて冷凍状態を保持して
から、一定の含水率まで脱水乾燥を行うが、このような
冷凍−解凍−脱水の工程は、時間がかかるばかりか、操
作が煩雑で、エネルギーを消耗する。光架橋法はフィル
ムを形成するばあいに多く利用される方法で、一般の菌
体や酵素の固定化工程においては適しない。また、PV
A−ホウ酸法では、PVA−微生物の混合物をホウ酸水
溶液中に12〜24時間接触浸漬させて初めて相当な強度の
ゲルがえられるものであり、短時間では強度の弱いゲル
しかえられない。
In recent years, a number of microorganism immobilization techniques using PVA have been disclosed in European and American patent publications. For example, a method in which a PVA aqueous solution and a microorganism are mixed and then gel immobilization is carried out by freeze-vacuum drying or freeze-thawing (JP-A-57-14129 and JP-A-61-13938).
5), a method of forming a gel having a photocrosslinking structure by irradiation with ultraviolet rays (JP-A-1-454372), a method of mixing a PVA aqueous solution and a microorganism and bringing the mixture into contact with a saturated boric acid aqueous solution to form a gel (JP-A-61-161). 100193) and the like. According to the above method, a gel having high strength can be obtained and can be used as a carrier for immobilizing microorganisms and enzymes, but there are still many drawbacks to be improved. In the freeze-drying method, the material is kept in a frozen state at a low temperature of -30 to -80 ° C, and then dehydrated and dried to a certain water content. Not only it takes time, but the operation is complicated and consumes energy. The photocrosslinking method is often used when forming a film, and is not suitable in the general immobilization process of cells and enzymes. Also, PV
In the A-boric acid method, a gel of considerable strength can be obtained only by contact-immersing the PVA-microorganism mixture in an aqueous boric acid solution for 12 to 24 hours, and only a weak gel can be obtained in a short time. .

【0005】前記従来の技術に共通な欠点は、(1) 固定
化工程に長時間を要し、操作が煩雑で、大型の生産プラ
ントで量産しないとコストが上昇し、生産力が低下する
ことおよび、(2) 低温および真空の状態ならびにホウ酸
が、いずれも微生物の生存環境に余り適しないというこ
とである。とくにホウ酸には毒性があり、長時間の製造
工程中にいずれも微生物活性が低下する。
The disadvantages common to the prior arts are that (1) the immobilization process requires a long time, the operation is complicated, and the cost increases and the productivity decreases unless mass production is performed in a large production plant. And (2) low temperature and vacuum conditions and boric acid are both poorly suited to the microbial survival environment. In particular, boric acid is toxic and its microbial activity decreases during the long manufacturing process.

【0006】一方、北野清之(特開昭64−5460お
よび64−5491)はPVAと微生物菌体の混合物を
硫酸溶液と接触させる方法により上記欠点の改良を図
り、固定化に要する時間を短縮した。しかしながら、使
用するゲル溶液の濃度が相当高く、また、30%の硫酸ナ
トリウムまたは70%の硫酸アンモニウム溶液を用いる必
要があり、ゲル溶液の濃度が低すぎると顆粒に成形しに
くく、強度が弱くなるという欠点を有する。すなわち、
材料のコストが高くなり、ゲル化過程において高濃度の
塩類を用いるために微生物の生化学活性に悪影響をおよ
ぼすことになる。
On the other hand, Kiyoyuki Kitano (Japanese Patent Laid-Open Nos. 64-5460 and 64-5491) improves the above-mentioned drawbacks by a method of bringing a mixture of PVA and microbial cells into contact with a sulfuric acid solution to shorten the time required for immobilization. did. However, the concentration of the gel solution used is considerably high, and it is necessary to use 30% sodium sulfate or 70% ammonium sulfate solution. If the concentration of the gel solution is too low, it will be difficult to form into granules and the strength will be weak. It has drawbacks. That is,
The cost of the material is high and the high concentration of salts is used in the gelling process, which adversely affects the biochemical activity of the microorganism.

【0007】したがって、前記欠点をすべて克服し、短
時間に低コストで容易に微生物や酵素をその活性を低下
させることなくPVAに固定し、その結果耐水性と機械
強度が高く生化学活性のすぐれた固定化微生物または固
定化酵素(以下、これらを総称して固定化生体触媒とい
う)をえる方法が要望されている。
[0007] Therefore, by overcoming all of the above-mentioned drawbacks, microorganisms and enzymes can be easily immobilized on PVA in a short time at low cost without lowering the activity thereof, resulting in high water resistance and mechanical strength and excellent biochemical activity. There is a demand for a method of obtaining immobilized microorganisms or immobilized enzymes (hereinafter, these are collectively referred to as immobilized biocatalysts).

【0008】本発明者らはこのような状況に鑑み鋭意研
究を重ねた結果、たとえば7%のホウ酸溶液にて短時間
で成形し、さらに5%のリン酸塩溶液で強化させたばあ
い、すなわち、ホウ酸とリン酸またはリン酸塩による二
段階のゲル化によれば、きわめて容易かつ短時間に成形
が行なわれることおよび、安価で微生物のエネルギー代
謝のソースでもあり生物毒性のないリン酸塩を低濃度で
使用することにより、低コストでかつ微生物などの生化
学活性を低下させることもなく、従来の硫酸塩法に比べ
てゲルの強度が優れた固定化生体触媒がえられることを
見出し、本発明を完成するにいたった。
[0008] As a result of intensive studies conducted by the present inventors in view of such a situation, it was found that, for example, molding was carried out in a short time with a 7% boric acid solution and further strengthened with a 5% phosphate solution. In other words, the two-step gelation with boric acid and phosphoric acid or phosphate makes molding extremely easy and in a short time, and is a cheap, non-biotoxic phosphorus source of microbial energy metabolism. By using a low concentration of acid salt, it is possible to obtain an immobilized biocatalyst with a gel strength superior to the conventional sulfate method at low cost and without lowering biochemical activity of microorganisms etc. And completed the present invention.

【0009】[0009]

【課題を解決するための手段】すなわち、本発明は、ポ
リビニルアルコールと微生物または酵素よりなる混合物
を、濃度が3重量%から飽和のホウ酸水溶液にてゲル化
処理を行ない、ゲル球体を生成するポリビニルアルコー
ルによる微生物または酵素の固定化生体触媒の製造法に
おいて、ゲル化処理の時間が10分〜2時間であり、さら
にえられたゲル球体を3〜20重量%リン酸またはリン酸
塩水溶液に30分間以上浸漬して硬化させることを特徴と
する方法に関する。
[Means for Solving the Problems] That is, according to the present invention, a gel sphere is produced by subjecting a mixture of polyvinyl alcohol and a microorganism or enzyme to a gelation treatment with a boric acid solution having a concentration of 3% by weight to saturated boric acid. In the method for producing a biocatalyst for immobilizing microorganisms or enzymes with polyvinyl alcohol, the gelation time is 10 minutes to 2 hours, and the obtained gel spheres are added to 3 to 20% by weight phosphoric acid or phosphate aqueous solution. The present invention relates to a method characterized by dipping for 30 minutes or more to cure.

【0010】また、本発明はポリビニルアルコールと微
生物または酵素よりなる混合物を、濃度が3重量%から
飽和のホウ酸水溶液にてゲル化処理を行ない、ゲル球体
を生成するポリビニルアルコールによる微生物または酵
素の固定化生体触媒の製造法において、ホウ酸水溶液と
して3〜20重量%のリン酸またはリン酸塩を含有するホ
ウ酸水溶液を使用し、30分〜3時間のゲル化および硬化
処理時間で、ゲル化および硬化を同時に行なうことを特
徴とする方法に関する。
In the present invention, a mixture of polyvinyl alcohol and a microorganism or an enzyme is subjected to gelation treatment with a boric acid solution having a concentration of 3% by weight to a saturated aqueous solution of boric acid to form a gel sphere. In the method for producing an immobilized biocatalyst, an aqueous boric acid solution containing 3 to 20% by weight of phosphoric acid or a phosphoric acid salt is used as the aqueous boric acid solution, and the gelling and curing treatment time is 30 minutes to 3 hours. The present invention relates to a method characterized by simultaneously performing curing and curing.

【0011】[0011]

【実施例】本発明はポリビニルアルコールによる固定化
生体触媒の改良製造法を提供するもので、ポリビニルア
ルコールと微生物または酵素よりなる混合物を、濃度が
3重量%から飽和のホウ酸水溶液にてゲル化処理を行い
ゲル球体を生成する、ポリビニルアルコールによる微生
物または酵素の固定化生体触媒の製造法において、3〜
20重量%リン酸またはリン酸塩水溶液を用いてゲル球体
を硬化させることを特徴とする。リン酸またはリン酸塩
水溶液を用いるゲル球体の硬化は、ゲル化処理の時間が
10分〜2時間で、さらに3〜20重量%リン酸またはリン
酸塩水溶液に、えられた該ゲル球体を30分間以上浸漬し
て硬化させる方法により実施される。
EXAMPLE The present invention provides an improved method for producing an immobilized biocatalyst with polyvinyl alcohol, in which a mixture of polyvinyl alcohol and a microorganism or an enzyme is gelled with a boric acid aqueous solution having a concentration of 3 wt% to saturated. In the method for producing a biocatalyst in which a microorganism or an enzyme is immobilized by polyvinyl alcohol, which is treated to produce gel spheres,
It is characterized in that gel spheres are hardened using a 20% by weight phosphoric acid or phosphate aqueous solution. Curing of gel spheres with aqueous phosphoric acid or phosphate solution takes time for gelling treatment.
It is carried out for 10 minutes to 2 hours by a method of further immersing the obtained gel sphere in an aqueous solution of phosphoric acid or a phosphoric acid salt of 3 to 20% by weight for 30 minutes or more to cure it.

【0012】本発明方法の原理と特徴は、PVAをPV
A分子中の水酸基とホウ酸分子との間のイオン架橋作用
により成形させたのち、えられるあまり強固でないゲル
をリン酸またはリン酸塩水溶液に浸漬し、PVAとリン
酸またはリン酸塩水溶液とのエステル化反応により硬化
させることにより、耐水性と機械強度が高く、微生物ま
たは酵素の生化学活性が殆ど失われていない固定化生体
触媒をうるものである。本発明の製造フローチャートは
図1の通りである。
The principle and characteristics of the method of the present invention are that PVA is converted into PV
After molding by the ionic cross-linking action between the hydroxyl group in the molecule A and the boric acid molecule, the obtained gel which is not so strong is immersed in phosphoric acid or phosphate aqueous solution to obtain PVA and phosphoric acid or phosphate aqueous solution. By curing by the esterification reaction of 1), an immobilized biocatalyst having high water resistance and mechanical strength and hardly losing biochemical activity of microorganisms or enzymes can be obtained. The manufacturing flow chart of the present invention is as shown in FIG.

【0013】本発明で使用されるPVAは、ケン化度が
70〜98%またはそれ以上、重合度が1000〜3000のもの
で、ケン化度95〜98%またはそれ以上、重合度1500〜20
00のものが好ましい。重合度が低すぎるとゲルが不安定
になり、高すぎると粘度が上昇するため、処理しにくく
なる。PVAは水溶液の形態で微生物または酵素と混合
するが、適切なPVA濃度は10〜20重量%である。ホウ
酸によるゲル化処理時間は、飽和のホウ酸水溶液で行う
ばあい約15〜30分間が好ましい。
The PVA used in the present invention has a saponification degree of
70 ~ 98% or more, polymerization degree 1000 ~ 3000, saponification degree 95 ~ 98% or more, polymerization degree 1500 ~ 20
00 is preferable. If the degree of polymerization is too low, the gel will become unstable, and if it is too high, the viscosity will increase, making it difficult to process. PVA is mixed with microorganisms or enzymes in the form of an aqueous solution, with a suitable PVA concentration being 10-20% by weight. The gelling treatment time with boric acid is preferably about 15 to 30 minutes when a saturated aqueous boric acid solution is used.

【0014】リン酸またはリン酸塩水溶液の好ましい濃
度は5〜15重量%であり、浸漬時間が約1〜2時間で理
想的な製品がえられる。リン酸塩水溶液にはリン酸ナト
リウム、リン酸二水素ナトリウム、リン酸カリウムまた
はリン酸アンモニウムなどを使用することができる。
The preferred concentration of the phosphoric acid or phosphate aqueous solution is 5 to 15% by weight, and an immersion time of about 1 to 2 hours gives an ideal product. Sodium phosphate, sodium dihydrogen phosphate, potassium phosphate, ammonium phosphate or the like can be used for the aqueous phosphate solution.

【0015】本発明方法の他の好ましい実施方法として
は、ホウ酸とリン酸またはリン酸塩水溶液を混合する方
法、すなわちホウ酸水溶液として3〜20重量%のリン酸
またはリン酸塩を含有するホウ酸水溶液を使用し、同時
にゲル化と硬化を行う方法である。好ましくはホウ酸水
溶液として、飽和のホウ酸および5〜15重量%のリン酸
またはリン酸塩を含有するものを使用する。このゲル化
および硬化処理時間は30分〜3時間、好ましくは1〜2
時間である。
Another preferred method for carrying out the method of the present invention is to mix boric acid with phosphoric acid or an aqueous solution of phosphoric acid, that is, the aqueous boric acid solution contains 3 to 20% by weight of phosphoric acid or phosphoric acid. This is a method in which an aqueous solution of boric acid is used and gelation and curing are simultaneously performed. Preferably, the aqueous boric acid solution contains saturated boric acid and 5 to 15% by weight of phosphoric acid or phosphate. The gelling and curing treatment time is 30 minutes to 3 hours, preferably 1 to 2
It's time.

【0016】なお、本発明において使用するポリビニル
アルコール水溶液と、微生物または酵素水溶液の混合重
量比は1:2〜2:1であることが好ましい。
The mixing weight ratio of the polyvinyl alcohol aqueous solution used in the present invention and the microorganism or enzyme aqueous solution is preferably 1: 2 to 2: 1.

【0017】本発明方法の特徴は、まずホウ酸水溶液で
短時間にゲル基礎構造を建てることで、このさい、接触
時間が短いので、ホウ酸の微生物または酵素に対するダ
メージを最低に減少させることができる(特開昭61−
100193における、橋本奨によるホウ酸法によれ
ば、15〜24時間の接触時間が必要であった)。さらに、
ゲル硬化工程において、緩衝作用を有するリン酸または
リン酸塩水溶液を使用することであり、リン元素は微生
物のエネルギー代謝に必須の元素でもあるので微生物に
は無害であるばかりでなく、微生物を活性化する効果を
有している。
The feature of the method of the present invention is to first build a gel basic structure in an aqueous boric acid solution in a short time, and since the contact time is short at this time, the damage of boric acid to microorganisms or enzymes can be reduced to the minimum. Yes (Japanese Patent Laid-Open No. 61-
According to Hashimoto's boric acid method in 100193, a contact time of 15 to 24 hours was required). further,
In the gel hardening process, it is to use a phosphoric acid or phosphate aqueous solution having a buffering action.Phosphorus element is not only harmless to microorganisms because it is also an essential element for energy metabolism of microorganisms, it also activates the microorganisms. Have the effect of

【0018】本発明により製造されるPVAゲルは酵
素、工業微生物、廃水処理微生物群および動植物細胞な
どの包括固定化技術に適用される。酵素としては、アミ
ラーゼ、セルラーゼ、プロテアーゼ、またはグルコシダ
ーゼなどがあげられる。また、微生物としては細菌、菌
類、藻類、原生動物またはそれらの混合物が使用でき、
アルコール醗酵酵母、硝化細菌、脱窒細菌および活性汚
泥、嫌気消化汚泥、メタン化汚泥、脱窒汚泥などの微生
物群があげられる。活性汚泥微生物としては具体的に
は、農業または工業排水で馴化した活性汚泥微生物があ
げられ、さらに、具体的な微生物としては、ビール酵母
(サッカロミセス セレビシアエ(Saccharomyces cere
visiae))、ステロイド転換細菌(アルスロバクター
シンプレックス(Arthrobacter simplex))などがあげ
られる。以上にあげたものはいずれも本発明のPVAゲ
ル法で可能な応用対象となる。
The PVA gel produced according to the present invention can be applied to the entrapping immobilization technology for enzymes, industrial microorganisms, wastewater treatment microorganisms, animal and plant cells and the like. Examples of the enzyme include amylase, cellulase, protease, glucosidase and the like. As the microorganism, bacteria, fungi, algae, protozoa or a mixture thereof can be used,
Examples of microorganisms include alcohol-fermenting yeast, nitrifying bacteria, denitrifying bacteria and activated sludge, anaerobic digestion sludge, methanated sludge, and denitrification sludge. Specifically as activated sludge microorganisms, activated sludge microorganisms was conditioned with agricultural or industrial waste water and the like, and further, as is the specific organism, brewer's yeast (Saccharomyces cerevisiae (Saccharomyces cere
visiae )), steroid-converting bacteria (Arthrobacter)
Simplex ( Arthrobacter simplex ) and the like. All of the above are applicable objects of the PVA gel method of the present invention.

【0019】実施例1 15重量%のPVA(ケン化度99%以上、重合度2000)水
溶液20gと脱窒汚泥の濃縮液(脱窒汚泥微生物は実験室
の生物脱窒素工程の脱窒槽からえたもので、汚泥濃度は
50g/lである)20gを混合し、このPVA−汚泥混合
物を、緩和に攪拌した状態の飽和ホウ酸水溶液に滴下
し、直径約3mmの球状ゲルを形成させて該溶液に20分間
置いたのち、取り出して8重量%のリン酸二水素ナトリ
ウム溶液に40分間浸漬し、最後にゲル顆粒を取り出して
水洗いした。えられた固定化微生物担体20gを、硝酸カ
リウムとメタノールを主成分として含む80mlの人工廃
水(硝酸窒素の濃度100ppm,メタノール350ppm)と混合
し、125 mlの血清瓶に入れ、無酸素条件にてバッチ式
脱窒を行った。2時間の培養後、人工廃水の硝酸窒素の
濃度は32ppm に低下した。
Example 1 20 g of a 15 wt% PVA (saponification degree of 99% or more, polymerization degree of 2000) aqueous solution and a concentrated solution of denitrification sludge (denitrification sludge microorganisms were obtained from a denitrification tank in a biological denitrification process in a laboratory). The sludge concentration is
20 g (which is 50 g / l) are mixed and this PVA-sludge mixture is added dropwise to a gently stirred saturated aqueous boric acid solution to form a spherical gel with a diameter of about 3 mm and left in the solution for 20 minutes. Then, it was taken out and immersed in an 8 wt% sodium dihydrogen phosphate solution for 40 minutes, and finally the gel granules were taken out and washed with water. 20 g of the obtained immobilized microbial carrier was mixed with 80 ml of artificial wastewater containing potassium nitrate and methanol as main components (concentration of nitrogen nitrate 100 ppm, methanol 350 ppm), put in a 125 ml serum bottle, and batched under anoxic conditions. Performed denitrification. After culturing for 2 hours, the concentration of nitrogen nitrate in the artificial waste water dropped to 32 ppm.

【0020】同じ固定化微生物担体を用いてバッチ式脱
窒試験を繰り返した。毎日同じ成分の人工廃水を交換
し、固定化微生物の脱硝速度を測定した結果、7日目に
0.65mgN/g−gel/hに達したのち、30日目までの
連続操作はいずれもこの速度を維持していて、生化学活
性はかなり安定であることがわかった。一方、橋本奨
(特開昭61−100193)の方法で同じ汚泥含有量
の固定化菌体を製造し、同じ条件にて本実施例と同様の
実験を行った。その結果、バッチ式脱窒で2時間培養し
たのち、人工廃水の硝酸窒素の濃度は82ppm であり、さ
らにバッチ式脱窒を繰り返したところ、15日目でやっと
0.55mg N/g−gel/hの脱窒速度に達した。
The batch denitrification test was repeated using the same immobilized microbial carrier. As a result of measuring the denitrification rate of immobilized microorganisms by exchanging artificial wastewater of the same component every day, on the 7th day
After reaching 0.65 mg N / g-gel / h, all of the continuous operations up to the 30th day maintained this rate, and it was found that the biochemical activity was fairly stable. On the other hand, immobilized microbial cells having the same sludge content were produced by the method of Hashimoto Sho (JP-A-61-100193), and the same experiment as this example was conducted under the same conditions. As a result, after culturing for 2 hours in batch denitrification, the concentration of nitrogen nitrate in the artificial waste water was 82 ppm. When batch denitrification was repeated, finally on the 15th day,
A denitrification rate of 0.55 mg N / g-gel / h was reached.

【0021】実施例2 20重量%のPVA(ケン化度99%以上、重合度2000)水
溶液と脱窒汚泥の濃縮液(汚泥濃度30g/L)を1:1
の重量比で均一に混合した(脱窒汚泥微生物は実験室の
生物脱窒素工程の硝化槽からえた)。このPVA−汚泥
を実施例1と同様に微生物固定化工程に付した。
Example 2 A 20% by weight aqueous solution of PVA (saponification degree: 99% or more, polymerization degree: 2000) and a denitrifying sludge concentrate (sludge concentration 30 g / L) were mixed at a ratio of 1: 1.
Were uniformly mixed (denitrification sludge microorganisms were obtained from the nitrification tank of the biological denitrification process in the laboratory). This PVA-sludge was subjected to the microorganism immobilization step as in Example 1.

【0022】えられた固定化微生物担体(粒径3mm)を
用い、操作容積が10Lの生物反応器にて200ppmのアンモ
ニア窒素を含む人工廃水を連続流入し(流入量30L/
日)、担体充填率25%、通気量20L/分で、10日連続操
作した結果、流出水のアンモニア窒素濃度は9ppm であ
り、92%のアンモニア窒素が硝酸窒素に転換された。
Using the thus obtained immobilized microbial carrier (particle size: 3 mm), an artificial wastewater containing 200 ppm of ammonia nitrogen was continuously introduced into a bioreactor having an operating volume of 10 L (inflow amount: 30 L /
As a result of continuous operation for 10 days at a carrier filling rate of 25% and an air flow rate of 20 L / min, the concentration of ammonia nitrogen in the effluent was 9 ppm, and 92% of ammonia nitrogen was converted to nitrogen nitrate.

【0023】実施例3 豚養殖場廃水(COD濃度1500〜2000ppm 、総窒素濃度
200 〜300ppm)で一ヵ月馴化した活性汚泥を遠心してえ
られた濃縮汚泥溶液と、18重量%のPVA(ケン化度99
%以上、重合度2000)水溶液を1:1の重量比で均一に
混合し、5重量%のホウ酸と10重量%のリン酸二水素ナ
トリウムを含む混合溶液に滴下し、1時間浸漬して直径
3mmの球状ゲル顆粒を形成した。えられた固定化微生物
担体を実施例2と同様の生物反応器にて、豚養殖場廃水
の処理を行った。反応器の操作条件は実施例2と同様に
行った。20日の連続操作後、流出水のCOD濃度は200
〜300ppmに低下し、総窒素濃度も120 〜180ppmに低下し
た。
Example 3 Pig farm wastewater (COD concentration 1500-2000 ppm, total nitrogen concentration
Concentrated sludge solution obtained by centrifuging activated sludge acclimatized at 200-300ppm for 1 month and 18 wt% PVA (saponification degree 99
%, The degree of polymerization is 2000) The aqueous solution is uniformly mixed at a weight ratio of 1: 1 and added dropwise to a mixed solution containing 5% by weight boric acid and 10% by weight sodium dihydrogen phosphate and immersed for 1 hour. Spherical gel granules with a diameter of 3 mm were formed. The obtained immobilized microbial carrier was treated in the same bioreactor as in Example 2 to treat swine farm wastewater. The operating conditions of the reactor were the same as in Example 2. After continuous operation for 20 days, the COD concentration of the effluent is 200
〜300ppm and total nitrogen concentration also dropped to 120〜180ppm.

【0024】実施例4 20重量%のPVA(ケン化度99%以上、重合度2000)水
溶液10gと、ビール酵母(Saccharomyces cerevisiae
遠心濃縮液(細胞濃度30g/l)10gを充分攪拌混合し
て、実施例1と同様の微生物固定化工程に付した。えら
れた固定化微生物担体(粒径2mm)15gを、3重量%
のグルコースを含む培地150 mlと混合し、フラスコに
移し、30℃にて8時間振盪培養した結果、培養液中のア
ルコール生産濃度は10.2g/lであった。一方、同じ菌
体量と、同じ培養条件にて、遊離細胞の培養を8時間行
うと、培養液中のアルコール生産濃度は10.6g/lであ
った。
Example 4 10 g of a 20 wt% PVA (saponification degree 99% or more, polymerization degree 2000) aqueous solution and brewer's yeast ( Saccharomyces cerevisiae )
10 g of the centrifugally concentrated solution (cell concentration: 30 g / l) was thoroughly stirred and mixed, and subjected to the same microorganism immobilization step as in Example 1. 3% by weight of 15 g of the obtained immobilized microbial carrier (particle diameter 2 mm)
As a result of mixing with 150 ml of a glucose-containing medium, transferred to a flask, and cultured by shaking at 30 ° C. for 8 hours, the alcohol production concentration in the culture was 10.2 g / l. On the other hand, when the free cells were cultured for 8 hours under the same cell amount and the same culture condition, the alcohol production concentration in the culture solution was 10.6 g / l.

【0025】実施例5 20重量%のPVA(ケン化度99%以上、重合度2000)水
溶液10gと、ステロイド転換細菌(Arthrobacter simpl
ex)濃縮液(細胞濃度20g/l)10gを充分攪拌混合し
て、実施例3と同様の微生物固定化工程に付した。えら
れた固定化微生物担体(粒径2mm)15gを0.2 重量%の
ハイドロコルチゾンを含む培地150 mlと混合し、容積
500 mlのフラスコに移して振盪培養によりステロイド
の△1 -脱水素生化学反応を行い、5時間培養した結
果、90%の基質がプレドニソロンに転換した。
Example 5 10 g of a 20% by weight aqueous solution of PVA (saponification degree: 99% or more, polymerization degree: 2000) and steroid-converting bacteria ( Arthrobacter simpl)
ex ) 10 g of the concentrated solution (cell concentration: 20 g / l) was thoroughly mixed with stirring and subjected to the same microorganism immobilization step as in Example 3. 15 g of the obtained immobilized microbial carrier (particle size: 2 mm) was mixed with 150 ml of a medium containing 0.2% by weight of hydrocortisone, and the volume was increased.
Transferred to a 500 ml flask and shake-cultured for Δ 1 -dehydrogenation biochemical reaction of the steroid, and cultured for 5 hours. As a result, 90% of the substrate was converted to prednisolone.

【0026】実施例6 15重量%のPVA(ケン化度99%以上、重合度2000)水
溶液10gを、3gのイソアミラーゼおよび2gのβ−ア
ミラーゼと充分攪拌混合して、実施例1と同様の固定化
工程に付した。えられた固定化酵素担体(粒径2mm)15
gを、50g/lの液化アミラーゼを含む基質溶液150 m
lと混合し、容積500 mlのフラスコに移して振盪攪拌
により澱粉の加水分解反応を行った結果、反応3時間後
のマルトース濃度は41g/lで、基質の転換率は82%で
あった。
Example 6 10 g of a 15% by weight aqueous solution of PVA (saponification degree: 99% or more, polymerization degree: 2000) was thoroughly mixed with 3 g of isoamylase and 2 g of β-amylase by stirring, and the same procedure as in Example 1 was conducted. It was subjected to an immobilization process. Obtained immobilized enzyme carrier (particle size 2 mm) 15
150 g of a substrate solution containing 50 g / l of liquefied amylase
The mixture was mixed with 1 and transferred to a flask having a volume of 500 ml, and the starch was hydrolyzed by shaking and stirring. As a result, 3 hours after the reaction, the maltose concentration was 41 g / l and the substrate conversion rate was 82%.

【0027】[0027]

【発明の効果】本発明の方法によれば、耐水性と機械強
度が高く、生化学活性のすぐれた固定化生体触媒を、短
時間かつ低コストで容易に製造することができる。
According to the method of the present invention, an immobilized biocatalyst having high water resistance and mechanical strength and excellent biochemical activity can be easily produced in a short time at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の微生物または酵素の固定化生体触媒の
製造フローチャートである。
FIG. 1 is a production flow chart of a biocatalyst with immobilized microorganisms or enzymes of the present invention.

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 ポリビニルアルコールと微生物または酵
素よりなる混合物を、濃度が3重量%から飽和のホウ酸
水溶液にてゲル化処理を行ない、ゲル球体を生成するポ
リビニルアルコールによる微生物または酵素の固定化生
体触媒の製造法において、ゲル化処理の時間が10分〜2
時間であり、さらにえられたゲル球体を3〜20重量%リ
ン酸またはリン酸塩水溶液に30分間以上浸漬して硬化さ
せることを特徴とする方法。
1. A living organism in which a microorganism or enzyme is immobilized by polyvinyl alcohol which forms a gel sphere by subjecting a mixture of polyvinyl alcohol and a microorganism or enzyme to gelation treatment with an aqueous boric acid solution having a concentration of 3 wt% to saturated. In the catalyst production method, the gelation time is 10 minutes to 2 minutes.
The method is characterized by immersing the obtained gel sphere in an aqueous solution of 3 to 20% by weight phosphoric acid or a phosphate for 30 minutes or more to cure the gel sphere.
【請求項2】 ポリビニルアルコールと微生物または酵
素よりなる混合物を、濃度が3重量%から飽和のホウ酸
水溶液にてゲル化処理を行ない、ゲル球体を生成するポ
リビニルアルコールによる微生物または酵素の固定化生
体触媒の製造法において、ホウ酸水溶液として3〜20重
量%のリン酸またはリン酸塩を含有するホウ酸水溶液を
使用し、30分〜3時間のゲル化および硬化処理時間で、
ゲル化および硬化を同時に行なうことを特徴とする方
法。
2. A mixture of polyvinyl alcohol and a microorganism or an enzyme is subjected to a gelation treatment with a boric acid solution having a concentration of 3% by weight to a saturated aqueous solution to immobilize the microorganism or the enzyme with polyvinyl alcohol to form gel spheres. In the method for producing a catalyst, an aqueous boric acid solution containing 3 to 20% by weight of phosphoric acid or a phosphoric acid salt is used as an aqueous boric acid solution, and the gelation and curing treatment time is 30 minutes to 3 hours.
A method characterized by simultaneously performing gelation and curing.
【請求項3】 ホウ酸水溶液が飽和のホウ酸水溶液であ
り、ゲル化処理の時間が15分〜30分間である請求項1記
載の方法。
3. The method according to claim 1, wherein the boric acid aqueous solution is a saturated boric acid aqueous solution, and the gelling time is 15 minutes to 30 minutes.
【請求項4】 リン酸またはリン酸塩水溶液の濃度が5
〜15重量%で、ゲル球体を浸漬する時間が1〜2時間で
ある請求項1記載の方法。
4. The concentration of phosphoric acid or phosphate aqueous solution is 5
The method according to claim 1, wherein the time for immersing the gel spheres at -15% by weight is 1-2 hours.
【請求項5】 ホウ酸水溶液が、飽和のホウ酸と5〜15
重量%のリン酸またはリン酸塩を含有する請求項2記載
の方法。
5. The boric acid aqueous solution contains saturated boric acid and 5 to 15 parts.
A method according to claim 2 which contains wt% phosphoric acid or phosphate.
【請求項6】 ゲル化および硬化処理の時間が1〜2時
間である請求項2記載の方法。
6. The method according to claim 2, wherein the gelling and curing treatment time is 1 to 2 hours.
【請求項7】 リン酸またはリン酸塩が、リン酸ナトリ
ウム、リン酸二水素ナトリウム、リン酸カリウム、リン
酸アンモニウムおよびリン酸よりなる群より選ばれるも
のである請求項1または2記載の方法。
7. The method according to claim 1 or 2, wherein the phosphoric acid or phosphate is selected from the group consisting of sodium phosphate, sodium dihydrogen phosphate, potassium phosphate, ammonium phosphate and phosphoric acid. .
【請求項8】 ポリビニルアルコールの重合度が1000〜
3000で、ケン化度が70〜98%またはそれ以上であり、該
ポリビニルアルコールを10〜20重量%の水溶液として使
用する請求項1または2記載の方法。
8. The degree of polymerization of polyvinyl alcohol is from 1000 to
A process according to claim 1 or 2, wherein the saponification degree at 3000 is 70 to 98% or more and the polyvinyl alcohol is used as an aqueous solution of 10 to 20% by weight.
【請求項9】 ポリビニルアルコールの重合度が1500〜
2000で、ケン化度が95〜98%またはそれ以上である請求
項8記載の方法。
9. The degree of polymerization of polyvinyl alcohol is 1500 to
9. The method of claim 8, wherein the degree of saponification at 2000 is 95-98% or more.
【請求項10】 ポリビニルアルコール水溶液と、微生
物または酵素水溶液の混合重量比が1:2〜2:1であ
る請求項1または2記載の方法。
10. The method according to claim 1 or 2, wherein the mixing weight ratio of the polyvinyl alcohol aqueous solution and the microorganism or enzyme aqueous solution is 1: 2 to 2: 1.
【請求項11】 微生物が細菌、菌類、藻類、原生動物
またはそれらの混合物である請求項1または2記載の方
法。
11. The method according to claim 1 or 2, wherein the microorganism is a bacterium, a fungus, an alga, a protozoan, or a mixture thereof.
【請求項12】 微生物が活性汚泥微生物である請求項
1または2記載の方法。
12. The method according to claim 1, wherein the microorganism is an activated sludge microorganism.
【請求項13】 活性汚泥微生物が農業または工業廃水
で馴化した活性汚泥微生物である請求項12記載の方
法。
13. The method according to claim 12, wherein the activated sludge microorganism is an activated sludge microorganism acclimatized with agricultural or industrial wastewater.
【請求項14】 微生物がビール酵母である請求項1ま
たは2記載の方法。
14. The method according to claim 1 or 2, wherein the microorganism is brewer's yeast.
【請求項15】 微生物がステロイド転換細菌である請
求項1または2記載の方法。
15. The method according to claim 1 or 2, wherein the microorganism is a steroid-converting bacterium.
【請求項16】 酵素がアミラーゼ、セルラーゼ、プロ
テアーゼまたはグルコシダーゼである請求項1または2
記載の方法。
16. The enzyme according to claim 1, which is amylase, cellulase, protease or glucosidase.
The method described.
JP3974392A 1992-02-26 1992-02-26 Method for producing immobilized biocatalyst using polyvinyl alcohol Expired - Lifetime JPH072114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3974392A JPH072114B2 (en) 1992-02-26 1992-02-26 Method for producing immobilized biocatalyst using polyvinyl alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3974392A JPH072114B2 (en) 1992-02-26 1992-02-26 Method for producing immobilized biocatalyst using polyvinyl alcohol

Publications (2)

Publication Number Publication Date
JPH0638754A true JPH0638754A (en) 1994-02-15
JPH072114B2 JPH072114B2 (en) 1995-01-18

Family

ID=12561449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3974392A Expired - Lifetime JPH072114B2 (en) 1992-02-26 1992-02-26 Method for producing immobilized biocatalyst using polyvinyl alcohol

Country Status (1)

Country Link
JP (1) JPH072114B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053385A (en) * 2001-08-09 2003-02-25 Kurita Water Ind Ltd Biological denitrification equipment
JP2010201423A (en) * 1999-06-10 2010-09-16 Bicom:Kk High-concentration culture method of denitrifying bacterium contained in activated sludge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010201423A (en) * 1999-06-10 2010-09-16 Bicom:Kk High-concentration culture method of denitrifying bacterium contained in activated sludge
JP2003053385A (en) * 2001-08-09 2003-02-25 Kurita Water Ind Ltd Biological denitrification equipment

Also Published As

Publication number Publication date
JPH072114B2 (en) 1995-01-18

Similar Documents

Publication Publication Date Title
Zhang et al. Immobilization of activated sludge using improved polyvinyl alcohol (PVA) gel
US5290693A (en) Immobilization of microorganisms or enzymes in polyvinyl alcohol beads
US6153416A (en) Immobilization of microbial cells and enzymes in calcium alginate-polyethylene glycol-polyethylene imide beads
EP1743937B1 (en) Microorganism-entrapping immobilization pellets and process for producing the same
CN105861479A (en) Method for co-immobilizing anaerobic ammoxidation bacteria-short-cut nitrobacteria and application thereof
JPS60120987A (en) Production of immobilized microbial cell or enzyme
US4194066A (en) Immobilization of enzymes or bacteria cells
CN113754051A (en) Biological denitrification slow-release carbon source composite material and preparation method and application thereof
JPS5923791B2 (en) Method for producing immobilized microorganisms
US4518693A (en) Immobilized biocatalysts
CN111961659A (en) Immobilization material, biological denitrification material, preparation method and application
IE52716B1 (en) Immobilization of viable microorganisms
JPH0638754A (en) Production of immobilized biocatalyst using polyvinyl alcohol
Wittlich et al. Entrapment in LentiKats®: Encapsulation of various biocatalysts—bacteria, fungi, yeast or enzymes into polyvinyl alcohol based hydrogel particles
CN1035194C (en) Method for preparation of polyvinyl alcohol microbe or enzyme immobilization carrier and its use
CN1039655C (en) Manufacturing method of polyvinyl alcohol solid support with good air permeability and inclusion sludge microbe or biological catalyst
JPH05130867A (en) Biocatalyst-immobilized gel
TW199906B (en) Polyvinyl alcohol as fixed support of microorganism or enzyme and method of preparing thereof
Vacková et al. The possibility of using encapsulated nitrifiers for treatment of reject water coming from anaerobic digestion
JPS62279887A (en) Surface immobilized anaerobic bacteria granule and treatment of waste water using same
Zakaria et al. Optimum conditions for the production of lipase by alginate-immobilized bacteria
Prabhune et al. Immobilization of penicillin acylase in porous beads of polyacrylamide gel
JPS6154291A (en) Formation of methane by immobilized microbe
JPS6156087A (en) Production of organic acid by immobilized microorganism
CN113800651A (en) Method for realizing rapid start of anaerobic ammonia oxidation reactor through immobilization of anaerobic ammonia oxidation microorganisms

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080118

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090118

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090118

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100118

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100118

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 17

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 17

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 18

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 18